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THE GLOBAL CONSERVATIVE SOLUTIONS FOR THE
GENERALIZED CAMASSA-HOLM EQUATION

LI YANG, CHUNLAI MU, SHOUMING ZHOU AND XINYU TU

(Communicated by Alain Miranville)

ABSTRACT. This paper deals with the continuation of solutions to the gen-
eralized Camassa-Holm equation with higher-order nonlinearity beyond wave
breaking. By introducing new variables, we transform the generalized Camassa-
Holm equation to a semi-linear system and establish the global solutions to this
semi-linear system, and by returning to the original variables, we obtain the
existence of global conservative solutions to the original equation. We intro-
duce a set of auxiliary variables tailored to a given conservative solution, which
satisfy a suitable semi-linear system, and show that the solution for the semi-
linear system is unique. Furthermore, it is obtained that the original equation
has a unique global conservative solution. By Thom’s transversality lemma,
we prove that piecewise smooth solutions with only generic singularities are
dense in the whole solution set, which means the generic regularity.

1. INTRODUCTION

In this paper we consider the continuation of solutions for the generalized
Camassa-Holm (g-CH) equation

Up — Uggt + 7(””2)2('"“)umuz = (gu(ml)ui + umum) , TR, t>0,
xr

U(l‘,O) ZUO(x)v 'IER’

(1)

where m is a positive integer.

The equation (1) was first proposed by Hakkaev and Kirchev in [18], and the
local well-posedness of the Cauchy problem (1) was studied for the Sobolev spaces
H?® with s > % Under suitable assumptions and energy conservations, the orbital
stability and instability of solitary wave solutions were considered. In [20], the
authors established the local well-posedness to (1) for a range of Besov spaces and
proved that its solutions are analytic in both variables. The persistence property
of strong solutions for (1) was investigated in weighted LP spaces [23]. And it was
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shown that the equation is well-posed in Sobolev spaces H® (s > %) for both the
periodic and the nonperiodic case in the sense of Hadamard [21]. Moreover, the
nonuniform dependence and Holder continuous to (1 )were discussed.

In fact, the equation (1) is a natural generalization of the famous Camassa-Holm
(CH) model

(2) Up + Ugpr + 3UU; = UWlppy + 2UpUgy.

The Camassa-Holm equation first arisen in the context of hereditary symmetries
was studied by Fokas and Fuchssteiner [14], but did not receive much attention
until Camassa and Holm [9, 7] derived it as a model of shallow water waves over
a flat bottom. It has bi-Hamiltonian structure, infinitely many conservation laws
and is completely integrable [8, 7, 14, 19]. In addition, the stability of the smooth
solitons and the orbital stability of the peaked solitons to (1) were established in [10]
and [11] respectively. Particularly, the Camassa-Holm equation possesses solutions
with presence of wave breaking ( that is, the solution remains bounded while its
slope becomes unbounded in finite time [6, 12]). When these two waves collide at
some time, the combined wave forms an infinite slope. After the collision, there are
two things that happen: either two waves pass through each other with total energy
preserved; or annihilate each other with a lose of energy. The solutions in the first
case is called conservative, and the second case is called dissipative.

So far, the continuation of the solutions after wave breaking has been studied
widely. Bressan and Constantin proved that the solution of the Camassa-Holm
equation can be continued as either global conservative or global dissipative solu-
tions [2, 3]. Notice that, the conservative solutions are about preservation of the H*
norm, while dissipative solutions are characterized by a sudden drop in the norm at
blow-up. Afterwards, the uniqueness of the conservative solution and the dissipative
solution for the Camassa-Holm equation were obtained [4, 16]. Recently, the generic
regularity of conservative solutions to Camassa-Holm equation was discussed in [17].
It is worth mentioning that the H'(R) norm conserved quantity plays a key role in
the process of studying the conservative and dissipative solutions.

In the case of a more general Camassa-Holm equation, the global existence and
uniqueness to the solution are established in [22, 25]. Moreover, for the Camassa-
Holm equation with a forcing term ku, Zhu obtained the global existence and
uniqueness [26].

Similar to the well-known Camassa-Holm equation, the system (1) also models
the peculiar wave breaking phenomena [24]. Therefore, in this paper, we still focus
on the conservative case of equation (1.1) in H' space, including the existence,
uniqueness and generic regularity problems. Setting G(x) = %67”‘, z € R, then
(1—02)"tf =Gx f for all f € L*(R). Thus the equation (1.1) can be rewritten as
the following integral-differential form:

ur +u"u, = —P,, z€R,t>0,
u(x,O) = UO(x)a T e Ra

_ M (m-1),2  M(m+3)

Motivated by [2, 4, 17], in this paper, we consider the global weak conservative
solutions defined by as follows.
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Definition 1.1. Let ug € H'(R), there exists a family of Radon measure {/),t €
R}, depending continuously on time w.r.t. the topology of weak convergence of
measures, such that the following properties hold.

(i) The map t — u(.,t) is Lipschitz continuous from [0,7] into L?*(R) with the
initial data ug € H(R).

(ii) The solution u = u(z,t) satisfies the initial data ug € L*(R). For any test
function ¢ € C.'(Q) with Q = {(z,t)|z € R,t € [0, +00)}, one has

® //Q < Uy (Qr + U™ dg) + (*%umuﬁ - mumﬂ n P)¢) dedt

—|—/Ruogggb(0,a:)dx = 0.

For a solution u = u(t,z), we say that u is conservative, which means that the
balance law (10) is satisfied in the following sense.

There exists a family of Radon measure {,u(t), t € R}, depending continuously
on time w.r.t. the topology of weak convergence of measures. For any ¢t € R, the
absolutely continuous measure () has density u2(t,-) w.r.t. Lebesgue measure.
Moreover, for any test function ¢ € C.'(Q), the family {p@);t € R} supplies a
measure-valued solution to the balance law

< m m(m+3) ,,
/0 (/R(fb:eru (Z)z)dﬂ(t)“v‘/RQUac (2(m+1)u + —P)dx)dt
— / u2, (0, x)dx = 0.
R

Based on the characteristic, by introducing a new variables, we transform the
equation (1) to a semi-linear system, and prove the semi-linear system has global
solutions. Then by a reverse transformation, one can get the conservative solutions
for equation (1). Our results are stated as follows.

(6)

Theorem 1.2. Let ug € H'(R). Then the generalized Camassa-Holm equation (3)
has global conservative solution u = u(z,t) defined on R x (0,+00). Moreover, the
solution has the following properties.

(i) u(x,t) is 1/2-Holder continuous on both t and x.

(i) The function u provides a solution to the Cauchy problem (3) in the sense
of Definition 1.1.

(iii) There exists a null set N C R with measN = 0 such that for anyt ¢ N, the
measure [y 15 absolutely continuous and has density u2(t,-) w.r.t. the Lebesgue
measure.

(iv) The energy u? + u2 coincides a.e. with a constant, that is,

E(t)=E0) fort¢ N, E(t)<E(0) forteN.

(v) The continuous dependence of solutions to system (3) holds with the initial
data belongs to H*(R) . More precisely, given a sequence of initial data {uo,} satisfy
|[won — uol|[m1 @) — 0, then the corresponding solutions w,(t,z) converge to u(t,x)
uniformly for (t,x) € [0,T] x R.

Theorem 1.3. Given any initial data ug € H'(R), the Cauchy problem (3) has a
unique conservative solution.

Remark 1. In fact, we know the process for the proof of the existence is an inverse,
but the method here is an irreversible.
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By virtue of the analysis of solutions along characteristic, we show that piecewise
smooth solutions with only generic singularities are dense in the whole solution
set. Using the Thom’s transversality Lemma [1, 15], we give the following generic
regularity result.

Theorem 1.4. For any T > 0, there exists an open dense set of initial data D C
C3(R) N HY(R), such that for any ug € D, the conservative solution u = u(t,x)
of the equation (3) is twice continuously differentiable in the complement of finitely
many characteristic curves, within the domain [0,T] x R.

Remark 2. The generic regularity is very interesting since it reflects the structure of
singularities. Similar issue was first established for the variational wave equation[5],
and later this method was applied to the Camassa-Holm equation [17].

This paper is organized as follows. In Section 2, we give the energy conservation
laws and introduce a new set of independent and dependent variables. In Section 3,
we first obtain a global conservative solution of the semi-linear system (27), and then
by inverse transformation we prove the existence of the global conservative solution
to equation (1). In Section 4, we establish the uniqueness of the characteristic
curve through each initial point, and by considering the dynamics of a conservative
solution along a characteristic, we obtain the proof of the uniqueness for the global
conservation solution. In Section 5, the generic regularity of conservative solutions
to equation (1) is investigated.

2. PRELIMINARY

2.1. The basic equations. For smooth solutions, we claim that the total energy
(7) Bt) = / (u? + u2)dz
R

is constant in time. In fact, by using 92G x f = G * f — f and differentiating the
equation (3) with respect to x, we have

1,2 _ M m_1 2 m(m+3)um+1,p

(8) Ugt + U Uy +mu Ul = Su" 2m 1)
Multiplying (3) by w, and (8) by u,, one get
o) e

9 t m+1u xz T ULy = U,

u? u™u m(m + 3)

10 -z 2y, = (T ymAl p g,
(10) (et (50 = (Gt Bt - p )
It follows from (9)-(10) that

d d
11 —E(t) = — >+ ul)dr =0.
() GB0) = 5 [ 2+ a)da =0
Therefore, the conservation law is given by
(12) E(t) := /(u2 + u2)dx = E(0).

R

Since P, P, are both defined as convolutions, by Young’s inequality and Sobolev’s
inequality [[ullpo(r) < |[ullmi () = E(0)2, it implies that
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1Pz, [[1Pe(®)]lzo

(13) m m(m + 3) (m + 3) m1
< |2l ||l m—1,,2 umtt E(0)"3
S llge™ el u™ v 1) " [z < Amt 1) 0)=",

and
IP@)| L2 [[1Pe(t)]l 2

(14) 1 m m(m + 3) (m +3) ., mi
< 1= —|x| M om—1, 2 m+1 B0

2.2. A new set of independent and dependent varlables. Let @ = up(x) €
H'(R) be the initial data. Considering the energy variable ¢ € R, the non-decreasing
map & — g(€) is defined by

9(8)
(15) / (1+a2)dx =¢.
0
Then the characteristic map ¢t — y(t, &) satisfies
0 -
(16) ay(tv §) =u"(tyt.g), (0,8 =7y(&).
And the new variables 6 = 0(t,&) and h = h(t,&) are introduced as
(17) 0 = 2 arctan u,, hi1+ui~g—g,
(18) h(0,§) =1,
(19) S T Y SN
T+ 02 Ttz 27T Ty
Oy h 50
2 _ = " = —_
(20) 9~ (I+ ) cos” o h,
: © o2 01:9)
(21) y(t, &) —y(t, &) = cos” —— - h(t,s)ds.
3

Furthermore, we get

P8 =5 [ o) - ol) (Gt Dt un i)

/tE /tE ) exp {—|y(t, &) — }( ((Zif’)) m+1+”;um—1u§>dx.

It follows from identities (18) to (21) that an expression for P and P, in terms of

the new variable &
3
/ (h - cos? 0) (s)ds }
¢ 2

1 (o]

P(t,¢€) =§/ eXP{—

22 e

- : [h <m(m+3)um+1 cos® 4 4 ym=1 gip? 9)} (&)de
2(m + 1) 272 2 ’
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:% (/:o—/io>exp{— /:(h-cos2§> (s)ds}

By (4) and (16), the evolution equation for u takes the form

(23)

(24) u(t, &) = up + uyyr = wy +uuy = —Pr(t,§),

ot
where P, is given in (23).
By the definition of variable h, it follows that

y(t,€?)
/ h(t,&)dE = / (14 ul(t, z))dz.
3 (t.€Y)

By using (16) and P, = P — 12 — % m+1l ] we have

d &2 y(t,6%)
a / W, €)de = {0+ )+ w1+ u2)], }de
dt Je y(t,€1)

y(t,€%)
= / <m(m—’_3)um+1 +mum - 2P) u dr.
y(t,€1) m + 1

Differentiating with respect to £, we obtain

m(m+3) .4
—u™ - 2P -h
(25) N =
_ (m(m+ 3) L 2(m+1) _|_ )sm@ h.
m—+1
Using (17) and (19), we see
0 2 m
&9(7@5) = m(um + U™ )
2 (O o m(m+3) .
_ 2 | T m . MY T D) m _p
(26) 1+u3< U ) Sy
0
= Miﬂ”“ — 2P | cos? 0_ mu™ sin? =,
m+1 2 2

where P is defined by (22).

3. GLOBAL CONSERVATIVE SOLUTIONS

1. Global solutions of semi-linear system. According to (24)-(26), we obtain
the following semi-linear system

Uy = _an
(27) 0, = %ﬁ‘s) mtl1 2P> cos? & — mumtsin® ¢,
he = (Bt omymet P) sin6 - h

with the initial data

u(0,&) = u(y
(28) 9(075) =2 rctanum(g}(f))
h0,€) =1,
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where P and P, are give by (22)-(23). System (27) can be regarded as an ODE in
the Banach space

(29) X = HY(R) x [L*(R) N L>=(R)] x L=(R),

with || (u, 0, R)|| = llull 2 + 11012 + ([0l Lo + (|2l Lo~

In light of the standard theory of ODE in the Banach space, we can establish
that all functions on the right-hand side of (27) are locally Lipschitz continuous,
this implies the local existence of solutions to the system (27)-(28).

Lemma 3.1. Given initial data @ € H*(R), the Cauchy problem (27)-(28) has a
unique solution defined on any given time interval [0,T) with T > 0.

Proof. Set any bounded domain A C X defined by
(30)
A= (u,0,1) = {lulls <7100z <6 10l- < 5 B < hie) < hraea € R),

for any positive constants «y,d, h~, h*. In view of the Sobolev’s inequality
(31) [ullzoe < [lull g1,
and the uniform boundedness of 6, h, it is easy to see that

3 0 0 3
7m(m +3) cos® =, mu™ 'sin? =, 7m(m + >um+1 + Mum=1) sing - h
m+1 2 2 m+1 2
are Lipschitz continuous from A into L? N L>°. The next aim is to prove the maps
(32) (u,0,h) = (P, Py)
are Lipschitz continuous from A into L2 N L*. Actually, we only need to show that
these maps are Lipschitz continuous from A into H'. To this, we first observe that

measure § £ € R; |9(£)| > T < measure { £ € R;sin? 0(&) > 1
2 4 2 4
<4 / sin? ®d§
{ecRisin? 29 > 1) 2
< 1/ @dg < 152
4 {€€R;sin? 9(2)2%} 2 4
for (u,0,h) € A. Then we have
(33)
L0 h~ h™ 1 ~
cost T hag = [ M ae> f—e- 1% forany c e,
/s 2 {eele.8 2P <3} 2 2 4

which guarantees that exponential term in the (22)-(23) for P andP, decreases
quickly as |€ — £| — oco. Taking

1 _
(34) I'(¢) = min {l,exp (852h = hQ|e|> }
we see
1, h™
(35) IT|z: = + I(e)de = -0+ —.
egiéz €> %52 2 4

Next we show that P, P, € H', namely,
(36) P, P;, P, Py € L*
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Since the estimates for P and P, are similar, we only need consider a priori bounds
on P,. From the definition of P, in (23), it follows that

3 0 0
T (gmumﬂ cos? 3 + %um_l sin? 2) ’

+

G IP@I<S

A standard properties of convolutions ensures that

m(m + 3)

ht
P, < —|II
172l < il (s

m
o7 + g 16210 )
(39)
Oh+ m m—2 2
< D (e e + 2221l 621122 ) < oo,

where C' = ’;(%if)). Next we observe that

P — [h <m(m+ 3)um+1 cos? 0 i m o m=1gin? 9)] ©)

2(m + 1) 2" 2 2
(39) + % (/:O —/;) exp {— /; <h - cos? g) (s)ds } [cos2 gh(f)]

sign(€ — €) - [h (m(m—’—?))u’wrl cos? 0 + M m=1 gin2 0)} (€)dE.

2(m + 1) 2" 2 2
Since
m(m+3) m—+1 m m—1 2
O EES + fees ©)
+ % T« <T;((:::f)) u™ ! cos? g + %umfl sin? 2) ],

this implies

m(m + 3) My
Pm :h+ m+1 e m 192
Paclze = bt (™o + 5 6%
Rt m(m + 3) m
- r m+1 e m7192
# Tl (et 4 B
Ch* . B
< S (Il + =2l

ht
< C(h+ + T)HFHLl < oQ.

A similar argument leads to P, Pz € L?.
To show that the maps given in (32) are Lipschitz continuous. It suffices to verify
that partial derivatives

Op 0p Op On On O
Oy’ Oy O’ Oy Do O
are uniformly bounded for (u,0,h) € A. We observe that above derivatives are
bounded linear operators from appropriate spaces into H!(R). For the sake of

(42)

; = the boundedness of other

illustration, we just give a detailed estimate for
derivatives can be obtained in a similar way.
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For (u,0,h) € A, the partial derivative % and
defined by

(43)

[ap(guoh) } ;(/5 / >exp{

. [hu (mm+3>u cos2 L mm=1) oo Zﬂ (©)dé

3(de Py .
% are linear operator,
u

2 2 2
and
0(0¢0p,)(u,0,h)

[hu <(m+3)u cos? g + Wumfz sin? Zﬂ €3

(44)
/ / exp h - cos? 0 (s)ds h - cos®
2 2
-1 o
sign(€ — €) <m2+3)u cos? Z + %umd sin? g) u*(&)de.
In view of ||u*||p~ < ||u*||g1, the above operators norm can be estimated as follows:
(45)
op ht (m(m—|—3) 20 m(m-1) . o . 20)
T * < - F * N T, m S + N T am - _ * o

‘ auu L53 5 u™ cos 5 5 U sin 5 m”u Iz

Rt m(m + 3 m(m —1) _ .

< e (O D 4 D22 ) o
and
(46)
9(9:0p,) . hrlim(m+3) o o0 mm—1) . 5 .
Hu LS 5 u"™ cos §—|— 5 u™sin® g LzHu || 1
(h*)? mm+3) o0 mm—1) . 5 .
+ 5 * 5 u'™ cos §+fu sin” 5 L2||u |

By (45) and (46), we obtain %P“” is a bounded linear operator from H!(R) into
H'(R). And the boundedness of other partial derivatives in (42) can be proved by
the same arguments. which means that the maps (32) are Lipschitz continuous. [

Next we show that the local solutions of the system (27) can be extended globally
in time.

Lemma 3.2. Given initial data @ € H'(R), the Cauchy problem (27))-(28) has a
unique solution defined for all time T > 0.

Proof. To extend the local solutions of the system (27) to global solutions, we only
need to prove that

< 0

1
(47) allizs + 1100122 + 1011z~ + [Allz~ + H
LOC

h
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for all T' < co. We first claim

h
(48) ug = 3 sin 6.
In fact, recalling (27), (22) and (23), one can get

3 6 0 6
(49) uge =h (7;((:5_’_[—1))umJrl cos? 7t %um71 sin? 3 P cos® 2) = Ue.

Moreover, from (19)) and ((20) we have

U 1
— 2~ = _sinf, h=1
[ r a2 sin 6,

at t = 0 . This implies that (48) holds for all ¢, as long as the solution defined.
Next we prove

UE:

d s o0 .50 _
(50) g R(u cos 2+sm 2>hd§—0.

Using (27), a direct calculation yields that

d 2 20 50
T R(u cos §+sm 3 hd¢

0 0
= / h{(u®cos® = +sin? =) <m(m—|—3)um+1 +mu™t — QP)
" 2 2/ \ m+1

2

6 . 0 0
cos 5 sin 5~ 2uP, cos 3 + cos = sin — (1 — u?)

(5) (m+3) 02 i 0
TN T 2 ym+1 9P ) cos? 2 — mu™ L sin? - rd¢
m—+1 2 2
2 2) 0 . 0
/ hq{ mmTj__: u™ " cos 3 sin 3 2P

cos 5 sin 5 2uP,, cos f}di
By (20), we have
Pe = hP, cos? g,

which implies

(52) (uP)e = (Psin g cos g + uP; cos® g)h

and

(53) 2m(m + Q)um“ 0.0 2m(m + 2) Wy — < 2m um+2> .
3

Zsin—h =
e cos2s1n2 o

From (52) and (53), one has
d
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If the solution is well defined, we obtain a priori bound on |[u(t)||z ) as follows

0 0
(55) sup [u2(4, €)| < 2/ e dé < 2/ lu - sincos‘ hde < Ep.
£eR R R 2 2

According to (22), (23) and (54) we know

(56)
|P()||ree, ||Pe(t)||lre < = H <T:?j__lg)>u"”“1cos2 g + %um_lsin2 Z)
i
m(m +3) mi1
~ 4(m+1) 0

Using the third equation in (27), together with (55) and (56), we conclude

(5
3m(m+3) msL  m _m-1
< (ERAETYpe L ey,
|ht|_<8(m+1) o Tyt )h

Therefore, it follows that

+1 m—1 m+1 m—1
3 +3 m 3 +3 m
(57) ( Q{ZL))E +%Eo 2 )t ( gzﬁ:jrm)Eo 2 +%Eo 2 >t
e <h(t)<e .

Also, we observe that there exists a suitable constant A = A(FEy) such that
(58) 6] o < e
Multiplying the first equation of (27) by w and integrating, one has

d (1

1 (511 )| < 1P

Similarly, we deduce

i (3lueoloa?)

Therefore, we obtain that u and ug are uniformly bound on [0,T] by (48), (55)and
(57). A bound on the L' norms of P, and 9, P, yield that ||u||z: is bounded for
any T < oco. Therefore, we only consider estamates |0y Py |1, || Pyllr1. In fact, for
€ > €, we find that

< lug (@)l oo [|Og Pl L1

(59)
¢ 0 h
/ hcos? = / hcos? = (s)ds > / . ) —(s)ds
€ (s€l€.€)18(O)>T) 2 {s€l€el18@25) 2
o h o
> 5 (-9 - - S (8)ds > (€ =)
{s€lE.€L13O1>F}
0 o
- ) ) hsin® —(s)ds > — (& — &) — 2Ey,
(s€lE.€l18(O)>1) 2 2
(3;?31*1?) D N )t
where h™ = = ¢~ Bt Denoting
T (e) = min {1,e<2E°h'zf'>},
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it follows from (39) that

m(m + 3) 0 m . . 50

P 1 < | P, = AP 9) mAl g2 2 10y m=1g.27
1060 PO < 1P = [ (oot cost § o Grum—tsin ) )]

Rt m(m + 3) 6 m 0

— T oV T, mAtd 27 M m—1 s 27
+H2 . 1*(2(m+1)u cos 2+2u sin 2)(5) .,

1 m(m + 3) 0 m 4 . .0

< — . N DY) mAl 27 e m—1 2 Y
< <1+ 5 Al lIT1 >Hh<2(m+1) ™t cos” o 4+ Tu™ T sin 2) (©) B

m(m + 3) met1

" TN 4 2e2BY2F, + 1)]E, 2
—2(m+1)[+6 ( 0+)]0 3

where
IT1[lze = 4eP*(2Ey + 1).
Multiplying the second equation (27) by 0, we see that

d (1 3
& (100027 | < [ (Pt Sumer —op)olae+ [ 2o

m+1
m(m+3) m— m —
P R P 1 ) e M P T P

From this, we prove that ||6]| > remains bounded on bounded intervals of time. This
complete the proof of Lemma 3.2. g
3.2. Global existence of solutions to the equation (1). Let (u,6,h) be a
global solution to (27), and

(60) y(t,€) = () + / W (r, €)dr.

Then for each fixed &, the functions t — y(¢,£) provides a solution to the Cauchy
problem

(61) S 0(,6) =" (1,€),5(0,) = §(6).
Now we claim that
(62) U(t, (E) = u(tv 5) if y(tv 5) =z,

is a weak solutions of equation (3).
Proof of Theorem 1.2. The proof is divided into the following steps.
Step 1. It is clearly that we have the uniform bound
1

lu(t, &) < Eg .

From (60), we have the estimate
§(€) — By t < y(t,€) < §() + Eg’ t,t > 0.
The definition of £ in (15) implies
lim y(¢,&) = +oo.

§—+oo
Hence the image of the map (¢,&) — (,y(t,£)) is the entire plane R?.
Step 2. We check

0
(63) ye = hcos® 3 for all t > 0 and a.e £ € R.
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Indeed, thanks to system (27), by a straightforward computation we have

0 5 0 B .0 6 5 v
i (hcos 2) (t,&) = —hb; sin o - cos 5 + hy cos 3

0
= mu™ hsin 5 cosy
= (u™)e(t, ).
On the other hand, (60) implies

2 0e(1,€) = (w1 6)

Since the function & — 2arctan @, (z) is measurable, hence (63) is true for almost
every { at t = 0, then the above calculation (63) remains true for all ¢ > 0, and
y(t, €) is non-deceasing. Moreover, if £ < & but y(¢,£) = y(¢,£), then

3 3 9
/ ye(t, s)ds = / h(t,s)cos® ~ds = 0.
¢ ¢ :

Hence cosg = 0 throughout the interval of the integration. By (48), we have

3
u(t,f_) —u(t,§) = /g h(;’ ) sin 0(t, s) cos gds =0.

This shows that the map (¢, ) — u(t,y(€)) is well defined for all ¢ > 0 and x € R.

Step 3. Recalling the basic relations, we have

u(t,§) _ h(t,§) . IW(t,§) 2 0(t,8)
(64) o T 2 sin0(t, ), T h(t, &) cos? 5
In addition, if z = y(¢,§), cosf(t,&) # —1, and
(65) () = sin0(¢, &)

~ 1+cosf(t, &)’
then for any time ¢, it follows from (64) and (65) that

/]R (uQ(t, x) 4+ ul(t, x)) dx

(66)
= / <u2(t,§) cos? ot ) + sin? 0(t’€)> h(t,&)d¢ < Eo,
RNcos g;éfl 2 2

which implies E(t) = Ey. Since the boundedness of || Py L, we obtain

du(t, y(t,§))
dt

On the basis of the Sobolev inequality, u(t,x) is Holder continuous with exponent

% on both z and z.

=u < 00

Step 4. We are ready to show that the Lipschitz continuity of u(t,z) with values
in L?(R). Consider any interval 7,7 + h], given a point z, we choose £ € R such
that the characteristic ¢t — y(t, ) passes through the point (7, ). By (27) and (55),
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it follows that

lu(T + 5,7) —u(r,2)| < |u(T +5,2) —u(T + 5,y(T + 5,§))|
+ |U(T + Say(T + 875)) - ’U,(T,:L')|
T+s
sup lu(r + s,y) — u(T + s, )] +/ | P, (t,&)|dt.

—z|<E2? s T
ly < 0

IA

Integrating over R, using the boundedness of || P;||r2r) and [[uz |12, we deduce that

/ fu(r + 5,9) — u(r,y)Pde
R
m 2

$+Eos
o[ ([ e ) o
R

x—Eoz s
2

+2/ (/7+S| (¢, §)|dt> h(r, €) cos? @dg

m
2

<4EZs // - |u”+sy)\2dydm+2s||h\|m// Py (t,€)|?dtde¢
E02s

< 8EG s |[ua (T + 8)|[72(g) + 25| hll Lo || P ()72 gy dt < Cs,

where the constant C' depending only on T'. The above inequality implies that the
map ¢ — u(t) is Lipschitz continuous for the variable x.

Step 5. Define Q = [0,00) x R and Q' = QN {(¢,y)| cos? 9(72’5) = 0}, for any text
function é(x,t) € CL(Q), we have the following weak form

0= // {U€t¢t + ho ( ((m + 3)) ™ cos® g + %u"”l sin’ g — Pcos® g) }Sdt
// { — ugprdr + ho ( ((m ha 3)) ™ cos® g + %umﬂ sin” g — Pcos’ g) }dfdt
// { — ughidr + ho ( ((m h 3)) " cos® g + %um_l sin’ g — Pcos® Q) }ﬁdt
//{—ux ¢r+u™ ¢L)+¢( ((Z“jf’)) m“—g‘u’” ! §+P>}dxdt,

which proves that (5) holds. Let us introduce the Radon measures {1(;),t € RT}, for
any Lebesgue measurable set {z € A} in R, assuming the corresponding pre-image
set of transformation is {£ € F(A)}, one has

wi(A) = sin? g(t, €)de.
F(A)

By (63), the measure i) is absolutely continuous and has density u3(t,-) w.r.t.
Lebesgue measure. It is easy to check that (6) is right. Indeed, from (3.1) we have
(68)

- /R . { / (¢ + U™ ¢a du(t)}dt / / sin” thstdgdt / / sin? Zh)ypdédt

m+3 m+1 . 0
//( I 2P) s1n2c0s2h¢d§dt
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_ / / (m(m +3) m1 2P> wpbdadt.

Step 6. Ultimately, we show that for almost every ¢ € R™, the singular part of v;
is concentrated on the set where v = 0. The proof is similar to the argument in

[2]. Note that when blow up occurs, COS% =0, it follows that §; = —mu™"!, which
implies 6; # 0 only when m # 0 or u # 0. Moreover, the proof in the seventh step
is different from the Camassa-Holm equation. O

4. THE UNIQUENESS OF CONSERVATIVE SOLUTIONS FOR EQUATION (3)

4.1. Uniqueness of characteristics. Let u = u(t,x) be a conservative solution
of equation (1). We introduce the new coordinates (¢, 3), and define z(¢, 8) is the
unique point x such that

(69) z(t, B) + u(t){(—oo,m)} <B <t pB)+ M(t){(—oo7x]}

for any time ¢ and 8 € R. When the measure f;) is absolutely continuous with
density u2 w.r.t Lebesgue measure, the above definition gives that

z(t,0)
(70) Mw%+[ W2 (1, €)dE = B.

Next, we will give following Lemma which is helpful to prove the Lipschitz continuity
of x and u as functions of the variables ¢, 5.

Lemma 4.1. Assume that u = u(t,z) is a conservative solution of (1). For every
t > 0, then the maps B — z(t,8) and B — u(t,B) = u(t,x(t,5)), which are
implicitly defined by (69), are Lipschitz continuous. Moreover, The map t — x(t, )
is also Lipschitz continuous with a constant depending only on ||ugl| g1 -

Proof of Lemma 4.1. We split the proof into three steps.
Step 1. For any time ¢ > 0, the map
x = Bt x)

is right continuous and strictly increasing. Thus, the inverse § — z(t, ) is well
defined, continuous, nondecreasing. If 81 < B2, we see that

.’E(t, 62) - x(t7ﬁl) + N(t){(x(t7ﬂ2)ax(t7ﬂl))} < BQ - Bla

which implies

(71) x(t, B2) — x(t, B1) < B2 — B,

and the map S — z(¢, 8) is Lipschitz continuous.

Step 2. For the map 8 +— u(t, 8), as f1 < B, it follows from (69) and (71) that
(72)

z(t,82) z(t,B2) 1
ultalt, ) ~ulta(t p)| < [ e < [T Sy
x(t1ﬁ1) x(t1ﬁl)

< 2 [o(t 82) — 200, 81) + oAt o) (0, B))Y]
< 32— B).

Hence, the map 8 +— u(t, ) is Lipschitz continuous.
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Step 3. Now we claim the Lipschitz continuity of the map ¢ — z(t, 3). Assume
x(7, B) =y, since the family of measure p ;) satisfies the balance law (6), we infer

the source term 2u, <7§(($rf)) u™tl — P satisfies
(73)
m(m + 3) m(m + 3)
Qup | ———Lymtl _ p <2({——-—-—+ T P - < (.
s (D et = Y s < 2l s+ 1Pl sl < ©

For t > 7, it follows from (73) that
1 {(=00,y = Cos(t = 7))} < prmy{(=00,y)} + Cs(t — 7),

where the constant Cy depending only on the H!(R) norm of 4 and m. Denoting
y (1) =y — (Coo + C5)(t — 7), we have

Y~ () + pay{(=o0,y (O]} Sy — (Coo + Co)(t = 7) + p(ry{(=00,9) } + Cs(t — 7)
<y + pn{(—o0,y)} < B,
which implies x(¢, 3) >y~ (¢) for all ¢ > 7. A similar argument yields
o(t,8) <y (t) =y + (Coo + C)(t — 7).
This proves the uniform Lipschitz continuity of the map t — x(¢, ). |
Lemma 4.2. Let uw = u(t,z) be the conservative solution of equation (1). Then

there exists a unique Lipschitz continuous map t — x(t) for any § € R, where the
map satisfies

d
(74) —x(t) = u™(t,z), z(0) =g,

dt
and

d =8 z(t,8) m(m + 3)
75 — L Ly .
(75) i) us /_OO 2uw(2(m+l)u P)d:v
Moreover, we have
t

(76) u(t,z(t)) —u(r,z(r)) = —/ P, (s,z(s))ds,

forany 0 <71 <t.

Proof. Step 1. According to the adapted coordinates (¢, 3), we write the charac-
teristic beginning with § in the form ¢ — z(t) = (¢, 5(¢)). B(-) is a map to be
determined. Together with (74) and (75), we obtain

w() 7
w(t)+/ U§(t,y)dy:ﬂ+/ ug ,dy

(77) -, ;(jj
s [ (msaton + [ 2w (B ) sy ) as.

For convenience, let

(78) ce.s = [ x:) 2uz(’;mum+l - P) in
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and

(79) =i+ [ " 2Ly,

— 00

Therefore, we can rewrite the equation (77) as follow

(80) 6+/ G(s,B(s))ds, for all t > 0.

Step 2. For every fix t > 0, in view of the maps x +— u(t,z), x — P(t,x) € H*(R),
and the function 8 +— G(t, 8) defined by (78) is uniformly bounded and absolutely
continuous. Furthermore, we have

m(m + 3)
:2 N S m+1_P
Cr u“<2<m+1) ! )xﬁ

(81) m(m+3)  m
2“:10 2((m+1))u +1 _ P
= [-C.C]

B 1+

for some constant C, which depends only on the H! norm of u. Consequently, the
function G in (80) is uniformly Lipschitz continuous w.r.t. 5.

Step 3. Based on the Lipschitz continuity of the function G, applying the standard
fixed point theory, one can get the existence of a unique solution for the integral
(80). More details can refer to [4].

Step 4. Owing to the previous construction, we conclude that the map t — x(t) =
z(t,B(t)) is a unique solution for equation (77). B(t) and z(t) are differentiable
almost everywhere because of the Lipschitz continuity of 8(t) and z(t) = x(¢, 5(¢)),
so we only consider the time where z(t) is differentiable. We prove that (74) holds
at almost every time. Suppose, on the contrary, @(7) = «™ (7, z(7)). Without loss
of generality, let

(82) (1) =u"(r,2(7)) + 2e0

for some g > 0. The case €9 < 0 can be proved by similar approach. For t €
(1,7 4 4], choosing ¢ > 0 small enough, we find

(83) ot (t) = 2(1) + (t — T)[u™(7,2(7)) + 0] < z(2t).

We also observe that (6) still holds for any test ¢ with compact support.
For any € > 0, we consider the test functions as

0 if y < —e 1,
(y+e 1) if—e_1<y<l—6_1,
p(s,y) =4 1 if 1—e ! <y<at(s),
el y—u(s) ifat(s) <y<at(s)+e
0 ify>azt(s)+e,
0 ifs<7—e¢
els—7+4+e ifr—e<s<rT,
(84) X(s,y) =14 1 ifr<s<t,
l—el(s—t) ift<s<t+e
0 if s>t+e.

We define
(85) ¥(s,y) = min{p(s, ), x“(s)}.
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Using ¢ as a test function in (6), it follows that

// {u bE + U2+ 2u ( ((mjl?’))umﬂ —P)z/f]dxdt:o.

If t — 7, we have

e—0

zt (s)+e
(87) lim/ / w2 (§ + u™S)dyds > 0.
zt(s)—e
Actually, for s € [T + €,t — €], one has

(88) 0= ¢f + [u™ (1, 2()) + o9l <o +u™ (s, 2)9,
where we use the fact that ™ (s, z) < u™(7,x(7)) + €0 and ¥ < 0.

Due to the family of measures p ;) depend continuously on ¢ in the topology of
weak convergence, taking the limit of (86) as e — 0, we have

a(7) . at (1) )
0:/ 2 (T y)dy — / 2(ty)dy

o0

/ / ( 2:3))um+1—P)dyds

S)Jre
+ lim/ / uZ (Y5 + u™ s ) dyds
zt(s)—e

e—0
() +(t)
o e ]
m(m+3) ...
u™T — P |dyd
[ (e )y

which yields

+(t z(T) m+3) 1
> Mttt —
K u?(t,y)dy > / (1,y)dy +/ / ( T 1) P) dyds

z(T) z(s) 3
:/ Tyd;g—i—/ / ( z:l))umﬂ—P)dyds—!—ol(t—T).

Note that the last term is higher order infinitesimal, satisfying LTT) —0ast—r.
Indeed,
+($)+€ 3
lo1(t —7) ( m(m + )um"'1 - P) dxdyds
zt(s) (m + 1)
m+ 3) g zt(s)+e
u™ o «|dyd
<2 ( = P // s dyds
m(m+3) .,
< 1o ( D P [ o) = () s s
<C-(t—7)5.
On the other hand, together with (78) and (80), we see
(89)

B(t) = B() + (t—7) [UM(T, 2(r) + /i:) 2, (mumﬂ _ p) dy} +os(t—7),
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with % as t — 7. For t sufficiently close to 7, we have

x(t)
B(t) = a(t) + / (w2 (t, y)dy

at(t)
>a(r) 4+ (t—7)[u™(r,2(T)) + €0 u?(t,y)dy
)
(T, y)dy

(7)) + €0l +
(90) /;;;
>x(r)+ (t —7)[u™(r, z(T ))+60]+L

/ /gg(s ( :::13; u™t P) dyds + o1 (t — 7).

By (89) and (90), we have
(91)

Mﬂ+@—ﬂ%ﬁﬁwﬁ»+/i?m%6§$iihmH_P)@}+@@—ﬂ

> [etrr+ e | + (¢ = Dl (ra() + e

— 00

/ /x(s ( :jif’)) umtl P) dyds + o1 (t — 7).

Dividing both sides by ¢ — 7 and letting ¢ — 7, we get a contradiction, namely, (74)
holds.

Step 5. Now we prove (75). By (3), one has

(92) / / [uast ¢z+Pm¢]dxdt+ / o(2)6(0, z)dz = 0,

for every test function ¢ € Cé’o( ). Let ¢ = 1),,, where ¢ € CS°. Due to the fact that
the map x — u(t, x) is absolutely continuous, integrating by part w.r.t. x, then we
get

(93) /OOO/ {Uﬂ/& + UM Uy, + P;cz/%} dxdt + /UOJ(I)#}(O, x)dx = 0.

By an approximation argument, we find the identity (93) still holds for any test
function v which is Lipschitz continuous with compact support. consider the func-
tion

0 if y<—e!
(y+e ) if —et<y<l-—el,
n(s,y) =14 1 if 1—e ' <y <a(s),
L—ety—a(s) if z(s) <y<a(s)+e,
0 if y=>a(s)+e,
for any € > 0 sufficiently small. We define
(94) ©(s,y) = min{n“(s, ), x“(s)},

with x¢(s) defined in (84). We use the test function ¢ = ¢ in (93). And let € — 0.
Since the function P, is continuous, we have
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[ ety = /. o - [ pnstona

(95) - 9)+e
+ hm/ / 2 (@6 +u™ et )dyds.
x

e—0

It suffices to prove that the last term of the limit in (95) is zero. The Cauchy’s
inequality implies

z(s)+e
’// 2(0p +u" g )dyds
a(shke  NBgopa(9e L, \?
g/ (/() g dy) (/() (65 +um %) dy) s,

where u, € L?. For each € > 0, denoting

N‘H

x+e
(97) () = (sup / u2(s,y)dy) *,

z€ER J

we see that all functions ¢, are uniformly bounded and ¢.(t) — 0 pointwise at a.e.
time ¢ as € — 0. Therefore, it follows from the dominated convergence theorem that

t xz(s)+e ) 3 t
. <1 _o
(98) lgr(l) ) (/w(s) luz(s,9)] dx) ds < ll_I)I(l)/T S(s)ds =0

On the other hand, for every time s € [r,t], we obtain
cpg(s,y) = 6_17 W:(&y) + um(s’ m(s))cp;(s,y) =0,
for z(s) <y < x(s) + e. This yields

(s)+e
/ L) ) o) Py

) z(s)+e )
= [ e ety

(99) et (| |um<s,y>um<s,x<s>>|)2

a(s)<y<a(s)+e

z(s)+e 2
<m?e (/ " Ium_luz(s,y)ldy>

< e mP(ful Pt - flua(s)]l22)” < mPlluls) |35

By (98) and (99), one has the integral in (96) approaches to zero as € — 0. We now
estimate the integral near the corners of the domain,

’(/ / ) / o ug (Vf + u™ ) dads
o< ([ =] )(/( HE“Z'de)%(/;:)hwzﬂm@;)wx);ds

z(s)+e
< 2 - ||u(s)]| g </ 46_2|u||Loo)2mdx) <Ce? -0
X

z(s)

Nl=
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as € — 0. We conclude

e—0

t+e px(s)te
(101) 1im/ / u? (f + u™upS)drds = 0.
T—e Jx(s)

Therefore, using (95), we deduce (76).
Step 6. Finally, the uniqueness of the solution z(t) is clear. O

Lemma 4.3. If u = u(t, z) is a conservative solution of equation (3), then the map
(t,8) — u(t, B) = u(t,x(t,B)) is Lipschitz continuous, where the Lipschitz constant
depending only on the norm ||ug|| g1 .

Proof. By (72), (76) and (80), we have

U(t,l’(t, B)) - U(Ta B)

(102) < fult,z(t, B)) — u(t,z(t, B(1)))| + [ult, z(t, B(2))) — ult, z(r, B(1)))]
< 518~ B+ Ct —7) < C(t =),
where C'is a constant depending only on ||ugl/g:. O

Lemma 4.4. Let u be a conservative solution to the equation (3). If t — B(t; T, B)
is the solution to the integral equation

(103) Bty =F+ / G(r, B(r))dr,

where the G is defined in (78), then there exists a constant C, such that for any
two initial data B1, B2 and any t,7 > 0 the corresponding solutions satisfy

(104) 1B(t;7, ) — Bt; 7, B2)| < eCIT1By — Bal.
Proof. Using the Lipschitz continuity of G with respect to 5, the lemma can be
proved. We omit here for brevity. O

Lemma 4.5. Suppose u € H'(R). Then P, is absolutely continuous and satisfies

mo._ m(m + 3)
105 wa — P o om—=1,2 m+1.
(105) 2 T m ) "

Proof. The function ¢(x) = %e‘m satisfies the distributional identity

D3p = —do.

Here dy denotes a unit Dirac mass at the origin. For every function f € L!(R), the
convolution satisfies

Di(¢xf)=¢xf—f.

m(m+3)
2(m+1)

Choosing f = Zu™ 'u2 + mtl

U , we obtain the result. O
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4.2. Uniqueness of conservative solutions for equation (1). In this subsec-
tion, we mainly prove the uniqueness of conservative solutions for equation (1).

Proof of Theorem 1.3. The proof is divided into following steps.

Step 1. It follows from Lemma 4.1 and Lemma 4.3 that the map (¢, 8) — (x, u)(t, )
is Lipschitz continuous. By a similar approach, we find the maps 8 — G(t,5) =
G(t,x(B)) and B — P,(t,[) = P,(t,x(t,)) are also Lipschitz continuous. Thanks
to the Rademacher’s theorem, the partial derivatives x¢, xg,us, ug and P, g exist
almost everywhere. And for these derivatives, a.e. point (¢, ) is a Lebesgue one.
Recalling that t — 5(t, ﬂ) the unique solution of the equation (80), for a.e B, from
Lemma 4.4 we can draw the following conclusion.

(GC) For a.e. t > 0, except a measure zero set N’ € R, the point (¢, 3(t, 5))
is a Legbesgue point with respect to the partial derivatives x¢, xg,ut, ug, Gg, Py -
And z4(t, B(t, §)) > 0 for a.e. t > 0.

If the above condition is true, we say that ¢ — 5(¢, B) is a good characteristic.

Step 2. We find an ODE to describe a change in these two quantities ug and x3
along a good characteristic. Denote t — B(t;7,5) to be the solution of (103). For
7.t ¢ N, let B(-;7,3) be a good characteristic. Differentiating (103) w.r.t 8 we
obtain

9B(t)
o5

(106) —1+ / Ga(s. Blsim 7)) - ﬂﬁ(s 7, )ds

Next, differentiating w.r.t. B the identity

«(t, B(t: 7, B)) = x(r. ) + / u™ (5, 2(s, B(t; 7, B))ds,

we have
zs(t, B(t:m, B)) - 2 B(t:7, B)
(107) 9P o, )
— 25(r, ) + / W (o, B, ) - = Blts, By
Finally, by (76), differentiating w.r.t. B, we have
(108) t ;
ws(t, B(t: 7 B)) - 856( 7.B) = us(r, B) + / e 80517, B) - 550065, B)ds.

Together with (106), (107) and (108) yield the following ODE system:

E[ZB(t7,8)] = < Bt;.B)) - 5867, D),

B
(109) dilzs(t, 867, B)) - ZB(E:T,B)] = ( ™)s(t, B(t; 7, B)) - Bt T B),
& us(t, B(t; 7, B)) - ﬁ(t 7.8)] = Pus(B(t;,B)) - Bt T, m.

The quantities within square brackets on the left hand sides of (109) are absolutely
continuous. By the above system and using Lemma 4.5, along a good characteristic,
we deduce
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m—1

%335 +Ggrg =mu ug,

Dug+Gaug = | Zumtu? + ?((gif))um“ - P)Z'B

(110)

m(m+3)  m m, m—
= 2((m+1))u 2y 1(;ﬂ—1)—P>x5

2(m+1)

_ m(m+3) umtl —p— mum1>x5 + m, m—1
2 2 :

Step 3. Now we return to the original coordinates (¢, z) and deduce an evolution
equation for u, along a “good” characteristic curve.

Fixed a point (7, %) for 7 ¢ N. Suppose that # is a Lebesgue point for the map
x > ug(7,2). Let 8 be such that & = (7, 8). Assume that ¢t — 8(¢; 7, 58) is a good
characteristic, so that (GC) holds. Notice that

2 1 5
uz(r,x) = — —1>0, z5(1,6) > 0.
z5(T, B)

If 3 > 0, along the characteristic though (7, Z), it follows that
up (tv B(t; 7, B))
zp(t, B(t; 7, B))

From (110), we obtain that the map ¢ — u, (¢, 2(t, B(t; 73))) is absolutely continuous
(as long as x3 # 0) and satisfies

(111) e (1att.8067.) ) =

(112)
d ) = s
auw(t,m(t,ﬁ(t,rﬂ))) =% (xﬁ)
z5{ (%%”jf’; untt - p— %umfl)x,g + %umflx/_a —ugGg} — ug{mumflu/_a —z3Gg}
= 2
_ m(m + 3) W p @umfl 4 mu™ 1 B usGpg B 7num71u?3 . usGs
2(m+1) 2 2z s x5 x3
~ m(m+3) i1 5 M om mu™ ! 7 mumflu%
T om+1) " PGt 2
Thus, for g > 0, one has
d ~ 1 d
7 arctan u,(t, z(t, B(t; 78))) = T+ gl
m— m—1,2
_ m(m+3)um+1fpfmumfl+m“ 1imu ug .
1) 2(m + 1) 2 24 23 b
_ m(m + 3) m—+1 m 1 mum—l mum71U2
= (72(1” 1) u P 5 U s + 5 o
m(m+3) .41 -1, 2 m m—1 unt
_ (AT Y m _ m _p_Zym
(2(m+1)u mu uy, 2u )xg—i— 5

Step 4. Introduce the function

(114) Hi{ 2arctanu, if 0 < zg <1,

71'if{L‘5=0.



60 LI YANG, CHUNLAI MU, SHOUMING ZHOU AND XINYU TU

This yields

1 0 U 1 u2 0

115 = = = 2 — i = 0 —_— in2 —.

(115) TS Tz Ty Traz 20 Tz Ty
where 6 can be seen as a map taking values in the unit circle Q = [—7, 7] with end-

points identified. We say that this map t — 0(¢t) = 0(t, z(t, 5(¢; TB))) is absolutely

continuous and satisfies
0 m
— 2P> cos? = — —u™m tsin? =,

(116) dte( )= b= ( 2 2 2

along each good characteristic. In fact, for simplicity, denote by zg(t), ug(t) and

m(m + 3)um+1 4

m+1

ug(t) = - Et; the values of zg, ug and u, along this particular characteristic. From
(GQ), for a.e. ¢ > 0, we have xzg(t) > 0. Assume that 7 is any time where zg(7) > 0,
we find a neighborhood I = [1 — d, 7 + §] satisfies zg(7) > 0 on I. It follows from

(113) and (115) that v = 2arctan(7;—g) is absolutely continuous restricted to I and
satisfies (116). To prove our previous conclusion, we need to prove that ¢t — v(t)
is continuous on the null set N of times at xs(t) = 0. Let zg(to) = 0. By the
following identity

1-—- t
(117) a2 = 1220,
p(1)
which is valid as long as xg > 0, we have u2 — oo as t — to and xg(t) — 0, which

denotes 0(t) = 2arctan u,(t) — £m. Since we identify the points +7 in £ , so we
establish the continuity of 8 for all ¢ > 0. This completes our conclusion.

Step 5. If u = u(t, ) is a conservation solution, in terms of the variables ¢, 3, the
quantities x, u, 0, we deduce

4B(t, B) = G(t, B(t, B)),

La(t, B(t, B)) = m(t B(t, B)),
(118) gu(t, B(t,B)) = —Pu(t, B(t, B)),
Lo(t, B(t, B) = %ﬁumﬂ - 2P> cos? § — mym—1gin® 4.

Recalling the definition of P and G, in term of the variable 3, the function P and
P, have representations as follows

el | el

m(m+3) m+1 ‘20 m m-1 -1 2Q / /
{(Mu L cos §—|—5u sin 2)(5 )}dﬁv

=l /f)exp{ \/ )

2(m+1) 272 2
For every B € R, the initial condition is
B0,8) =8,
(0, 8) = (0, 5), _
12y u(0.8) = w(@0.3),
0(0, 8) = 2 arctan ug . (z(0, 8)).
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Since the Lipschitz continuity of coefficients, the Cauchy problem (118), (121) has
a unique solution with initial data condition (121), which is globally defined for all
t>0,zeR.

Step 6. Suppose that u,@ are two conservative solutions of equation (3) with
the same initial data ug € H!'(R). For a.e. t > 0, the Lipschitz continuous
maps 8 — z(t,8), B — Z(t, ) are strictly increasing. Therefore, the above maps
have continuous inverses, i.e. x — [*(t,z), = + B*(t,z). In summary, the map
(t, B) > (z,u,0)(t, B) is uniquely resolved by the initial data ug. Accordingly,

a(t, B) = z(t, B), ult,B) = ult, B).

In turn, for a.e. t > 0, we conclude

U(t, :L‘) - U(t,ﬂ*(t, ‘T)) - ﬂ(t,ﬂ_*(t, :ZZ)) - ﬂ(t,.’t).

5. GENERIC REGULARITY

To prove the singularities of the solution for w to (3) in ¢ — x plane, we need
to consider the level sets {0(¢,£) = 7}. According to the fact that u,6 and h are
smooth, the generic structure of these level sets can be studied by Thom’s transver-
sality theorem [1, 15]. Our aim is to establish several families of perturbations for
a given solution of (27). To this, we introduce the following lemma.

Lemma 5.1. Let (u,0,h) be a smooth solution of the semilinear system for (27).
Given a point (tg,&) € Ry X R.
(1) If (0, 0¢, 0¢¢ ) (to, &0) = (m,0,0), then there exists a 3—parameter family of smooth
solutions (u*, 0>, h), depending smoothly on A € R3, such that the following holds.
i) When X = 0 € R3, one goes back to the original solution, namely, (u°,0°) =
(u,0).
it) At the point (to, o), when A =0 one can obtain

rank DA(v’\,Gé\ﬁg‘g) =3.

2) If (0,0¢,0;) = (m,0,0), then there exists a 3—parameter family of smooth solu-
tions (u*, 0>, ), depending smoothly on X € R®, satisfying (i)-(ii).

Proof. Let (u,0,h) be a smooth solution of the semilinear system (27). Given a
point (to,&). Taking derivatives to the equation of # in the semilinear system (27),
one has

(122)

gQg(t,f) = (m(m—i—g)umu& - Pg) (1 + cos9)
0 2

_ (Mum+1 — P+ mUm_l) sin 60 — M“m_QUE(l — cos ),

2(m + 1) 2 2
(123)
a%gt(t’f) - <m(m2+3)usz - Pt> (14 cos®)

m(m+3) .. m o1\ . m(m+3) .
— (BT ymtr _py Ty T ymtl —9p
(2(m+1)u + 5 U sin ¢ el v
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0 4 —1
cos? 3~ mu™ ! sin? 3 + %Um_zpm(l — cosf),

(124)

(m+3) - m(m+3
9££t£ 1,2 ( )

( ug + #umugg - ng) (1 + cos®)
<mm+3uu2P mim =1, m-2 )'90
€ e+ 5 U Ug | sin 60¢

3)

:::1 mtl_py %umfl(cos 067 + sin 00&))
-1 -1 -2

_mlm = 1) m-2y, i g9, — %um_gug _m(m 2)(m )um_su?

9 _ (M A3) g e pY
athg(t,ﬁ) = (2(m+1) u + 5 U P | sin6he)

(125) (mum+l + %um_l - P) cos 00¢h

mm+3) . m(m-1)
( e

5 um*2u§ — P§> sin 6h,

with
1 1 1
(126) ug =3 sinfh, wuge = 3 sin Ohg + 5 cos Ohoe.

We consider the families (@, 6* h)‘) of perturbations of the initial data as

(127) = Z \U; (€
i=1,2,3
(128) = Z O (
i=1,2,3
(129) Pk + S M)
i=1,2,3
Together with (27), ((122), (124) and (125) form a complete system. O

Next, the following lemma will be used to get the rank which we desired.

Lemma 5.2 ([5]). Consider the following ODE system

d
dy

where u(t) : R — R™ and g is a Lipschitz continuous function. The system is
well-posed in [0,T). If the matriz

(131) Deufy = (v1,vg,- - -, v5) € R™¥K,

(130) —u =g(u®), u(0)=1up+evi+-- + ey,

and the rank of this matriz is
(132) rank(D.ug) = 1.
Then rank(D.us(t)) =1 for any t € [0,T).
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Proof Lemma 5.1. By (27), (122) and (124), we achieve an ODE system as follows,

(133)

3 .
m(mt3) )y m+1 _ 9p ) cos? & — mu™—1sin? &
m+1 2 2

(?((nﬁf)) ™t oyt — P) sinf - h

wum% - Pg) (1 + cos6)

m+3) m m,, m— :
Sy = P+ Bu 1>Sm995

77"(”;71) u™ 2ug (1 — cos )

(2(7;+3) m—1 EJF m(m+3)u U&P&>(1+cos€)
—{ m(m + 3)umue — 2P + Wum_2“6> sin 00¢
m(m+3)

2(m+1)

_M(Ws—l)u

umtl —pg mum_l(cos 992 -+ sin 9955)

m(m 1) 2,2 _ mm=1)(m=2) m-3,2
——um" ug 5 u™ ug

u§ sin 00¢ —

Then we establish a family of solutions (a*,*, h*) of perturbations with the initial
data given in (127)-(129). Differentiating w.r.t. A, one has

(134)
where g7, - -
have
9
O
(135)

D)\’U,)‘ D,\g{‘

b D/\Q’\ D)\gé\

8715 DA}}))\\ = D)\gg\ 5
D,\Qi Dyg}
D), 055 D)\gg\

-g2 are the perturbation of the right-hand-side of (134). Therefore, we

D)\I_L)‘

D,o*

Dy\h?

D6

D18

Dygy Dogy Drg?y Do.gy Do, gy Dy, u* Dy,a* Dy,ut
Dug% DOQ% Dhgé\ D9g95\ Deggg% DMQA DAZQ_A D/\zﬂ_)\
Dug} Dogy Dngy Do.g3 Do.gy |- | Dah* Da,h* Dyh?
Dyg3 Dogy Drgy Do.gy Do, 9 Dy, 02 DAQW st%
Dug3 Dogs Dings Do g3 De.cgs Dy, 0z DA2965 D02

Based on Lemma 5.2, we need to explain the Lipschitz continuity of g (i =1---5).
Since the function (u, 8, h) is smooth, we only need to prove the Lipschitz continuity
of the nonlocal term of P and P,.. In Section 3, we have obtained the boundedness of
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\g—ﬂ, |%—Ig|, |‘?)—I;|, | 8613 [, |6£f l, |‘981;f . Choosing suitable perturbation 0,(i = 1,2,3),
when \ = 0, we have

0
(136) rankDy | 0¢ =3.

Oce

The system (27) combine with (122), (123) forms a complete system. By choosing
suitable perturbation ©;(i = 1,2,3) observe that

0
(137) rankDy | 0 | =3,
01
while A = 0. O

Next, we are going to investigate smooth solutions to the semi-linear system
(27), and determine the generic structure of level sets {0(¢,&) = w}. We give the
key lemma to prove Theorem 1.4.

Lemma 5.3 ([5]). Given a compact domain
D:={(t,£);0 <t <T,[¢] < M},

let W be the family of all C? solutions (u,8,h) for the semi-linear system (27), with
h > 0 for all (t,€) € [0,T] x RY. Moreover, let W C W be the subfamily of all
solutions (u, 0, h), such that for (t,£) € D, the value

(138) (9,95,955) = (7‘(,0,0), (9,95,975) = (W,0,0)

cannot be obtained. Then W' is a relatively open and dense subset of W, in the
topology induced by C*(D).

Proof of Theorem 1.4. Step 1. For convenience, we denote the space
M= C}*RY)nH'(RT),
with the norm

l[uolla := lluolles + [luollar-
Given a initial data uf; € M, and we introduce the open ball

Bs := {up € M;|jug — ug||m < 6}

By the definition of the space of M, it follows that up(z) — 0 and wug (z) — 0.
Therefore, we choose k > 0 big enough such that ug(z) and wug,(z) are uniformly
bounded for |z| > k. By a standard comparison argument on the domain {(¢, x);t €
[0,T], || > K+ |lul|7% }, we see that the partial derivative u, is uniformly bounded.
This implies the singularity of u(¢, x) in set [0, 7] x R only appears on the compact
set A :=[0,T] X [—r — ||u||P T, r + ||ul|P T], where ||u| L = max{u(t, x), (t, ) €
[0,T] x R}. In (¢, ) plane, we take a domain D such that A C J(D), where J is a
map from (¢,€) to (¢t,z(t,§)).

We define the subset I' C Bs as follows: ug € I' if ug € Bs and for the corre-
sponding solution (u, 8, k) of (27), the values (138) are never attained for (¢,2) € A.

Step 2. We now claim the set I' is open, in the topology of C3. Take a sequence
of initial data (u{})n>1 such that the sequence converges to ug. From the definition
of T, there exists a point (t",£™) such that

(07,0¢,0¢)(t",0") = (7,0,0), (t",2"(t", ")) € A
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for all n > 1. Since the domain A is compact, we can take a subsequence (¢",&"),
which converges to some point (¢,£). It follows from continuity that

(0,0¢,0¢¢) (¢, & = (7,0,0), (t,z(t,€)) € A.
This denotes ug ¢ I'. Using similar procedure, other case (6,6¢,6;) = (7,0,0) can
be proved. So I is open.

Step 3. We explain that I' is dense in Bs. Let ug € By, by a small perturbation,
we assume ug € C°. From Lemma 5.3, we construct a sequence of solutions
(u™, 0™, h™) of (3.1), such that

i) for every n > 1, the values in (138) are never attained for any (¢,£) € D.

ii) The C*(k > 1) norm of the difference satisfies

lim |[(u" —u,0" —0,h" — h,2" — 2)| ck 1)y =0,

n—r oo

for every bounded set I C [0,7] x RT. When ¢ = 0, the corresponding sequence of
initial value satisfies

. . _
nlggoﬂuo uol|criap) = 0

for every bounded set [a,b] € RT.
Introducing a cutoff function

[ Lifla <
(139) p(a) ‘{ 0. iflal > 41,

where r > k + ||u| 7 T is large enough. For every n > 1, let the initial data
ag = pug + (1 — p)uo.

We obtain
lim, ([ — 1ot = 0.
n—oo
Furthermore, choosing r > 0 sufficiently large for any (t,z) € A, we have
a"(t,x) = u"(t, ).
It is obvious that @"(¢,z) is C? on the outer domain. Therefore, @"(¢,z) € T for

every n > 1 sufficiently large. Thus I' is dense in Bs.

Step 4. Finally, we prove that, for every initial data ug € T, the solution of (3) is
piecewise C? on the domain [0, 7] x R*. By previous argument, we only study the
singularity of w on the inner domain A. For every point (tg,&y) € D, two cases can
appear.

Case 1. 0(tg,&) # m. By the coordinate change z¢ = hcos? g, we know that
the map (¢,&) — (¢, ) is locally invertible in a neighborhood of (to,&y). Then we
conclude that the function u is C? in a neighborhood of the point (to, z(to, &o))-

Case II. 0(t9, &) = 7. From (138), 0:(to,&0) # 0 or 6¢(to,&) # 0. Thanks to the
implicit function theorem, we derive that the set

WP = {(t,€) € A 0(¢, &) = 7}

is the union of finitely many C? curves. g
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