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TRAVELING WAVES FOR A NONLOCAL DISPERSAL SIR
MODEL EQUIPPED DELAY AND GENERALIZED INCIDENCE

YANG YANG, YUN-RUI YANG* AND XIN-JUN JIAO

(Communicated by Wan-Tong Li)

ABSTRACT. In this paper, the existence and non-existence of traveling wave
solutions are established for a nonlocal dispersal SIR model equipped delay
and generalized incidence. In addition, the existence and asymptotic behaviors
of traveling waves under critical wave speed are also contained. Especially,
the boundedness of traveling waves is obtained completely without imposing
additional conditions on the nonlinear incidence.

1. INTRODUCTION

Since traveling waves of reaction-diffusion equations are often used to describe
many propagation phenomena in nature [1,2,5,7,8], such as species invasion, phase
transition, epidemic transmission in biology, ecology, epidemiology and so on, wide
attention has been attracted to the investigations of traveling waves. In particular,
much focus has been drawn to the famous SIR epidemic models [3,6,9,13]. For
example, in 2012, Wang et al. [13] considered the SIR model equipped the standard
incidence

aula(w,t) o dl azul(:p,t) au(1 (ajit)uz ((Lt))

t uy (x,t)fus(xz,t)’

(1 1) Ous(z,t) d o 11.2(’1' t) + alul (z, t)uj(r t)
: ot w1 (z,t)+uz(z,t)

Bugb(ic,t) d 8?2 ug(x t) + I/’LLQ(:L' t)

where uq, us and us are the size of susceptible, infectious and cured(removal)
individuals, d; > 0 (i = 1,2,3), @ > 0 and v > 0 represent their ability of mobility,
infection and recovery, respectively. Based on the work of [14], Wang et al. [13]
obtained that (1.1) has a traveling wave solution while the wave speed ¢ > ¢, =

da(a — v) and the basic reproduction number Ry = £ > 1. Moreover, the non-
exmtence was also contained when Ry € (1, +00) with ¢ e (0,c.) and Ry € (0,1) by
two-side Laplace transform [15].

As is well known, for a long range diffusion such as population ecology, neurology
and epidemiology, the flow of individuals is not only limited to the same one point,
but is affected by other points around it. Therefore, the nonlocal dispersal is more
realistic than the local diﬁusion [4 10,20], which can be expressed by a convolution
term L{u)(z,t) = Jxu(x,t)— = Jp J( n,t)dn—u(z,t))dn, where u(x,t)
denotes the density of 1nd1v1duals and J (x — 77) is the probablhty dlbtrlbutlon of
individuals which jump from location 71 to location z. Then J * u(x,t) fR

— vug(x,t),
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n)u(n, t)dn denotes the rate at which individuals are arriving at location z from
all other locations, while the term —u(x,t) — fR x — n)u(x,t)dn is the rate
at which they are leaving location x to travel to all other locations. Thus, the
nonlocal dispersal L[u](x,t) can be biologically interpreted as the net increasing
rate of u(x,t). In 2014, by the same method in [13], Li and Yang [11] inspected the
nonlocal dispersal situation of (1.1):
(1.2)

Pl — dy [ (@ =) (ua(n, t) — w (@, 1))y — Sledueted
(@,t)
(2.1)

)

Zu%(tzi) = d2 fR J(l‘ - 7]) (Ug(?’], t) - UQ('ry t))d?’] ‘i’ % — Z/UQ(J?, t),
P = dy o T (=) (ua(n.1) — ws(,0))dn + vus (a, 1),
where [, J(x — n)u(n,t)dn := J x u denotes the normal convolution. For other

related works, one can refer to [17,18].

Furthermore, the state of time delay exists universally in the objective material
world [12,16]. In addition, the general incidence is more extensive to illustrate the
disease spread process than the special standard incidence. For the above reasons,
Zhang et al. [19] considered the following SIR model
(1.3)

ot = dy [ I =) (n,t) —wi (@, 0))dy — f(u (w0, 6)g(uz(a,t = 7)),

P = dy [ T — ) (uz(n, t) — uz(a, t))dn

+f(u(z,))g(uz(x, t — 7)) — vug(z, ),
= ds [p J(x —n)(us(n,t) — us(x,t))dn + vus(z,t).
They showed that there is a number c, > 0 such that traveling wave solutions
(U(x + ct),V(x + ct)) of (1.3) conforming to U(+oo) = Ui, V(Eoo) = 0 and
U(—00) > U(+400) exist when V is a bounded function and Ry := M > 1
with ¢ > ¢, but for Ry € (0,1) and Ry € (1,+00) with ¢ € (0,¢,), there are no
traveling waves.

Although there have been many excellent results as mentioned above, it is nec-
essary to indicate the core problem that (i) the boundedness of traveling waves is
not obtained easily by constructing bounded invariant cones due to the shortage
of natural upper bound of nonlinear incidence g(us), which is different from the
standard incidence case u:jfuz < 1. On the other hand, (ii) it is extremely tough
to investigate the existence and asymptotic behaviors with ¢ = ¢, because of the
absence of order-preserving quality of semi-flow of (1.3) and the inferior smoothness
of solutions for the import of nonlocal dispersal.

In order to solve the first problem (i), Zhang et al. [19] obtained the boundedness
and asymptotic behaviors of traveling waves when ¢ > ¢, and Ry > 1 by assuming
that f(U_x)g(Vo) < vVj holds for some V; € R. Similarly, owing to the same diffi-
culties, Zou and Wu [21] only obtained the boundedness and asymptotic behaviors
under the large wave speed and a specific assumption.

However, the scope of incidence functions is not extensive since the strict condi-
tion in [19] and there is still not result of existence of traveling waves under critical
wave speed. Fortunately, Yang and Li [18] recently considered a SIR model equipped
bilinear function cuqus and established the boundedness and asymptotic behaviors
of traveling waves for ¢ > ¢, and Ry > 1 by some limit discussions and a series of
analyses without imposing additional conditions upon incidence function.

Based on the above fact and motivated by the idea in [17,18], in this paper, we
illustrate the existence, boundedness and asymptotic behaviors of traveling waves of

Quz(z,t)
ot
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system (1.3) for non-critical and critical wave speed, respectively, which complete
and improve the works in [19,21]. In this sense, the above two difficulties we
mentioned in (i) and (ii) are solved. Moreover, we extend the delay-free case in
[17,18] to the case with time delay and generalize the bilinear incidence to a more
general case.

Below, the following assumptions are always valid for the whole paper:

(A): f(-) € CHRF,RT), f(0) = 0 and f'(U) > 0 for all U > 0, where
R* = [0, +00);
(A3): g(-) € CT(RT,RY), g(0) =0 and ¢'(V) > ( )< O0forall V>0
(A3): J(-) € CY (R,RT), J(—x) = J(x) and fR dr = 1;
Moreover, J is compactly supported.

The remaining part of this paper is designed as follows. In section 2, we com-
plete the existence results of traveling waves when Ry > 1 with ¢ > ¢, in [21] by
some analytical techniques. In addition, the boundedness of traveling waves is also
included. In section 3, the existence and asymptotic behaviors of traveling waves
when Ry > 1 and ¢ = ¢, are established by a prior estimate and some technical
analyses. In section 4, a new way is given to derive the non-existence of traveling
waves for Ry > 1 and ¢ < ¢..

2. BOUNDEDNESS AND EXISTENCE OF TRAVELING WAVES WITH ¢ > ¢,

In this section, the boundedness and existence of traveling wave solutions of (1.3)

are established for Ry = M > 1 with ¢ > ¢,.

Noticing that the first two equation of (1.3) are independent of the function s,
we focus only on the solutions with the profile of (U (z+ct), V(z+ct)) = (U(£),V(€))
of the following system
(2.1)

cU'(§) = du fo J(€=m)(U(n) = U(€))dn — fF(U(€)g(V (£ - c7)),
V() = da [ J(€=n)(V(n) = V(§)dn + f(U(§)g(V(§ = eT)) = vV (§)

conforming to
(22)  (U(=00),V(=20)) = (U-oo,0), (U(+00),V(+00)) = (Usoo,0),

where £ = x + ct. Next, the following two important conclusions in [21] are needed:

Proposition 2.1. [ [21], Lemma 2.1]Assume that Ry = M > 1. Then
some positive pair of (c., \y) exists for the following equations
ON(N )

OA (AssCs)

where A(X,¢) = da [5 J(n) (e — 1)dn + f(U—o0)g'(0)e™ " — v — cA. Moreover,
(1) if ¢ > cx, the equation A(X, ¢) = 0 admits two positive real Toots A1 (c) < Az(c) <
+oo conforming to that A(X, ¢) > 0 in (0, A1(c)) U (A2(c), +00) and A(A,¢) < 0 in
(A1(e), Az(c));

(2) if 0 < ¢ < ¢y, then A(A,¢) > 0 for all X € [0,400

)-
Proposition 2.2. [ [21], Theorem 2.1] If (A1) — (As) hold and Ry > 1, then,
(1) ¢ for ¢ > cx, the system (1.3) admits some (U(§),V(§)) according with

U(—o0) =U_s >0 and V(—o0) = 0;
(i) : o hmsup V(&) < 400, then V(+00) =0 and U(+00) < U_qo;

£—+o0

A(}\*,C*) :03 :Ov
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(iii): if ¢ > max{c.,3dok1}, then limsupV(E) < +oo, where ky =

{—+oo
U—co [ J(0)|nldn.

According to Proposition 2.2, limsup V(£) < +oo holds for Ry > 1 with ¢ > ¢,
{—+oo

when %dgk’l < ¢,. To perfect Proposition 2.2, we complete the case of %dgk‘l > Cy

and give out the proof of limsup V(§) < 400 for Ry > 1 with ¢, < ¢ < %dgkl = .
£—4o00

For the proof, we first establish the following lemmas and the boundedness of V(£).
Lemma 2.1. If Ry > 1 and ¢ > c*, then 0 < U(§) < U_s and V() > 0 on R.
Proof. Firstly, from Lemma 2.5 and Theorem 2.1 in [21], we obtain that

(2.3) 0<U(E) <U_o, 0<max{eMs(1 - Me™) 0} <V(E) <M,

for some number M > 0,19 > 0.
Secondly, if there is some &, € R with U(&y) = 0, then U’(&) = 0. By (2.1) and
(A7), we have

(2.4)
0=cU'(&) = d /RJ(ﬁ —&)(U(n) = U(&o))dn — f(U(&))g(V(§o —cT)) >0,

Denote Ry > 0 as the radius of the support set of J. It follows that U(£) = 0
for £ € [£o — Ry, & + Ry] by (2.4). Applying the above facts to U(§y — Ry) =
U(éo+ Ry) =0, we obtain U(&£) =0 for £ € [§g — 2R, & + 2R ] and consequently
U(&) =0 for £ € R, which is contradictory to U(—oc) > 0. Therefore, U is positive
on R.

Finally, we can prove similarly that V' > 0 and U < U_, for £ € R. This proof
is complete. O

Lemma 2.2. Let K(§) = [; J( “;Eg dn and w(€) = ‘1///((55))' Then, K and w are
both bounded for c, < c § c.

Proof. According to (2.1), we have

(25) W)= dK© - pt -

where p = dQ—j”, d= % Let H() = ePSHI5 @()ds  Then, it can be derived from
(2.5) that

V(f y) fg Yw(s)ds __ yH(g_y)
(26) G =
and thus
ey )
@7 H(E) = (p+w(©) >d/J ) HE=) 4 H(e) > 0.

Therefore, H is non-decreasing and ) lim H(£) = 0. Choose a number Ry > 0 with
——co
2R; < R;. By an integral process for (2.7) from —oo to &, it holds that

d/_io/RJ(n)ep"H(é) —n)dndo

13
a/ /E e H (O~ n)dsiy > dRy [ erma(e - Ry

R

H(¢)

v

Y
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and thus

(2.8 [ amenTEZA= Ny <

By a similar integral process for (2.7) from & — Ry to &, we find that
(2.9)

§
@ zd [ [ IemHo oy s HE )

—2R1 _2R1
>any [ e (e~ Ry —ndn > diy [ Jendn - 1+ Ry)
Defining ko := (dR; f:joRl J(n)efdn)~!, then
(2.10) H(f + Rl) < kgH(f) for £ € R,
By (2.6), (2.8) and (2.10), we have
H(— Ry —n) ko
2.11 K <k J(n)efT—=2— — Zdn < —.
(211) KO <k [ JmernZEm—ay < 22
On the other hand, it is obvious that
(2.12) g(V) = g(0) + g/ (V)V < g'(O)V

for some V € (0,V) by (Ag). From (2.5), (2.11), (2.12) and ¢, < ¢ < ¢y, it follows
that

k2 f(U-x)g'(0) V(€ —cr)
< d-— .
lw(é)] < iR +p+ > 70

= ke FUx)(O0) e asyas

Ry ¢

!

< @ +p+ Mepcﬂ'.

Ry Cy

This proof is complete. 0

Lemma 2.3. Let ¢, € (ci,c1) and {(cx, Uk, Vi)} represent a sequence of solution
of (2.1). If there is a sequence {&} satisfying Vi(§r) = maxecie, —r,.otRy] Vi(§)
and
lim Vi (&) = +oo for all k € N, then lim U(&) = 0.
k——+oo k—4o00
Proof. Suppose that there exist some sequence {} and a number §; > 0 satisfying
lim Vi(&) = +oo, Vi(&r) = maXeele, —r, ¢r+r,) Ve(§) and Ug (&) > 01 for all

k——+oo

ke N.
From (2.1) and (2.3), it holds that

d d1U_
@13 U <2 [ I@IUie - - Un@ln < =, ke .
k JR C

*

Denoting k3 := zd‘lefi and by an integral process for (2.13) from & to &, it follows
that
* dyU o hU_ o _ 61

(214)  Up(€) > Uk(&) - / dn > 6, — ks

¢ Cx Cx 2’
56 [é.k*kiiagk}a ke N.
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In view of the fact that V(&) = maxecie, —r, ¢o+r,] Vi(§), we obtain that V//(&) =

0 for all k € N and therefore
(2.15) F(Ur(&r))9g(Vi (& — ¢7)) > vVi (&) = +00 as k — 400
by using (2.2). Since f(Ux(&k)) < f(U—o) and g € C1(R), (2.15) implies that

(2.16) g(Vie(&x — ¢7)) — 400 and Vi (& — c7) — +o00 as k — +oo.

Moreover, by Lemma 2.2 and (2.6), there exists some Cy > 0 conforming to
Villk — ) 567 ey Cok

2.17 —2 = — ele—er WSO8 L b0k —k k € N.

( ) Vk(f—CT) € > € ) 56 [gk 3a€k]7 €

Thus, it follows from (2.16) and (2.17) that

min Vi (€ —er) > e RV (6 — er) = 400 as k — +o0
§€[&r—k3,&x]

and

(2.18) (Vi(§ — 1)) = 400 as k — +oc.

min
£€[€r—k3,8k] g

By (2.14), (2.18) and (2.2), we obtain

diU_ 1 .
max U,(&) < — —  min U Vi(€ —cr
E€[€r—k3,8k] k(g) - Ck Ck EG[Ek*ks,Ek]f( k(f))g( k(§ ))
diU_ 1 6 .
< o Vi€ — - k
< o - (2)56[51@537%9( k(€ —cT)) = —00 as k — +oo0,

which implies some ko > 0 exists satisfying

(2.19) U6 < —U];:“, k> ko, €€ [&r — k3, &)

Integrating on both sides of (2.19) from & — k3 to &, we have
U_o
3

Ur(&r) < Up(§p — k3) — k3 - SU_o —U_so =0, k> ko.

This contradicts with the inequation Uy (£) > 0 on R. The proof is complete.

Lemma 2.4. Suppose that limsup V(§) = +oo. Then V(&) satisfies V(+00)

=400

+00.

O

Proof. Assume that Vg = lgim inf V(€) is finite and take some sequence {} satisfy-
—+o00

ing lim & =ooand lim V(&) = V. Moreover, choose a sequence {n;} with
k—+o00 k— 400

M € [Eky&pt1] and V(ng) = . max V(§) and make a general assumption that

€€k Ek+1]
V(&) < Vo+ 1 for k € N. Then, from limsup V(§) = +o0, it follows that
=+
(2.20) V(nk) = +00 as k — +o0.

Consequently, we can assume that V(ng) > (Vo + 1)eF+ R where k4 = sup |w(€)].

EER
By (2.6), we find that

V() = e J @y () > e FBIV () > Vo 41, € € [ — Ryyme + Ry).
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Therefore, [y — Ry, nx+Rs] C (&k, Ek+1) and hence i lir_E U(ni) = 0 due to Lemma
— 400
2.3. Furthermore, it follows from (2.1), (2.6), (2.12) and (2.20) that
0=cV'(n)

ds / TV (e — 1) — V() + FU () g(V (g — e7)) — vV (13)

< (FUm))G OO —n)v ()
< (FU)G (0)e™ —v)V (i) = —00 as k — +oo.
This is a contradiction and the proof is thus finished. O

Next, we display and prove the primary results of this section.

Theorem 2.5. (Boundedness) For every ¢ > c., the solution V is a bounded func-
tion.

Proof. By Proposition 2.2, it is sufficient to verify limsup V(§) < 400 for ¢, < ¢ <
£—+o0
c¢1. Suppose that limsup V' (§) = +oo for a contrary.

£—+o0
Denote B(§) = —(da +v) + W. By Lemma 2.4 and Lemma 2.3,

it can be seen that (U(400), V(400)) = (0,+00). Therefore, from Lemma 2.2, it
follows that

fFUE)g(V(E —cT))
V(£)
and B(+00) = —(dz 4+ v). By (2.5) and Proposition 3.7 in [20], the limit lim w(¢)

E—+o0

’ < f(U(&))g'(0)e” '™ — 0 as & — +oo

exists and belongs to the solution set of the following equation

P(\ ) :=ds / J(m)e Mdn — v — X — dy.
R

On the other hand, the equation P()\,¢) = 0 admits a unique positive real root Ao

by a similar calculation to Theorem 2.6 in [18]. Therefore, w(+00) = Ag due to the

positivity of V' and V' (400) = +o00. Notice that ‘gQTf =ds [z J(n)n*e~*dn > 0 and

Ao satisfies

d2(/R J(m)e Mdn —1) —eX —v = —f(U_s)g' (0)e™*7 < 0.

It is clear that Ao < Ag. Moreover, by Elim w(&) = Ao, we can take a number
— 400

&« € R complying with w(¢) = % > Ao for £ > &,. Recalling Ao > Ay and (2.3),
it follows that

0< V(&)< V(f)e"\Q(é—E*) < eMmA)Ethele o g £ — +oo,

which raises a contradiction. This ends the proof. O

Theorem 2.6. (Existence) If Ry = M > 1 with ¢ > c*, then some
(U(€),V(€)) exists for (2.1) conforming to (U(£oo),V(£o0)) = (Uteo,0) for some
number Uy oo < U_oo. Furthermore, 0 < U(§) < U—_n, 0 < V(§) < 400 for £ € R
and

(2.21)

=1, / FU0)g(V(0 — er))df < +o0, / V(0)do = M
R R

14

. V()
§£rfnoo eMé




8 YANG YANG, YUN-RUI YANG AND XIN-JUN JIAO

Proof. By Proposition 2.2, Lemma 2.1 and Theorem 2.5, it is enough to prove that
(U(€),V(€)) satisfies (2.21).

The rest of proofs are divided into the following three steps.
Step 1. [, f(U(8))g(V (0 — c7))df < +o0 and ) lim e MEV(€) = 1.

——00

For ¢ < %ln a7, from (2.3), we find that 1 > e M&V(¢) > (1 — Me™*) —

1 as & = —oo. Therefore, c lim e &V (€) = 1 by Squeeze theorem.
——00

Notice that

(2.22)

[ wt-ve) - U(e»de)] -

1
)n/ U'o— tn)dtdnd@‘
0

1
n / Uz~ tn) ~ Ulz - tn))dtdn| < k.

Taking z — —oo and  — 400 in (2.22), we have

m ) U(6) - U<0>>d0’
(2.23) vee
- ZEIPOO Uz —tn) —U(z — tn))dtdn‘ < k.
T—r—+00
Moreover, by 0 < U(§) < U—_co, U(—00) = U_w, (2.23) and (2.1), we obtain
xT JrOO
oy | SUOVO e =, / / ~ )~ U(8))dnds

—U_ ] <k +cU_
Therefore, by taking x — +o0, it follows that

[ 10OV = r)it < by + Ve < +oc,
R

Step 2. [, V(0)do = AUz Useo)
From (2.1), (2.22), (2.23), (2.24) and Proposition 2.2 , it follows that

v [Vers = ar [ [ 3o ) - Vi)

4 / FU0)g(V(8 — er))dh — e[V (+00) — V(~00)]
4 / ) / (V(~00) — V(+00))dtdn — e[V (+00) — V(~o0)]

+d; / / U(+00))dtdny — c[U(+00) — U(—00)]
= U, - U+oo
This completes the proof. O

Up to now, by constructing the boundedness of V' (£), we obtain a more general
existence result and thus improve and complete the results in [19,21]. Next, we
illustrate the existence under critical speed for further improvement.
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3. EXISTENCE OF TRAVELING WAVES WITH ¢ = ¢,

In this section, an approximating method is applied to establish the existence
of solutions of (2.1) when Ry > 1 with ¢ = ¢,. For this proof, a prior estimate is
needed in the followings.

Lemma 3.1. Assume {c} C (c«,cx + 1) is a decreasing sequence with cj, — ¢« as
k — +oo and let (cx, Ug, Vi) be a solution of (2.1) for k€ N. Then, || U [lc11(w)
and || Vi, [[c1a(w) are both uniformly bounded.

Proof. Firstly, we prove the uniform boundedness of {U} and {Vi}. It is obvious
that {U} is uniformly bounded due to (2.3). Suppose that there is a sequence {&x}
satisfying i lirf Vie(&x) = +oo for a contradiction.

—+o00

Take a sequence {nx} with Vi(nx) = rglaﬂich(g). Then, V/(nx) = 0 and
€
lim Vj(nr) = 4+o0o. By Lemma 2.3, we find lim Ug(n,) = 0. Therefore, from
k——+oco k——+oco
(2.1), (2.12) and Lemma 2.2, it follows that

0 Vi ()
da /R J()(Vie(mie —n) = Vie(nw))dn + f(Ur (%)) 9(Vi (i, — e7)) — v Vi (i)

FUk(w))g' 0)Vi (e — ext) — vVi(nk) < (f Uk ()9’ (0)e™™ — 1) Vi (1x)
(f(U(n))g' (0)el VTP — ) Vi () = —o0, as k — +oo,

IN N

which deduces a contradiction. Hence, {V}} is uniformly bounded on R.

Secondly, according to the above discussions and (2.1), it holds that {U}} and
{V}/} are both uniformly bounded. By a similar discussion to Lemma 2.6 in [19],
it can be derived that Uy, Vi, U, (§) and V/(§) are all Lipschitz continuous. The
proof is finished. O

Next, we demonstrate the existence, boundedness, positivity and asymptotic
behavior of traveling waves as followings.

Theorem 3.2. If Ry = M > 1 with ¢ = ¢«. Then, there is a solution
(UL(£), V(&) of (2.1) conforming to (U.(£00), Vi(£00)) = (Uteo, 0) for some pos-
itive number Uj oo < U_oo. Furthermore, 0 < U,(§) < U_s, 0 < V(&) < 400 for
£eER and

¢ (U-oo = Utoo)

Eh 6)‘15 = /f (U«(0))g(Vi(0 — ¢7))db < 400, /V* d0—
——o0

Proof. According to Theorem 2.6, it can be seen that (Uy, V) satisfies (2.1), (2.2),
(2.21), 0 < Ug(&) < U—_wo, Vi(§) > 0 for all £ € R. In addition, by Lemma 3.1
and Arzela-Ascoli theorem, some subsequence of {(Ug, Vj)} can be extracted, still
denoted by {(Uy, Vi)}, satisfying kETOO(Uk, Vi) = (U., Vi) in CL(R).

Therefore, from the compactness of J and a limiting process, it follows that
(U, Vi) satisfies (2.1). Moreover, by the properties of (Ug,V}) and a similar dis-
cussion to Theorem 2.6, we find that 0 < U,(§) < U_w, 0 < V() < o0 on R
and

/f Vi(0 — co7))dl < 400, /V )df < +o0.
Consequently, V/(€) is bounded on R and V. (+o0) = 0.

*
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The rest of proofs are divided into the following three steps.

Step 1. U, (£00) = Ui for some Uy oo < U_oo and [, Vi(0)do = FmeeUsee),
Assume that U, := lgim infU,(§) < U_s. Then, there exists a sequence {&,}
——o00

with lim &, = —oo and lir+n U.(&,) = U,. Denote that ((Us)n, (Vi)n)(§) =
n—-+0oo

n—-+4o0o

(Ui, Vi)(€+6n). As || (Us)n ||c11(w) is uniformly bounded, we can assume generally
that EI}_] ( (€) = Uso(§) in CL(R). Meanwhile, it follows from V,(—o00) = 0

U* loc
that lim (Vi
n—-+4o0o

In(€
)n(€) = 0 in C}_(R). Therefore, combining the fact that g(0) = 0

with (2.1), we obtain

(3.1) UL (§) = di(J % Uso(§) = Uws(§)), §ER.

From Proposition 3.6 in [20], we find that Ux(§) is a constant function. Further-
more, U (§) = U, in R by Uy (0) = U,, which implies lirf U )n(§) = U, in
n—-—+0oo

C’lloc( )
Notice that the solution (¢, Uy, V) satisfies

xUg(§) = dn /RJ(W)(Uk(f —n) = Ur(§))dn — f(UL(§)g(Vk(£ — 7)),
(3.2) £eR, ke N.

By an integral process for (3.2) from —oo to &, and combining (2.22) with Uy (—o0) =
U_ for all n € N, it follows that

Uk gn -U_ ]
) / / U o — Us(En — tn))dtdn — f(Uk@))g(vk(s—cT))ds.

Owing to U, and V, are both bounded in R, passing to k — +o00 and n — 400
on the above equation, we find that 0 > c.(U, — U—_o) = 0, which deduces a
contradiction. Therefore, U, (—00) = U_x

The remaining proofs in this step are similar to (ii) of Theorem 2.1 in [21] and
Step 2 of Theorem 2.6 in this paper, so we omit them here.

Step 2. The functions U, and V, are both positive on R.

Suppose there is a number & € R with U (&) = 0, and thereby U.(&) = 0. By
a similar discussion to (2.4), it leads to U.(§) = 0 on R. Consequently, there is a
contradiction with the fact U, (—o00) # U.(+00). Hence, U.(§) > 0 in R.

For the proof of positivity of Vi (&), we still assume some 7y exists satisfying
Vi(no) = 0. According to (2.1) and V,(§) > 0 in R, we obtain

0= .V (o) = do / J(mVa(o — m)dn + (U (10))g(Va (10 — 7)) > 0.

Therefore, V. () = 0 for a similar argument as (2.4). Moreover, by (2.1),

CUL(E) = dy / TO)(U(€ =) = Un(©))dn, €€ R.

On the other hand, U.(§) is a constant function by the same discussions as (3.1),
which raises a contradiction for the reason of U, (—00) # U (+00).

Step 3. U.(§) < U_ for € e R.
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Assume that U.(y9) = U_o for some 79 € R. By the fact that U,(§) < U_
and (2.1), it follows that

0=cUl(n) = d /]R J(M)(Us(vo — 1) — Us(70))dn — f(Us(70))g(Vi(r0 — €47))

< —fU(M0)g(Vi(ro — u)),
which is impossible since the positivity of U, and V.. This finishes the proof. [

4. NONEXISTENCE OF TRAVELING WAVES
In this section, we prove the nonexistence of solution of (2.1) by a different
approach which depends closely on the conclusions in Section 2.
Theorem 4.1. Suppose Ry = IU-)d'O) - 1. por every speed ¢ < ¢, with ¢ # 0
and any positive number pg, there are no solutions of (2.1) satisfying

Proof. For the first case 0 < ¢ < c¢,, we assume that (2.1) admits some positive
solution (U(§),V (£)) conforming to (4.1) with speed ¢ for a contradiction. Take a

sequence {&,} with ngr—{-loo &, = —oo and denote
Un€) = Ul + ), V()= 158, Vil - em)) o= S VD),

By (2.1) and U(—o00) = U_x, we find that (U,(§), V,(€)) satisfies liIJIrl U,(&) =
n—-+0o0
U_s in CL _(R) and

(4.2) ¢V, (§) = dz/ JMVi(§ = n)dn — (dz2 + 1)V (§) + [ (Un(§))Gn(Va (€ — c7)).

R

Define w(§) = % It is clear that w(&) is bounded in R by a similar discussion to
Lemma 2.2. Moreover, V,,(§), V/(¢) and V,/(&) are all locally uniformly bounded

on R by the fact that V,,(¢) = elen T w)ds ang (4.2). Therefore, there is some
subsequence of {V,,}, still denoted by {V,,}, conforming to EIE V() =V (€) in

CL (R). Furthermore, V(¢) > 0 in R and V(0) = 1. Meanwhile, from the fact that

loc

V(—o0) =0, ¢g(0) = 0 and Taylor’s formula, it follows that

(4.3)
V(e te—er) _  V(EtEoer) | 1
Ve YO Tey trey VG e

~ gt To o Doy, 46— o)

=g (0)Vn(& —c) + V(€ —cr)o(V (&, + € — eT)).
Consequently, by the boundedness of V,,(£) and (4.3), it leads to

im gV (& + & —c7))
n—-+oo V(&)

According to (4.2), we obtain

(44) V'(§) = de /R TV (& =m)dn = (d2 + V)V(E) + f(U-s0)g' (O V(£ = e7).

=g OV (€ —er).
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Next, we claim that V(£) # 0. Otherwise, the equation V(&) = 0 holds for some
number & € R and it follows from (4.4) that

0= V(&) = do / TV (o — n)dn — (da + )V (&) + F(U—_o0)g ()T (£0 — e) > 0.

Therefore, V(¢) = 0 in R, which contradicts with V(0) = 1
Let @(&) = V'(€)/V (). Since 5lirn e MtV (€) = 1, it leads to
——00

~ —po(§+&n) T/
(4.5) V(€) = etos . nEIEOO e e Ei:; n) _ hof

and thereby @(€) = po in R. Meanwhile, dividing both sides of (4.4) by V() and
combining (2.6) with (4.5), we have

SO = da [ Ty — )+ S0 O

ds /R T()els "Wy (dy + 1) + F(U_s0)g (0)e 0T

Therefore, according to Proposition 3.7 in [20], the limits lim &(¢§) both exist and

E—+oo
belong to the root set of the following equation

+oo
N1(Ac) = dg/ J(m)e ™ Mdn — X+ f(U_s)g' (0)e 0" — v — dy.

— 00

However, A1 (g, ¢) = A(o,¢) > 0 when ¢ < ¢, , which implies a contradiction.
For the second case ¢ < 0, denote p(0) = U(—¢) and ¢(0) = V(—=¢£). Then,
(p(0), #(0)) satisfies

(4.6) [c]6/(6) = da ( / ()0 — n)in — qs(e)) 1 (0(6)g(6(6 — |elr)) — vo(H).

Applying a similar discussion as the above case 0 < ¢ < ¢, , it can be obtained that
the nonexistence of traveling waves with ¢ < 0. This accomplishes the proof. |
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