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TRAVELING WAVES FOR A NONLOCAL DISPERSAL SIR

MODEL EQUIPPED DELAY AND GENERALIZED INCIDENCE

YANG YANG, YUN-RUI YANG∗ AND XIN-JUN JIAO

(Communicated by Wan-Tong Li)

Abstract. In this paper, the existence and non-existence of traveling wave

solutions are established for a nonlocal dispersal SIR model equipped delay

and generalized incidence. In addition, the existence and asymptotic behaviors
of traveling waves under critical wave speed are also contained. Especially,

the boundedness of traveling waves is obtained completely without imposing

additional conditions on the nonlinear incidence.

1. Introduction

Since traveling waves of reaction-diffusion equations are often used to describe
many propagation phenomena in nature [1,2,5,7,8], such as species invasion, phase
transition, epidemic transmission in biology, ecology, epidemiology and so on, wide
attention has been attracted to the investigations of traveling waves. In particular,
much focus has been drawn to the famous SIR epidemic models [3, 6, 9, 13]. For
example, in 2012, Wang et al. [13] considered the SIR model equipped the standard
incidence

(1.1)


∂u1(x,t)

∂t = d1
∂2u1(x,t)
∂x2 − αu1(x,t)u2(x,t)

u1(x,t)+u2(x,t)
,

∂u2(x,t)
∂t = d2

∂2u2(x,t)
∂x2 + αu1(x,t)u2(x,t)

u1(x,t)+u2(x,t)
− νu2(x, t),

∂u3(x,t)
∂t = d3

∂2u3(x,t)
∂x2 + νu2(x, t),

where u1, u2 and u3 are the size of susceptible, infectious and cured(removal)
individuals, di > 0 (i = 1, 2, 3), α > 0 and ν > 0 represent their ability of mobility,
infection and recovery, respectively. Based on the work of [14], Wang et al. [13]
obtained that (1.1) has a traveling wave solution while the wave speed c > c∗ =

2
√
d2(α− ν) and the basic reproduction number R0 = α

ν > 1. Moreover, the non-
existence was also contained when R0 ∈ (1,+∞) with c ∈ (0, c∗) and R0 ∈ (0, 1) by
two-side Laplace transform [15].

As is well known, for a long range diffusion such as population ecology, neurology
and epidemiology, the flow of individuals is not only limited to the same one point,
but is affected by other points around it. Therefore, the nonlocal dispersal is more
realistic than the local diffusion [4,10,20], which can be expressed by a convolution
term L[u](x, t) = J∗u(x, t)−u(x, t) =

∫
R J(x−η)(u(η, t)dη−u(x, t))dη, where u(x, t)

denotes the density of individuals and J(x − η) is the probability distribution of
individuals which jump from location η to location x. Then J ∗ u(x, t) =

∫
R J(x−
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η)u(η, t)dη denotes the rate at which individuals are arriving at location x from
all other locations, while the term −u(x, t) = −

∫
R J(x − η)u(x, t)dη is the rate

at which they are leaving location x to travel to all other locations. Thus, the
nonlocal dispersal L[u](x, t) can be biologically interpreted as the net increasing
rate of u(x, t). In 2014, by the same method in [13], Li and Yang [11] inspected the
nonlocal dispersal situation of (1.1):
(1.2)

∂u1(x,t)
∂t = d1

∫
R J(x− η)(u1(η, t)− u1(x, t))dη − αu1(x,t)u2(x,t)

u1(x,t)+u2(x,t)
,

∂u2(x,t)
∂t = d2

∫
R J(x− η)(u2(η, t)− u2(x, t))dη + αu1(x,t)u2(x,t)

u1(x,t)+u2(x,t)
− νu2(x, t),

∂u3(x,t)
∂t = d3

∫
R J(x− η)(u3(η, t)− u3(x, t))dη + νu3(x, t),

where
∫
R J(x − η)u(η, t)dη := J ∗ u denotes the normal convolution. For other

related works, one can refer to [17,18].
Furthermore, the state of time delay exists universally in the objective material

world [12, 16]. In addition, the general incidence is more extensive to illustrate the
disease spread process than the special standard incidence. For the above reasons,
Zhang et al. [19] considered the following SIR model
(1.3)

∂u1(x,t)
∂t = d1

∫
R J(x− η)(u1(η, t)− u1(x, t))dη − f(u1(x, t))g(u2(x, t− τ)),

∂u2(x,t)
∂t = d2

∫
R J(x− η)(u2(η, t)− u2(x, t))dη

+f(u1(x, t))g(u2(x, t− τ))− νu2(x, t),
∂u3(x,t)

∂t = d3
∫
R J(x− η)(u3(η, t)− u3(x, t))dη + νu2(x, t).

They showed that there is a number c∗ > 0 such that traveling wave solutions
(U(x + ct), V (x + ct)) of (1.3) conforming to U(±∞) = U±∞, V (±∞) = 0 and

U(−∞) > U(+∞) exist when V is a bounded function and R0 := f(U−∞)g′(0)
ν > 1

with c > c∗, but for R0 ∈ (0, 1) and R0 ∈ (1,+∞) with c ∈ (0, c∗), there are no
traveling waves.

Although there have been many excellent results as mentioned above, it is nec-
essary to indicate the core problem that (i) the boundedness of traveling waves is
not obtained easily by constructing bounded invariant cones due to the shortage
of natural upper bound of nonlinear incidence g(u2), which is different from the
standard incidence case u2

u1+u2
< 1. On the other hand, (ii) it is extremely tough

to investigate the existence and asymptotic behaviors with c = c∗ because of the
absence of order-preserving quality of semi-flow of (1.3) and the inferior smoothness
of solutions for the import of nonlocal dispersal.

In order to solve the first problem (i), Zhang et al. [19] obtained the boundedness
and asymptotic behaviors of traveling waves when c > c∗ and R0 > 1 by assuming
that f(U−∞)g(V0) ≤ νV0 holds for some V0 ∈ R. Similarly, owing to the same diffi-
culties, Zou and Wu [21] only obtained the boundedness and asymptotic behaviors
under the large wave speed and a specific assumption.

However, the scope of incidence functions is not extensive since the strict condi-
tion in [19] and there is still not result of existence of traveling waves under critical
wave speed. Fortunately, Yang and Li [18] recently considered a SIR model equipped
bilinear function αu1u2 and established the boundedness and asymptotic behaviors
of traveling waves for c ≥ c∗ and R0 > 1 by some limit discussions and a series of
analyses without imposing additional conditions upon incidence function.

Based on the above fact and motivated by the idea in [17, 18], in this paper, we
illustrate the existence, boundedness and asymptotic behaviors of traveling waves of
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system (1.3) for non-critical and critical wave speed, respectively, which complete
and improve the works in [19, 21]. In this sense, the above two difficulties we
mentioned in (i) and (ii) are solved. Moreover, we extend the delay-free case in
[17, 18] to the case with time delay and generalize the bilinear incidence to a more
general case.

Below, the following assumptions are always valid for the whole paper:

(A1): f(·) ∈ C1 (R+,R+), f(0) = 0 and f ′(U) > 0 for all U ≥ 0, where
R+ = [0,+∞);

(A2): g(·) ∈ C1 (R+,R+), g(0) = 0 and g′(V ) > 0, g′′(V ) ≤ 0 for all V ≥ 0;
(A3): J(·) ∈ C1 (R,R+), J(−x) = J(x) and

∫
R J(x)dx = 1;

Moreover, J is compactly supported.

The remaining part of this paper is designed as follows. In section 2, we com-
plete the existence results of traveling waves when R0 > 1 with c > c∗ in [21] by
some analytical techniques. In addition, the boundedness of traveling waves is also
included. In section 3, the existence and asymptotic behaviors of traveling waves
when R0 > 1 and c = c∗ are established by a prior estimate and some technical
analyses. In section 4, a new way is given to derive the non-existence of traveling
waves for R0 > 1 and c < c∗.

2. Boundedness and existence of traveling waves with c > c∗

In this section, the boundedness and existence of traveling wave solutions of (1.3)

are established for R0 = f(U−∞)g′(0)
ν > 1 with c > c∗.

Noticing that the first two equation of (1.3) are independent of the function u3,
we focus only on the solutions with the profile of (U(x+ct), V (x+ct)) = (U(ξ), V (ξ))
of the following system
(2.1){

cU ′(ξ) = d1
∫
R J(ξ − η)(U(η)− U(ξ))dη − f(U(ξ))g(V (ξ − cτ)),

cV ′(ξ) = d2
∫
R J(ξ − η)(V (η)− V (ξ))dη + f(U(ξ))g(V (ξ − cτ))− νV (ξ)

conforming to

(2.2) (U(−∞), V (−∞)) = (U−∞, 0), (U(+∞), V (+∞)) = (U+∞, 0),

where ξ = x+ ct. Next, the following two important conclusions in [21] are needed:

Proposition 2.1. [ [21], Lemma 2.1]Assume that R0 = f(U−∞)g′(0)
ν > 1. Then

some positive pair of (c∗, λ∗) exists for the following equations

4(λ∗, c∗) = 0,
∂4(λ, c)

∂λ

∣∣∣∣
(λ∗,c∗)

= 0,

where 4(λ, c) = d2
∫
R J(η)(e−λη − 1)dη + f(U−∞)g′(0)e−λcτ − ν − cλ. Moreover,

(1) if c > c∗, the equation 4(λ, c) = 0 admits two positive real roots λ1(c) < λ2(c) <
+∞ conforming to that 4(λ, c) > 0 in (0, λ1(c)) ∪ (λ2(c),+∞) and 4(λ, c) < 0 in
(λ1(c), λ2(c));
(2) if 0 < c < c∗, then 4(λ, c) > 0 for all λ ∈ [0,+∞).

Proposition 2.2. [ [21], Theorem 2.1] If (A1)− (A3) hold and R0 > 1, then,

(i) : for c > c∗, the system (1.3) admits some (U(ξ), V (ξ)) according with
U(−∞) = U−∞ > 0 and V (−∞) = 0;

(ii) : if lim sup
ξ→+∞

V (ξ) < +∞, then V (+∞) = 0 and U(+∞) < U−∞;
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(iii): if c > max{c∗, 32d2k1}, then lim sup
ξ→+∞

V (ξ) < +∞, where k1 :=

U−∞
∫
R J(η)|η|dη.

According to Proposition 2.2, lim sup
ξ→+∞

V (ξ) < +∞ holds for R0 > 1 with c > c∗

when 3
2d2k1 ≤ c∗. To perfect Proposition 2.2, we complete the case of 3

2d2k1 > c∗
and give out the proof of lim sup

ξ→+∞
V (ξ) < +∞ for R0 > 1 with c∗ < c < 3

2d2k1 := c1.

For the proof, we first establish the following lemmas and the boundedness of V (ξ).

Lemma 2.1. If R0 > 1 and c > c∗, then 0 < U(ξ) < U−∞ and V (ξ) > 0 on R.

Proof. Firstly, from Lemma 2.5 and Theorem 2.1 in [21], we obtain that

(2.3) 0 ≤ U(ξ) ≤ U−∞, 0 ≤ max{eλ1ξ(1−Meη0ξ), 0} ≤ V (ξ) ≤ eλ1ξ,

for some number M > 0, η0 > 0.
Secondly, if there is some ξ0 ∈ R with U(ξ0) = 0, then U ′(ξ0) = 0. By (2.1) and

(A1), we have

0 = cU ′(ξ0) = d1

∫
R
J(η − ξ0)(U(η)− U(ξ0))dη − f(U(ξ0))g(V (ξ0 − cτ)) ≥ 0,

(2.4)

Denote RJ > 0 as the radius of the support set of J. It follows that U(ξ) ≡ 0
for ξ ∈ [ξ0 − RJ , ξ0 + RJ ] by (2.4). Applying the above facts to U(ξ0 − RJ) =
U(ξ0 +RJ) = 0, we obtain U(ξ) ≡ 0 for ξ ∈ [ξ0 − 2RJ , ξ0 + 2RJ ] and consequently
U(ξ) ≡ 0 for ξ ∈ R, which is contradictory to U(−∞) > 0. Therefore, U is positive
on R.

Finally, we can prove similarly that V > 0 and U < U−∞ for ξ ∈ R. This proof
is complete. �

Lemma 2.2. Let K(ξ) =
∫
R J(ξ− η)V (η)

V (ξ)dη and ω(ξ) = V ′(ξ)
V (ξ) . Then, K and ω are

both bounded for c∗ < c ≤ c1.

Proof. According to (2.1), we have

ω(ξ) = dK(ξ)− ρ+
1

c

f(U(ξ))g(V (ξ − cτ))

V (ξ)
≥ dK(ξ)− ρ.(2.5)

where ρ = d2+ν
c , d = d2

c . Let H(ξ) = eρξ+
∫ ξ
0
ω(s)ds. Then, it can be derived from

(2.5) that

V (ξ − y)

V (ξ)
= e

∫ ξ−y
ξ

ω(s)ds = eρy
H(ξ − y)

H(ξ)
(2.6)

and thus

H ′(ξ) = (ρ+ ω(ξ))H(ξ) ≥ d
∫
R
J(η)eρη

H(ξ − η)

H(ξ)
dη ·H(ξ) ≥ 0.(2.7)

Therefore, H is non-decreasing and lim
ξ→−∞

H(ξ) = 0. Choose a number R1 > 0 with

2R1 < RJ . By an integral process for (2.7) from −∞ to ξ, it holds that

H(ξ) ≥ d

∫ ξ

−∞

∫
R
J(η)eρηH(θ − η)dηdθ

≥ d

∫
R

∫ ξ

ξ−R1

J(η)eρηH(θ − η)dθdη ≥ dR1

∫
R
J(η)eρηH(ξ −R1 − η)dη
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and thus ∫
R
J(η)eρη

H(ξ −R1 − η)

H(ξ)
dη ≤ 1

dR1
.(2.8)

By a similar integral process for (2.7) from ξ −R1 to ξ, we find that

H(ξ) ≥ d
∫
R

∫ ξ

ξ−R1

J(η)eρηH(θ − η)dθdη +H(ξ −R1)

≥ dR1

∫ −2R1

−∞
J(η)eρηH(ξ −R1 − η)dη ≥ dR1

∫ −2R1

−∞
J(η)eρηdη ·H(ξ +R1).

(2.9)

Defining k2 := (dR1

∫ −2R1

−∞ J(η)eρηdη)−1, then

(2.10) H(ξ +R1) ≤ k2H(ξ) for ξ ∈ R,

By (2.6), (2.8) and (2.10), we have

|K(ξ)| ≤ k2
∫
R
J(η)eρη

H(ξ −R1 − η)

H(ξ)
dη ≤ k2

dR1
.(2.11)

On the other hand, it is obvious that

(2.12) g(V ) = g(0) + g′(V̂ )V ≤ g′(0)V

for some V̂ ∈ (0, V ) by (A2). From (2.5), (2.11), (2.12) and c∗ < c ≤ c1, it follows
that

|ω(ξ)| ≤ d · k2
dR1

+ ρ+
f(U−∞)g′(0)

c
· V (ξ − cτ)

V (ξ)

=
k2
R1

+ ρ+
f(U−∞)g′(0)

c
e
∫ ξ−cτ
ξ

ω(s)ds

≤ k2
R1

+ ρ+
f(U−∞)g′(0)

c∗
eρc1τ .

This proof is complete. �

Lemma 2.3. Let ck ∈ (c∗, c1) and {(ck, Uk, Vk)} represent a sequence of solution
of (2.1). If there is a sequence {ξk} satisfying Vk(ξk) = maxξ∈[ξk−RJ ,ξk+RJ ] Vk(ξ)
and

lim
k→+∞

Vk(ξk) = +∞ for all k ∈ N , then lim
k→+∞

Uk(ξk) = 0.

Proof. Suppose that there exist some sequence {ξk} and a number δ1 > 0 satisfying
lim

k→+∞
Vk(ξk) = +∞, Vk(ξk) = maxξ∈[ξk−RJ ,ξk+RJ ] Vk(ξ) and Uk(ξk) ≥ δ1 for all

k ∈ N .
From (2.1) and (2.3), it holds that

(2.13) U ′k(ξ) ≤ d1
ck

∫
R
J(η)|Uk(ξ − η)− Uk(ξ)|dη ≤ d1U−∞

c∗
, k ∈ N.

Denoting k3 := δ1c∗
2d1U−∞

and by an integral process for (2.13) from ξ to ξk, it follows

that

Uk(ξ) ≥ Uk(ξk)−
∫ ξk

ξ

d1U−∞
c∗

dη ≥ δ1 − k3
d1U−∞
c∗

=
δ1
2
,(2.14)

ξ ∈ [ξk − k3, ξk], k ∈ N.
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In view of the fact that Vk(ξk) = maxξ∈[ξk−RJ ,ξk+RJ ] Vk(ξ), we obtain that V ′k(ξk) =
0 for all k ∈ N and therefore

(2.15) f(Uk(ξk))g(Vk(ξk − cτ)) > νVk(ξk)→ +∞ as k → +∞

by using (2.2). Since f(Uk(ξk)) ≤ f(U−∞) and g ∈ C1(R), (2.15) implies that

(2.16) g(Vk(ξk − cτ))→ +∞ and Vk(ξk − cτ)→ +∞ as k → +∞.

Moreover, by Lemma 2.2 and (2.6), there exists some C0 > 0 conforming to

(2.17)
Vk(ξk − cτ)

Vk(ξ − cτ)
= e

∫ ξk−cτ
ξ−cτ ω(s)ds ≤ eC0k3 , ξ ∈ [ξk − k3, ξk], k ∈ N.

Thus, it follows from (2.16) and (2.17) that

min
ξ∈[ξk−k3,ξk]

Vk(ξ − cτ) ≥ e−C0k3Vk(ξk − cτ)→ +∞ as k → +∞

and

(2.18) min
ξ∈[ξk−k3,ξk]

g(Vk(ξ − cτ))→ +∞ as k → +∞.

By (2.14), (2.18) and (2.2), we obtain

max
ξ∈[ξk−k3,ξk]

U ′k(ξ) ≤ d1U−∞
ck

− 1

ck
min

ξ∈[ξk−k3,ξk]
f(Uk(ξ))g(Vk(ξ − cτ))

≤ d1U−∞
c∗

− 1

c1
f(
δ1
2

) min
ξ∈[ξk−k3,ξk]

g(Vk(ξ − cτ))→ −∞ as k → +∞,

which implies some k0 > 0 exists satisfying

(2.19) U ′k(ξ) ≤ −U−∞
k3

, k ≥ k0, ξ ∈ [ξk − k3, ξk].

Integrating on both sides of (2.19) from ξk − k3 to ξk, we have

Uk(ξk) ≤ Uk(ξk − k3)− k3 ·
U−∞
k3
≤ U−∞ − U−∞ = 0, k ≥ k0.

This contradicts with the inequation Uk(ξ) > 0 on R. The proof is complete. �

Lemma 2.4. Suppose that lim sup
ξ→+∞

V (ξ) = +∞. Then V (ξ) satisfies V (+∞) =

+∞.

Proof. Assume that V0 = lim inf
ξ→+∞

V (ξ) is finite and take some sequence {ξk} satisfy-

ing lim
k→+∞

ξk = ∞ and lim
k→+∞

V (ξk) = V0. Moreover, choose a sequence {ηk} with

ηk ∈ [ξk, ξk+1] and V (ηk) = max
ξ∈[ξk,ξk+1]

V (ξ) and make a general assumption that

V (ξk) < V0 + 1 for k ∈ N . Then, from lim sup
ξ→+∞

V (ξ) = +∞, it follows that

(2.20) V (ηk)→ +∞ as k → +∞.

Consequently, we can assume that V (ηk) ≥ (V0 + 1)ek4RJ , where k4 = sup
ξ∈R
|ω(ξ)|.

By (2.6), we find that

V (ξ) = e−
∫ ηk
ξ ω(s)dsV (ηk) ≥ e−k4RJV (ηk) ≥ V0 + 1, ξ ∈ [ηk −RJ , ηk +RJ ].
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Therefore, [ηk−RJ , ηk+RJ ] ⊂ (ξk, ξk+1) and hence lim
k→+∞

U(ηk) = 0 due to Lemma

2.3. Furthermore, it follows from (2.1), (2.6), (2.12) and (2.20) that

0 = cV ′(ηk)

= d2

∫
R
J(η)(V (ηk − η)− V (ηk))dη + f(U(ηk))g(V (ηk − cτ))− νV (ηk)

≤ (f(U(ηk))g′(0)e
∫ ηk−cτ
ηk

ω(s)ds − ν)V (ηk)

≤ (f(U(ηk))g′(0)ecτk4 − ν)V (ηk)→ −∞ as k → +∞.
This is a contradiction and the proof is thus finished. �

Next, we display and prove the primary results of this section.

Theorem 2.5. (Boundedness) For every c > c∗, the solution V is a bounded func-
tion.

Proof. By Proposition 2.2, it is sufficient to verify lim sup
ξ→+∞

V (ξ) < +∞ for c∗ < c ≤

c1. Suppose that lim sup
ξ→+∞

V (ξ) = +∞ for a contrary.

Denote B(ξ) = −(d2 + ν) + f(U(ξ))g(V (ξ−cτ))
V (ξ) . By Lemma 2.4 and Lemma 2.3,

it can be seen that (U(+∞), V (+∞)) = (0,+∞). Therefore, from Lemma 2.2, it
follows that∣∣∣∣f(U(ξ))g(V (ξ − cτ))

V (ξ)

∣∣∣∣ ≤ f(U(ξ))g′(0)eρc1τ → 0 as ξ → +∞

and B(+∞) = −(d2 +ν). By (2.5) and Proposition 3.7 in [20], the limit lim
ξ→+∞

ω(ξ)

exists and belongs to the solution set of the following equation

P (λ, c) := d2

∫
R
J(η)e−ληdη − ν − cλ− d2.

On the other hand, the equation P (λ, c) = 0 admits a unique positive real root λ0
by a similar calculation to Theorem 2.6 in [18]. Therefore, ω(+∞) = λ0 due to the

positivity of V and V (+∞) = +∞. Notice that ∂2P
∂λ2 = d2

∫
R J(η)η2e−ληdη > 0 and

λ2 satisfies

d2(

∫
R
J(η)e−ληdη − 1)− cλ− ν = −f(U−∞)g′(0)e−λcτ < 0.

It is clear that λ2 < λ0. Moreover, by lim
ξ→+∞

ω(ξ) = λ0, we can take a number

ξ∗ ∈ R complying with ω(ξ) = V ′(ξ)
V (ξ) ≥ λ2 for ξ > ξ∗. Recalling λ2 > λ1 and (2.3),

it follows that

0 < V (ξ∗) ≤ V (ξ)e−λ2(ξ−ξ∗) ≤ e(λ1−λ2)ξ+λ2ξ∗ → 0 as ξ → +∞,
which raises a contradiction. This ends the proof. �

Theorem 2.6. (Existence) If R0 = f(U−∞)g′(0)
ν > 1 with c > c∗, then some

(U(ξ), V (ξ)) exists for (2.1) conforming to (U(±∞), V (±∞)) = (U±∞, 0) for some
number U+∞ < U−∞. Furthermore, 0 < U(ξ) < U−∞, 0 < V (ξ) < +∞ for ξ ∈ R
and
(2.21)

lim
ξ→−∞

V (ξ)

eλ1ξ
= 1,

∫
R
f(U(θ))g(V (θ − cτ))dθ < +∞,

∫
R
V (θ)dθ =

c(U−∞ − U+∞)

ν
.
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Proof. By Proposition 2.2, Lemma 2.1 and Theorem 2.5, it is enough to prove that
(U(ξ), V (ξ)) satisfies (2.21).

The rest of proofs are divided into the following three steps.
Step 1.

∫
R f(U(θ))g(V (θ − cτ))dθ < +∞ and lim

ξ→−∞
e−λ1ξV (ξ) = 1.

For ξ < 1
η ln 1

M , from (2.3), we find that 1 ≥ e−λ1ξV (ξ) ≥ (1 − Meη0ξ) →
1 as ξ → −∞. Therefore, lim

ξ→−∞
e−λ1ξV (ξ) = 1 by Squeeze theorem.

Notice that

∣∣∣∣∫ x

z

(J(η) ∗ U(θ)− U(θ))dθ

∣∣∣∣ =

∣∣∣∣∫ x

z

∫
R
J(η)η

∫ 1

0

U ′(θ − tη)dtdηdθ

∣∣∣∣
=

∣∣∣∣∫
R
J(η)η

∫ 1

0

(U(z − tη)− U(x− tη))dtdη

∣∣∣∣ ≤ k1.

(2.22)

Taking z → −∞ and x→ +∞ in (2.22), we have

lim
z→−∞
x→+∞

∣∣∣∣∫ x

z

(J(η) ∗ U(θ)− U(θ))dθ

∣∣∣∣
= lim
z→−∞
x→+∞

∣∣∣∣∫
R
J(η)η

∫ 1

0

(U(z − tη)− U(x− tη))dtdη

∣∣∣∣ ≤ k1.(2.23)

Moreover, by 0 < U(ξ) < U−∞, U(−∞) = U−∞, (2.23) and (2.1), we obtain∫ x

−∞
f(U(θ))g(V (θ − cτ))dθ =d1

∫ x

−∞

∫ +∞

−∞
J(η)(U(θ − η)− U(θ))dηdθ

− c[U(x)− U−∞] ≤ k1 + cU−∞.

(2.24)

Therefore, by taking x→ +∞, it follows that∫
R
f(U(θ))g(V (θ − cτ))dθ ≤ k1 + cU−∞ < +∞.

Step 2.
∫
R V (θ)dθ = c(U−∞−U+∞)

ν .
From (2.1), (2.22), (2.23), (2.24) and Proposition 2.2 , it follows that

ν

∫
R
V (θ)dθ = d2

∫
R

∫
R
J(η)(V (θ − η)− V (θ))dηdθ

+

∫
R
f(U(θ))g(V (θ − cτ))dθ − c[V (+∞)− V (−∞)]

= d2

∫
R
J(η)η

∫ 1

0

(V (−∞)− V (+∞))dtdη − c[V (+∞)− V (−∞)]

+d1

∫
R
J(η)η

∫ 1

0

(U(−∞)− U(+∞))dtdη − c[U(+∞)− U(−∞)]

= c(U−∞ − U+∞).

This completes the proof. �

Up to now, by constructing the boundedness of V (ξ), we obtain a more general
existence result and thus improve and complete the results in [19, 21]. Next, we
illustrate the existence under critical speed for further improvement.
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3. Existence of traveling waves with c = c∗

In this section, an approximating method is applied to establish the existence
of solutions of (2.1) when R0 > 1 with c = c∗. For this proof, a prior estimate is
needed in the followings.

Lemma 3.1. Assume {ck} ⊂ (c∗, c∗ + 1) is a decreasing sequence with ck → c∗ as
k → +∞ and let (ck, Uk, Vk) be a solution of (2.1) for k ∈ N . Then, ‖ Uk ‖C1,1(R)
and ‖ Vk ‖C1,1(R) are both uniformly bounded.

Proof. Firstly, we prove the uniform boundedness of {Uk} and {Vk}. It is obvious
that {Uk} is uniformly bounded due to (2.3). Suppose that there is a sequence {ξk}
satisfying lim

k→+∞
Vk(ξk) = +∞ for a contradiction.

Take a sequence {ηk} with Vk(ηk) = max
ξ∈R

Vk(ξ). Then, V ′k(ηk) = 0 and

lim
k→+∞

Vk(ηk) = +∞. By Lemma 2.3, we find lim
k→+∞

Uk(ηk) = 0. Therefore, from

(2.1), (2.12) and Lemma 2.2, it follows that

0 = ckV
′
k(ηk)

= d2

∫
R
J(η)(Vk(ηk − η)− Vk(ηk))dη + f(Uk(ηk))g(Vk(ηk − cτ))− νVk(ηk)

≤ f(Uk(ηk))g′(0)Vk(ηk − ckτ)− νVk(ηk) ≤ (f(Uk(ηk))g′(0)eckτρ − ν)Vk(ηk)

≤ (f(Uk(ηk))g′(0)e(c∗+1)τρ − ν)Vk(ηk)→ −∞, as k → +∞,

which deduces a contradiction. Hence, {Vk} is uniformly bounded on R.
Secondly, according to the above discussions and (2.1), it holds that {U ′k} and

{V ′k} are both uniformly bounded. By a similar discussion to Lemma 2.6 in [19],
it can be derived that Uk, Vk, U

′
k(ξ) and V ′k(ξ) are all Lipschitz continuous. The

proof is finished. �

Next, we demonstrate the existence, boundedness, positivity and asymptotic
behavior of traveling waves as followings.

Theorem 3.2. If R0 = f(U−∞)g′(0)
ν > 1 with c = c∗. Then, there is a solution

(U∗(ξ), V∗(ξ)) of (2.1) conforming to (U∗(±∞), V∗(±∞)) = (U±∞, 0) for some pos-
itive number U+∞ < U−∞. Furthermore, 0 < U∗(ξ) < U−∞, 0 < V∗(ξ) < +∞ for
ξ ∈ R and

lim
ξ→−∞

V∗(ξ)

eλ1ξ
= 1,

∫
R
f(U∗(θ))g(V∗(θ − cτ))dθ < +∞,

∫
R
V∗(θ)dθ =

c∗(U−∞ − U+∞)

ν
.

Proof. According to Theorem 2.6, it can be seen that (Uk, Vk) satisfies (2.1), (2.2),
(2.21), 0 < Uk(ξ) < U−∞, Vk(ξ) > 0 for all ξ ∈ R. In addition, by Lemma 3.1
and Arzela-Ascoli theorem, some subsequence of {(Uk, Vk)} can be extracted, still
denoted by {(Uk, Vk)}, satisfying lim

k→+∞
(Uk, Vk) = (U∗, V∗) in C1

loc(R).

Therefore, from the compactness of J and a limiting process, it follows that
(U∗, V∗) satisfies (2.1). Moreover, by the properties of (Uk, Vk) and a similar dis-
cussion to Theorem 2.6, we find that 0 ≤ U∗(ξ) ≤ U−∞, 0 ≤ V∗(ξ) < ∞ on R
and ∫

R
f(U∗(θ))g(V∗(θ − c∗τ))dθ < +∞,

∫
R
V∗(θ)dθ < +∞.

Consequently, V ′∗(ξ) is bounded on R and V∗(±∞) = 0.
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The rest of proofs are divided into the following three steps.

Step 1. U∗(±∞) = U±∞ for some U+∞ < U−∞ and
∫
R V∗(θ)dθ = c∗(U−∞−U+∞)

ν .
Assume that U∗ := lim inf

ξ→−∞
U∗(ξ) < U−∞. Then, there exists a sequence {ξn}

with lim
n→+∞

ξn = −∞ and lim
n→+∞

U∗(ξn) = U∗. Denote that ((U∗)n, (V∗)n)(ξ) =

(U∗, V∗)(ξ+ξn). As ‖ (U∗)n ‖C1,1(R) is uniformly bounded, we can assume generally

that lim
n→+∞

(U∗)n(ξ) = U∞(ξ) in C1
loc(R). Meanwhile, it follows from V∗(−∞) = 0

that lim
n→+∞

(V∗)n(ξ) = 0 in C1
loc(R). Therefore, combining the fact that g(0) = 0

with (2.1), we obtain

c∗U
′
∞(ξ) = d1(J ∗ U∞(ξ)− U∞(ξ)), ξ ∈ R.(3.1)

From Proposition 3.6 in [20], we find that U∞(ξ) is a constant function. Further-
more, U∞(ξ) ≡ U∗ in R by U∞(0) = U∗, which implies lim

n→+∞
(U∗)n(ξ) ≡ U∗ in

C1
loc(R).
Notice that the solution (ck, Uk, Vk) satisfies

ckU
′
k(ξ) = d1

∫
R
J(η)(Uk(ξ − η)− Uk(ξ))dη − f(Uk(ξ))g(Vk(ξ − cτ)),

ξ ∈ R, k ∈ N.(3.2)

By an integral process for (3.2) from−∞ to ξn and combining (2.22) with Uk(−∞) =
U−∞ for all n ∈ N , it follows that

ck[Uk(ξn)− U−∞]

= d1

∫
R
J(η)η

∫ 1

0

(U−∞ − Uk(ξn − tη))dtdη −
∫ ξn

−∞
f(Uk(ξ))g(Vk(ξ − cτ))dξ.

Owing to U∗ and V∗ are both bounded in R, passing to k → +∞ and n → +∞
on the above equation, we find that 0 > c∗(U∗ − U−∞) = 0, which deduces a
contradiction. Therefore, U∗(−∞) = U−∞.

The remaining proofs in this step are similar to (ii) of Theorem 2.1 in [21] and
Step 2 of Theorem 2.6 in this paper, so we omit them here.

Step 2. The functions U∗ and V∗ are both positive on R.
Suppose there is a number ξ0 ∈ R with U∗(ξ0) = 0, and thereby U ′∗(ξ0) = 0. By

a similar discussion to (2.4), it leads to U∗(ξ) ≡ 0 on R. Consequently, there is a
contradiction with the fact U∗(−∞) 6= U∗(+∞). Hence, U∗(ξ) > 0 in R.

For the proof of positivity of V∗(ξ), we still assume some η0 exists satisfying
V∗(η0) = 0. According to (2.1) and V∗(ξ) ≥ 0 in R, we obtain

0 = c∗V
′
∗(η0) = d2

∫
R
J(η)V∗(η0 − η)dη + f(U∗(η0))g(V∗(η0 − cτ)) ≥ 0.

Therefore, V∗(ξ) ≡ 0 for a similar argument as (2.4). Moreover, by (2.1),

c∗U
′
∗(ξ) = d1

∫
R
J(η)(U∗(ξ − η)− U∗(ξ))dη, ξ ∈ R.

On the other hand, U∗(ξ) is a constant function by the same discussions as (3.1),
which raises a contradiction for the reason of U∗(−∞) 6= U∗(+∞).

Step 3. U∗(ξ) < U−∞ for ξ ∈ R.
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Assume that U∗(γ0) = U−∞ for some γ0 ∈ R. By the fact that U∗(ξ) ≤ U−∞
and (2.1), it follows that

0 = c∗U
′
∗(γ0) = d1

∫
R
J(η)(U∗(γ0 − η)− U∗(γ0))dη − f(U∗(γ0))g(V∗(γ0 − c∗τ))

≤ −f(U∗(γ0))g(V∗(γ0 − c∗τ)),

which is impossible since the positivity of U∗ and V∗. This finishes the proof. �

4. Nonexistence of traveling waves

In this section, we prove the nonexistence of solution of (2.1) by a different
approach which depends closely on the conclusions in Section 2.

Theorem 4.1. Suppose R0 = f(U−∞)g′(0)
ν > 1. For every speed c < c∗ with c 6= 0

and any positive number µ0, there are no solutions of (2.1) satisfying

(4.1) U(−∞) = U−∞, V (−∞) = 0, lim
ξ→−∞

e−µ0ξV (ξ) = 1.

Proof. For the first case 0 < c < c∗, we assume that (2.1) admits some positive
solution (U(ξ), V (ξ)) conforming to (4.1) with speed c for a contradiction. Take a
sequence {ξn} with lim

n→+∞
ξn = −∞ and denote

Un(ξ) := U(ξn + ξ), Vn(ξ) :=
V (ξn + ξ)

V (ξn)
, Gn(Vn(ξ − cτ)) :=

g(Vn(ξ − cτ)V (ξn))

V (ξn)
.

By (2.1) and U(−∞) = U−∞, we find that (Un(ξ), Vn(ξ)) satisfies lim
n→+∞

Un(ξ) =

U−∞ in C1
loc(R) and

cV ′n(ξ) = d2

∫
R
J(η)Vn(ξ − η)dη − (d2 + ν)Vn(ξ) + f(Un(ξ))Gn(Vn(ξ − cτ)).(4.2)

Define ω(ξ) = V ′(ξ)
V (ξ) . It is clear that ω(ξ) is bounded in R by a similar discussion to

Lemma 2.2. Moreover, Vn(ξ), V ′n(ξ) and V ′′n (ξ) are all locally uniformly bounded

on R by the fact that Vn(ξ) = e
∫ ξn+ξ
ξn

ω(s)ds and (4.2). Therefore, there is some

subsequence of {Vn}, still denoted by {Vn}, conforming to lim
n→+∞

Vn(ξ) = Ṽ (ξ) in

C1
loc(R). Furthermore, Ṽ (ξ) ≥ 0 in R and Ṽ (0) = 1. Meanwhile, from the fact that

V (−∞) = 0, g(0) = 0 and Taylor’s formula, it follows that

g(V (ξn + ξ − cτ))

V (ξn)
= g′(0)

V (ξn + ξ − cτ)

V (ξn)
+

1

V (ξn)
o(V 2(ξn + ξ − cτ))

= g′(0)
V (ξn + ξ − cτ)

V (ξn)
+
V (ξn + ξ − cτ)

V (ξn)
o(V (ξn + ξ − cτ))

= g′(0)Vn(ξ − cτ) + Vn(ξ − cτ)o(V (ξn + ξ − cτ)).

(4.3)

Consequently, by the boundedness of Vn(ξ) and (4.3), it leads to

lim
n→+∞

g(V (ξn + ξ − cτ))

V (ξn)
= g′(0)Ṽ (ξ − cτ).

According to (4.2), we obtain

cṼ ′(ξ) = d2

∫
R
J(η)Ṽ (ξ − η)dη − (d2 + ν)Ṽ (ξ) + f(U−∞)g′(0)Ṽ (ξ − cτ).(4.4)
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Next, we claim that Ṽ (ξ) 6= 0. Otherwise, the equation Ṽ (ξ0) = 0 holds for some
number ξ0 ∈ R and it follows from (4.4) that

0 = cṼ ′(ξ0) = d2

∫
R
J(η)Ṽ (ξ0 − η)dη − (d2 + ν)Ṽ (ξ0) + f(U−∞)g′(0)Ṽ (ξ0 − cτ) ≥ 0.

Therefore, Ṽ (ξ) ≡ 0 in R, which contradicts with Ṽ (0) = 1.

Let ω̃(ξ) = Ṽ ′(ξ)/Ṽ (ξ). Since lim
ξ→−∞

e−µ0ξV (ξ) = 1, it leads to

Ṽ (ξ) = eµ0ξ · lim
n→+∞

e−µ0(ξ+ξn)V (ξ + ξn)

e−µ0ξnV (ξn)
= eµ0ξ(4.5)

and thereby ω̃(ξ) ≡ µ0 in R. Meanwhile, dividing both sides of (4.4) by Ṽ (ξ) and
combining (2.6) with (4.5), we have

cω̃(ξ) = d2

∫
R
J(η)e

∫ ξ−η
ξ

ω̃(s)dsdη − (d2 + ν) + f(U−∞)g′(0)
Ṽ (ξ − cτ)

Ṽ (ξ)

= d2

∫
R
J(η)e

∫ ξ−η
ξ

ω̃(s)dsdη − (d2 + ν) + f(U−∞)g′(0)e−µ0cτ .

Therefore, according to Proposition 3.7 in [20], the limits lim
ξ→±∞

ω̃(ξ) both exist and

belong to the root set of the following equation

41(λ, c) := d2

∫ +∞

−∞
J(η)e−ληdη − cλ+ f(U−∞)g′(0)e−µ0cτ − ν − d2.

However, 41(µ0, c) = 4(µ0, c) > 0 when c < c∗ , which implies a contradiction.
For the second case c < 0, denote ϕ(θ) = U(−ξ) and φ(θ) = V (−ξ). Then,

(ϕ(θ), φ(θ)) satisfies

|c|φ′(θ) = d2

(∫
R
J(η)φ(θ − η)dη − φ(θ)

)
+ f(ϕ(θ))g(φ(θ − |c|τ))− νφ(θ).(4.6)

Applying a similar discussion as the above case 0 < c < c∗ , it can be obtained that
the nonexistence of traveling waves with c < 0. This accomplishes the proof. �
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