ELECTRONIC RESEARCH ARCHIVE doi:10.3934 /era.2019008
Volume 27, Pages 20-36 (October 14, 2019)
eISSN: 2688-1594 AIMS (2019)

WELL-POSED FINAL VALUE PROBLEMS AND DUHAMEL’S
FORMULA FOR COERCIVE LAX-MILGRAM OPERATORS
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ABSTRACT. This paper treats parabolic final value problems generated by co-
ercive Lax—Milgram operators, and well-posedness is proved for this large class.
The result is obtained by means of an isomorphism between Hilbert spaces con-
taining the data and solutions. Like for elliptic generators, the data space is the
graph normed domain of an unbounded operator that maps final states to the
corresponding initial states, and the resulting compatibility condition extends
to the coercive context. Lax—Milgram operators in vector distribution spaces
is the main framework, but the crucial tool that analytic semigroups always
are invertible in the class of closed operators is extended to unbounded semi-
groups, and this is shown to yield a Duhamel formula for the Cauchy problems
in the set-up. The final value heat conduction problem with the homogeneous
Neumann boundary condition on a smooth open set is also proved to be well
posed in the sense of Hadamard.

1. INTRODUCTION

Well-posedness of final value problems for a large class of parabolic differential
equations was recently obtained in a joint work of the author and given an ample
description for a broad audience in [5], after the announcement in [4]. The present
paper substantiates the indications made in the concise review [21], namely, that
the abstract parts in [5] extend from V-elliptic Lax—Milgram operators A to those
that are merely V-coercive—despite that such A may be non-injective.

As an application, the final value heat conduction problem with the homogeneous
Neumann condition is shown to be well-posed.

The basic analysis is made for a Lax—Milgram operator A defined in H from a
V-coercive sesquilinear form a in a Gelfand triple, i.e., three separable, densely
injected Hilbert spaces V — H < V* having norms |- ||, | -| and || - ||«, respectively.
Hereby V is the form domain of a; and V* the antidual of V. Specifically there are
constants C; > 0 and k € R such that all u,v € V satisfy |jv]l. < Ci|v| < Cal|v||
and

(1) la(u,v)] < Cslull o], Ra(v,v) = Callol|* — klul*.

In fact, D(A) consists of those u € V for which a(u,v) = (f|v) for some f € H
and for all v € V, and Au = f; hereby (u|v) denotes the inner product in H.
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There is also an extension A € B(V,V*) given by (Au,v) = a(u,v) for u,v € V.
This is uniquely determined as D(A) is dense in V.

Both a and A are referred to as V-elliptic if the above holds for & = 0; then
A € B(V,V*) is a bijection. One may consult the book of Grubb [12] or that
of Helffer [14], or [5], for more details on the set-up and basic properties of the
unbounded, but closed operator A in H. Especially A is self-adjoint in H if and
only if a(v, w) = a(w, v), which is not assumed; A may also be nonnormal in general.

In the framework of such a triple (H,V,a), the general final value problem is
this: for given data f € Lo(0,T;V*) and ur € H, determine the u € D'(0,T;V)
such that

(2)

Oyu+ Au = f in D'(0,T;V*),
u(T) = ur in H.

By definition of Schwartz’ vector distribution space D’(0,T;V™*) as the space of
continuous linear maps C§°(]0,T[) — V*, cf. [28], the above equation means that
for every scalar test function ¢ € C§°(]0, T[) the identity (u, —¢’) + (Au, p) = (f, ¢)
holds in V*.

As is well known, a wealth of parabolic Cauchy problems with homogeneous
boundary conditions have been treated via triples (H,V,a) and the D'(0,T;V*)
set-up in (2); cf. the work of Lions and Magenes [24], Tanabe [30], Temam [31],
Amann [2] etc.

The theoretical analysis made in [4, 5, 21] shows that, in the V-elliptic case,
the problem in (2) is well posed, i.e., it has ewxistence, uniqueness and stability of
a solution u € X for given data (f,ur) € Y, in certain Hilbertable spaces X, Y
that were described explicitly. Hereby the data space Y is defined in terms of a
particular compatibility condition, which was introduced for the purpose in [4, 5].
More precisely, there is even a linear homeomorphism X <— Y, which yields well-
posedness in a strong form.

This has seemingly closed a gap in the theory, which had remained since the
1950’s, even though the well-posedness is decisive for the interpretation and accu-
racy of numerical schemes for the problem (the work of John [19] was pioneering,
but also Eldén [8] could be mentioned). In rough terms, the results are derived from
a useful structure on the reachable set for a general class of parabolic differential
equations.

The main example treated in [4, 5] is the heat conduction problem of character-
ising the wu(t,z) that in a C*°-smooth bounded open set 2 C R™ with boundary
I' = 0N fulfil the equations (for A =92 +--- 402 ),

Owu(t, ) — Au(t,x) = f(t,x) for t €]0,T], z € Q,
(3) u(t,z) = g(t, x) fort €]0,T[,z €T,
w(T,x) = up(x) for x € Q.

An area of interest of this could be a nuclear power plant hit by a power failure at
t = 0: after power is regained at t = T' > 0, and the reactor temperatures ur(x) are
measured, a calculation backwards in time could possibly settle whether at some
to < T the temperatures u(tg, z) could cause damage to the fuel rods.

However, the Dirichlet condition uw = g at the boundary I' is of limited physical
importance, so an extension to, e.g., the Neumann condition, which represents
controlled heat flux at I', makes it natural to work out an extension to V-coercive
Lax—Milgram operators A.
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In this connection it should be noted that when A is V-coercive (that is, satisfies
(1) only for some k > 0), it is possible that 0 € o(A), the spectrum of A, for
example because A = 0 is an eigenvalue of A. In fact, this is the case for the
Neumann realisation —A y, which has the space of constant functions Clg as the
null space. Well-posedness is obtained for the heat problem (3) with a replacement
of the Dirichlet condition by the homogeneous Neumann condition in Section 4
below.

At first glance, it may seem surprising that the possible non-injectivity of the co-
ercive operator A is inconsequential for the well-posedness of the final value problem
(2). In particular this means that the backward uniqueness—u(7") = 0 in H implies
u(t) =0 in H for 0 <t < T—of the equation u’ + Au = f will hold regardless of
whether A is injective or not. This can be seen from the extensions of the abstract
theory given below; in particular when the results are applied in Section 4 to the
case A = —Ay.

The point of departure is to make a comparison of (2) with the corresponding
Cauchy problem for the equation v+ Au = f. For this it is classical to seek solutions
u in the Banach space

X =Ly(0,T;V)(\C([0,T); H) (VH'(0,T; V™),
4 T

T
1/2
[Jull x =(/ lu()|® dt + sup |u(t)]* + / (lu@®IZ + Nl @)1) dt) ™.
0 0<t<T 0
In fact, the following result is essentially known from the work of Lions and Magenes
[24]):

Proposition 1. Let V be a separable Hilbert space with V. C H algebraically,
topologically and densely, and let A denote the Lax—Milgram operator induced by a
V -coercive, bounded sesquilinear form on V', as well as its extension A € B(V, V™).
When ug € H and f € Ly(0,T;V*) are given, then there is a uniquely determined
solution u belonging to X, cf. (4), of the Cauchy problem

{ Ou+ Au=f inD'(0,T;V*),

5) u(0) =wuo in H.

The solution operator (f,ug) — wu is continuous La(0,T; V*)®H — X, and problem
(5) is well-posed.

Remarks on the classical reduction from the V-coercive case to the elliptic one
will follow in Section 3. The stated continuity of the solution operator is well
known to the experts. But for the reader’s convenience, in Proposition 7 below, the
continuity is shown by explicit estimates using Gronwall’s lemma; these may be of
independent interest.

Whilst the below expression for the solution hardly is surprising at all, it has
seemingly not been obtained hitherto in the present context of V-coercive Lax—
Milgram operators A and general triples (H,V, a):

Proposition 2. The unique solution u in X provided by Proposition 1 is given by
Duhamel’s formula,

t
(6) u(t) = e g + / e~ =945 (s) ds for0<t<T.
0

Here each of the three terms belongs to X.
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As shown in Section 3 below, it suffices for (6) to reinforce the classical integration
factor technique by injectivity of the semigroup e=*4.

In fact, it is exploited in (6) and throughout that —A generates an analytic semi-
group e *4 in B(H). As a consequence of the analyticity, the family of operators
e~*4 was shown in [5] to consist of injections on H in case A is V-elliptic. This
extends to general V-coercive A, as accounted for in Proposition 5 below. Hence
et also in the present paper has the inverse ¢4 := (e7*4)~! for ¢ > 0.

For t = T, the Duhamel formula (6) obviously yields a bijection u(0) +— u(T)
between the initial and terminal states (for fixed f), as one can solve for uy by
means of the inverse e74. In particular backwards uniqueness of the solutions to
u’ + Au = f holds in the large class X.

Returning to the final value problem (2) it would be natural to seek solutions u
in the same space X. This turns out to be possible only when the data (f,ur) are
subjected to substantial further conditions.

To formulate these, it is noted that the above inverse e'4 enters the theory
through its domain, which in the algebraic sense simply is a range, namely D(e!?) =
R(e7*"); but this domain has the structural advantage of being a Hilbert space
under the graph norm ||u| = (|u|? + [e*4u|?)'/2.

For t = T the domains D(eT4) have a decisive role in the well-posedness result
below, where condition (9) is a fundamental clarification for the final value problem
in (2) and the parabolic problems it represents.

Another ingredient in (9) is the yield y; of the source term f: ]0,T[— V*, ie.

T
(7) vy = / e~ (T=0A£(1) at.

Hereby it is used that e *4 extends to an analytic semigroup in V*, as the extension
A € B(V,V*) is an unbounded operator in the Hilbertable space V* satisfying the
necessary estimates (cf. Remark 4; and also [5, Lem. 5] for the extension). So y; is
a priori a vector in V*, but in fact y lies in H as Proposition 2 shows it equals the
final state of a solution in C([0,T], H) of a Cauchy problem having ug = 0.

These remarks on yy make it clear that in the following main result of the paper—
which relaxes the assumption of V-ellipticity in [4, 5] to V-coercivity—the difference
in (9) is a member of H:

Theorem 1.1. Let A be a V-coercive Lax—Milgram operator defined from a triple
(H,V,a) as above. Then the abstract final value problem (2) has a solution u(t)
belonging the space X in (4), if and only if the data (f,ur) belong to the subspace

(8) Y C L, (0, T;V*)® H
defined by the condition

(9) ur — /OT e~ T=DA7t)ydt € D(T).

In the affirmative case, the solution u is uniquely determined in X and

oTA (UT B /T e,(T,t)Af(t) dt) ‘2)

0

1/2

T
2 2d
IIUHch(Iuﬂ +/O £ ()% dt +
=c||(f,ur)|ly,

(10)
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whence the solution operator (f,ur) — u is continuous Y — X. Moreover,

(11) u(t) = e tet4 (uT — /T e”(T=D471(1) dt) + /t e =941 (s) ds,

0 0
where all terms belong to X as functions of t € [0,T], and the difference in (9)
equals e~ T4u(0) in H.

The norm on the data space Y in (10) is seen at once to be the graph norm of
the composite map
P TA

(12) Ly (0, T; V)Y@ H H— H

given by (f,ur) — up —y; — €' (ur —yy) and ®(f, ur) = ur — y;.

In fact, the solvability criterion (9) means that eZ4® must be defined at (f,ur),
so the data space Y is its domain. Being an inverse, e/ is a closed operator in H,
and so is e74®; hence Y = D(e74®) is complete. Now, since in (10) the Banach
space V* is Hilbertable, so is Y.

Thus the unbounded operator e74® is a key ingredient in the rigorous treatment
of the final value problem (2). In control theoretic terms, the role of e74® is to
provide the unique initial state given by
(13) u(0) = " ®(f,ur) = " (ur —yy),
which is steered by f to the final state u(T) = ur; cf. the Duhamel formula (6).

Criterion (9) is a generalised compatibility condition on the data (f,ur); such
conditions have long been known in the theory of parabolic problems, cf. Remark 7.
The presence of e~ (T=94 and the integral over [0, 7] makes (9) non-local in both

space and time. This aspect is further complicated by the reference to D(e”4),
which for larger final times T typically gives increasingly stricter conditions:

Proposition 3. If the spectrum o(A) of A is not contained in the strip {z € C |
—k < Rz <k}, whereby k is the constant from (1), then the domains D(e!?) form
a strictly descending chain, that is,

(14) H 2 D(e'*) 2 D(et'4) foro<t<t.

This results from the injectivity of e~*4 via well-known facts for semigroups
reviewed in [5, Thm. 11] (with reference to [26]). In fact, the arguments given for
k =01in [5, Prop. 11] apply mutatis mutandis.

Now, (6) also shows that «(7T') has two radically different contributions, even if A
has nice properties. First, for ¢ = T" the integral equals yf, which can be anywhere
in H. Indeed, f — yy is a continuous surjection yys: L2(0,T;V*) — H. This was
shown for k& = 0 via the Closed Range Theorem in [5, Prop. 5], and for &k > 0
surjectivity follows from this case as e~ (T=9)4 f(5) = e~ (T=8)(A+kD =5k £ () in (7),
whereby A + kI is V-elliptic and f +— e~*¥ f is a bijection on Lo (0, T; V™).

Secondly, e~*4u(0) solves u’ + Au = 0, and for u(0) # 0 and V-elliptic A it is a
precise property in non-selfadjoint dynamics that the “height” h(t) = |e *4u(0)| is

strictly positive (h > 0),
strictly decreasing (h' < 0),
strictly conver (< h" > 0).

Whilst this holds if A is self-adjoint or normal, it was emphasized in [5] that it
suffices that A is just hyponormal (i.e., D(A) C D(A*) and |Az| > |A*z| for
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x € D(A), following Janas [18]). Recently this was followed up by the author in
[20], where the stronger logarithmic convexity of h(t) was proved equivalent to the
formally weaker property of A that, for x € D(A?),

(15) AR(Az|2))? < R(A |2)le] + | Azl

For V-coercive A only the strict decrease may need to be relinquished. Indeed, the
strict positivity h(t) > 0 follows by the injectivity of e~*4 in Proposition 5 below.
Moreover, the characterisation in [20, Lem. 2.2] of the log-convex C2-functions f(t)
on [0, o[ as the solutions of the differential inequality f”-f > (f’)? and the resulting
criterion for A in (15) apply wverbatim to the coercive case; hereby the differential

calculus in Banach spaces is exploited in a classical derivation of the formulae for
u(t) = e~t4u(0),

(16) W(t) = - ATS&LM )
(17) R'(t) = R(A%u(t) |u(t)) + [Au(t)[? B (R( Au(t) | u(t)))?

Ju(t)] u(t)]?

But it is due to the strict positivity [e"*4u(0)] > 0 for t > 0 in the denominators
that the expressions make sense, so injectivity of e *4 also enters crucially at this
point. Similarly the singularity of |- | at the origin poses no problems for the mere
differentiation of h(t). Therefore it is likely that the natural formulas for h', h”
have not been rigorously proved before [21]. These remarks also shed light on the
usefulness of Proposition 5 below.

However, the stiffness intrinsic to strict convexity, hence to log-convexity, corre-
sponds well with the fact that u(7T) = e~74u(0) in any case is confined to a dense,
but very small space, as by the analyticity

(18) u(T) € ,,enD(A™).

For '+ Au = f, the possible ur will hence be a sum of some arbitrary y; € H and a
stiff term e~T44(0). Thus ur can be prescribed in the affine space y; + D(eT4). As
any y; # 0 will shift D(eT4) C H in an arbitrary direction, u(T") can be expected
anywhere in H (unless y; € D(eT4) is known). So neither (18) nor u(T) € D(eT4)
can be expected to hold if y; # 0—not even if |y;| is much smaller than [e~74u(0)|.
Hence it seems best for final value problems to consider inhomogeneous problems
from the outset.

Remark 1. To give some backgound, two classical observations for the homoge-
neous case f =0, g = 0 in (3) are recalled. First there is the smoothing effect for
t > 0 of parabolic Cauchy problems, which means that u(t,z) € C°°(]0,T] x Q)
whenever ug € Ly(£2). (Rauch [27, Thm. 4.3.1] has a version for 2 = R"; Evans [9,
Thm. 7.1.7] gives the stronger result u € C*°([0,7] x Q) when f € C>([0,T] x Q),
g = 0 and uy € C°°(Q) fulfill the classical compatibility conditions at {0} x T'—
which for f = 0, g = 0 gives the C* property on [, T] x Q for any £ > 0, hence on
10,T] x Q). Therefore u(T,-) € C*(2); whence (3) with f = 0, g = 0 cannot be
solved if up is prescribed arbitrarily in Lo(€2). But this just indicates an asymmetry
in the properties of the initial and final value problems.

Secondly, there is a phenomenon of Lo-instability in case f = 0, g = 0 in (3),
which perhaps was first described by Miranker [25]. The instability is found via
the Dirichlet realization of the Laplacian, —Ap, and its Lo(2)-orthonormal basis
e1(x),ea(x),. .. of eigenfunctions associated to the usual ordering of its eigenvalues
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0 <A1 <Xy < ..., which via Weyl’s law for the counting function, cf. [6, Ch. 6.4],
gives

(19) A =03 for j — oo
This basis gives rise to a sequence of final value data ur ;(z) = e;(z) lying on
the unit sphere in Ly(Q) as |lur ;|| = |le;|| = 1 for j € N. But the corresponding

solutions to v/ —Awu = 0, i.e. uj(t,r) = eT=YNe;(x), have initial states u(0, )
with Lg-norms that because of (19) grow rapidly with the index j,

(20) lu; (0, )] = ™ [lej ]| = ™ 7 oo,

This Lo-instability cannot be removed, of course, but it only indicates that the
Ly (Q)-norm is an insensitive choice for problem (3). The task is hence to obtain a
norm on ur giving better control over the backward calculations of u(¢, x)—for the
inhomogeneous heat problem (3), an account of this was given in [5].

Remark 2. Almog, Grebenkov, Helffer, Henry [1, 10, 11] studied the complex Airy
operator —A +ix; recently via triples (H,V,a), leading to Dirichlet, Neumann,
Robin and transmission boundary conditions, in bounded and unbounded regions.
Theorem 1.1 is expected to apply to final value problems for those of their reali-
sations that satisfy the coercivity condition in (1). However, —A +ix; has empty
spectrum on R™, cf. the fundamental paper of Herbst [15], so it remains to be seen
for which of the regions in [1, 10, 11] there is a strictly descending chain of domains
as in (14).

2. PRELIMINARIES: INJECTIVITY OF ANALYTIC SEMIGROUPS

As indicated in the introduction, it is central to the analysis of final value prob-
lems that an analytic semigroup of operators, like e 27| always consists of injections.
This shows up both at the technical and conceptual level, that is, both in the proofs
and in the objects that enter the theorem.

A few aspects of semigroup theory in a complex Banach space B is there-
fore recalled. Besides classical references by Davies [7], Pazy [26], Tanabe [30]
or Yosida [32], a more recent account is given in [3].

The generator is Az = lim;_,q+ 1 (e"*2—x), where z belongs to the domain D(A)
when the limit exists. A is a densely defined, closed linear operator in B that for
some w > 0, M > 1 satisfies the resolvent estimates [|[(A —X)™"||gz) < M/(A—w)"
for A\ >w,neN.

The corresponding Co-semigroup of operators e € B(B) is of type (M,w): it
fulfils that etAe®A = eHDA for 5, ¢ > 0, "2 = I and lim;_, o+ ez = x for z € B;
whilst

(21) e |lg(p) < Me®t  for 0 <t < oo.

Indeed, the Laplace transformation (Al —A)~ = [ "¢ dt gives a bijection of
the semigroups of type (M, w) onto (the resolvents of ) the stated class of generators.

To elucidate the role of injectivity, recall that if e*® is analytic, u' = Au, u(0) =
ug is uniquely solved by u(t) = e*Aug for every ug € B. Here injectivity of e is
equivalent to the important geometric property that the trajectories of two solutions
ety and e w of v/ = Au have no confluence point in B for v # w.

Nevertheless, the literature seems to have focused on examples of semigroups
with non-invertibility of e**, like [26, Ex. 2.2.1]; these necessarily concern non-
analytic cases. The well-known result below gives a criterion for A to generate a
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Co-semigroup e*A that is defined and analytic for z in the open sector

(22) Sp={z€C|z+#£0, |argz| <0}
It is formulated in terms of the spectral sector
(23) zez{o}u{Aec\|argA|<g+9}.

Proposition 4. If A generates a Cy-semigroup of type (M,w) and w € p(A), the
following properties are equivalent for each 6 €]0, 3 :

(i) The resolvent set p(A) contains w + Xy and

(24) sup{ |A — w| - [[(A\T = A) Mg | A€Ew+ g, A#£w} < oo.
(ii) The semigroup et® extends to an analytic semigroup e** defined for z € Sy
with
(25) sup{ e **[|e*® ||p () | 2 €8¢ } <oo whenever 0 <6 <.

In the affirmative case, e'® is differentiable in B(B) for t > 0 with derivative
(et™) = Aet™, and for every n such that a(A) < 1 < w one has

(26) sup e_t”HetAHB(B) + sup te_t"||AetA||B(B) < 00,
t>0 t>0

whereby a(A) = supRo(A) denotes the spectral abscissa of A (here a(A) < w, as
0e Zg).

In case w = 0, the equivalence is just a review of the main parts of Theorem 2.5.2
in [26]. For general w > 0, one can reduce to this case, since A = wl + (A — wl)
yields the operator identity e = e®e'(A=«D) where et(A=%1D) is of type (M, 0) for
some M. Indeed, the right-hand side is easily seen to be a Cy-semigroup, which since
e = 1+tw+o(t) has A as its generator, so the identity results from the bijectiveness
of the Laplace transform. In this way, (i) <= (ii) follows straightforwardly from
the case w = 0, using for both implications that e* = e**e*(A=«) holds in Sy by
unique analytic extension.

Since w € p(A) implies a(A) < w, the above translation method gives ¢4 =
etnetA=nD) “where e!A=10) is of type (M, 0) whenever a(A) < i < w. This yields
the first part of (26), and the second now follows from this and the case w = 0 by
means of the splitting A =n'I + (A —9'I) for a(A) <7’ <n.

The reason for stating Proposition 4 for general type (M,w) semigroups is that
it shows explicitly that cases with w > 0 only have other estimates on R or in the
closed subsectors Sy —but the mere analyticity in Sy is unaffected by the translation
by wl. Hence one has the following improved version of [5, Prop. 1]:

Proposition 5. If a Cy-semigroup e of type (M,w) on a complex Banach space
B has an analytic extension e*® to Sy for some @ > 0, then e is injective for
every z € Sp.

Proof. Let e*®uq = 0 hold for some uy € B and zy € Sp. Analyticity of e*2 in Sy
carries over by the differential calculus in Banach spaces to the map f(z) = e*Aug.
So for z in a suitable open ball B(zp,7) C Sy, a Taylor expansion and the identity
f(20) = Ae*0A g for analytic semigroups (cf. [26, Lem. 2.4.2]) give

= 1 n g(n) = 1 n AN, zZoA
(27) f(Z)ZZE(Z—ZO)f (ZO):ZE(Z_ZO)A‘EO ug = 0.

n=0 n=0
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Hence f = 0 on Sy by unique analytic extension. Now, as e*® is strongly continuous
at t = 0, we have ug = lim;_, o+ e®ug = limy_,o+ f(t) = 0. Thus the null space of
e*A is trivial. O

Remark 3. The injectivity in Proposition 5 was claimed in [29] for z > 0, § < 7/4
and B a Hilbert space (but not quite obtained, as noted in [5, Rem. 1]; cf. the
details in Lemma 3.1 and Remark 3 in [20]). A local version for the Laplacian on
R™ was given by Rauch [27, Cor. 4.3.9].

As a consequence of the above injectivity, for an analytic semigroup e'® we may
consider its inverse that, consistently with the case in which e** forms a group in
B(B), may be denoted for t > 0 by e™*4 = (e!A)~1. Clearly e7*A maps D(e™*4) =
R(e*™) bijectively onto H, and it is an unbounded, but closed operator in B.

Specialising to a Hilbert space B = H, then also (e!A)* = e!A" is analytic, so
Z(e*A™) = {0} holds for its null space by Proposition 5; whence D(e~*4) is dense
in H. Some further basic properties are:

Proposition 6. [5, Prop. 2] The above inverses e~** form a semigroup of un-
bounded operators in H,

(28) e SAeTIA — o (st)A fort,s > 0.

This extends to (s,t) € Rx ] —o00,0], whereby e~ *+5)A may be unbounded for t+s >
0. Moreover, as unbounded operators the e ' commute with e*® € B(H), that
is, esBhe A C e tAesA for t,s > 0, and have a descending chain of domains,
H > D(e ™) > D(e A for0 <t <t

Remark 4. The above domains serve as basic structures for the final value problem
(3). They apply for A = —A that generates an analytic semigroup e *4 in B(H)
defined in Sy for § = arccot(C3/Cy) > 0. Indeed, this was shown in [5, Lem. 4] with
a concise argument using V-ellipticity of A; the V-coercive case follows easily from
this via the formula e=#4 = ekze=2(A+kD) that results for z > 0 from the translation
trick after Proposition 4; and then it defines e=*4 by the right-hand side for every
z € Sp. (A rather more involved argument was given in [26, Thm. 7.2.7] in a context

of uniformly strongly elliptic differential operators.)

3. PROOF OF THEOREM 1.1

To clarify a redundancy in the set-up, it is remarked here that in Proposition 1
the solution space X is a Banach space, which can have its norm in (4) rewritten
in the following form, using the Sobolev space H*(0,T;V*) = {u € Ly(0,T;V*) ’
o € LQ(O,T, V*) },

(29) lullx = (ull? a0,y + sup [u®)? + lulF o ry-)
0<t<T

Here there is a well-known inclusion Lo (0,7;V) N H(0,T;V*) c C([0,T); H) and
an associated Sobolev inequality for vector functions ([5] has an elementary proof)

C2 T T
(30) sup_fu(t)|* < (1+ = )/ |IU(t)H2dt+/ ' (£)11% dt.
0<t<T CiT’ Jo 0

Hence one can safely omit the space C([0, T]; H) in (4) and remove supjq 7y [u| from
Il - I|x. Similarly fOT |lu(t)||? dt is redundant in (4) because || - ||« < Csl - ||, so an
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equivalent norm on X is given by

T T
(31) llullx = (/O ||1t(rf)||2cizt+/0 o ()] ) 2.

Thus X is more precisely a Hilbertable space, as V* is so. But the form given in
(4) is preferred in order to emphasize the properties of the solutions.

As a note on the equation v’ + Au = f with v € X, the continuous function
u: [0,T] — H fulfils u(t) € V for a.e. t €]0,T[, so the extension A € B(V,V*)
applies for a.e. t. Hence Au(t) belongs to Lo(0,T; V™).

3.1. Concerning Proposition 1. The existence and uniqueness statements in
Proposition 1 are essentially special cases of the classical theory of Lions and Ma-
genes, cf. [24, Sect. 3.4.4] on t-dependent V-elliptic forms a(¢; u, v). Indeed, because
of the fixed final time T' €10, 00[, their indicated extension to V-coercive forms
works well here: since u +— e***y and f + e*** are all bijections on L (0,7;V) and
L2(0,T; V*), respectively, the auxiliary problem v’ + (A + kI)v = e * f, v(0) = ug
has a solution v € X according to the statement for the V-elliptic operator A + kI
in [24, Sect. 3.4.4], when k is the coercivity constant in (1); and since multiplication
by the scalar e commutes with A for each ¢, it follows from the Leibniz rule in
D'(0,T;V*) that the function u(t) = e**v(t) is in X and satisfies
(32) u + Au = f, u(0) = up.
Moreover, the uniqueness of a solution u € X follows from that of v, for if v’ + Au =
0, u(0) = 0, then it is seen at once that v = e~*u solves v+ (A+kI)v = 0, v(0) = 0;
so that v = 0, hence u = 0.

In the V-elliptic case, the well-posedness in Proposition 1 is a known corollary

to the proofs in [24]. For coercive A, the above exponential factors should also be
handled, which can be done explicitly using

Lemma 3.1 (Gronwall). When ¢, k and E are positive Borel functions on [0,T],
and E(t) is increasing, then validity on [0, T| of the first of the following inequalities
implies that of the second:

(33) /k ds < B(t exp/ k(s) ds).

The reader is referred to the proof of Lemma 6.3.6 in [17], which actually covers
the slightly sharper statement above. Using this, one finds in a classical way a
detailed estimate on each subinterval [0, ¢]:

Proposition 7. The unique solution w € X of (5), cf. Proposition 1, fulfils in terms
of the boundedness and coercivity constants Cs, Cy and k of a(-,-), for 0 <t < T,

t t
/ lu(s)|? ds+ sup Ju(s)P + / e ()] ds
0 0<s<t

2 1
%ﬂ 2kt)(c«4|u0|2 / Hf ”2 dS)
4

Fort =T, this entails boundedness L2(0,T;V*) @ H — X of the solution operator
(f7 Uo) = u.

Proof. As u € L2(0,T;V), while f and Au and hence also v’ = f — Au belong to
the dual space L2(0,T;V*), one has in L1(0,T) the identity

(35) R(Opu, u) + Ra(u,uw) = R(f, u).

(34)
<2+
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Here a classical regularisation yields d;|u|? = 2R(dyu, u), cf. [31, Lem. I11.1.2] or [5,
Lem. 2], so by Young’s inequality and the V-coercivity,

(36) Oclul* +2(Callull® = kluf*) < 2/(f,u)| < CTHIFIIZ + Callul.
Integration of this yields, since |u|? and 9;|u|? = 2R(dyu, u) are in L;(0,T),
t t t
(31 Jul)F +Cs [ (o) ds < fuof? + €51 [ 17(6) I ds+ 2% [ fulo)P ds.
0 0 0

Ignoring the second term on the left, it follows from Lemma 3.1 that, for 0 <t < T,

t
(39) uOF < (jwf + 5 [ 172 ds) - exp(2ke)
0
and since the right-hand side is increasing, one even has
t
(39) sup [u(s)” < (Juof? + €5 [ 17(6)]2ds) -exp(2it).
0<s<t 0

In addition it follows in a crude way, from (37) and an integrated version of (38),
that

¢ uls 2 S U, 2 —1 ¢ s 2 s ¢ eZk‘s/ S
" 04/0 lu(s)|2ds < (juol? + C; /0|le >||*d)(1+/0< Y ds)
— M (Jugf? + O / 1F(5)IP ds).
0

Moreover, as u solves (5), clearly ||Oyul|? < (|| f]l« + [[Aull«)* < 2| f||? + 2||Aul?,
and since || A|| < C3 holds for the norm in B(V, V*), the above estimates entail

t t t
IIU'(8)||3d$S2/ Hf(S)IIde+2C§/ [u(s)|* ds
(41) 0 0 0

C3 /!
<2(Cu+ 2 (fuol + [ I ds).
4 0
Finally the stated estimate (34) follows from (39), (40) and (41). O

3.2. On the proof of the Duhamel formula. As a preparation, a small technical
result is recalled from Proposition 3 in [5], where a detailed proof can be found:

Lemma 3.2. When A generates an analytic semigroup on the complex Banach
space B and w € H'(0,T; B), then the Leibniz rule

(42) DT DAY(t) = (—A)eT=DAy(t) + T DA (1)
is valid in D'(0,T; B).

In Proposition 2, equation (6) is of course just the Duhamel formula from ana-
lytic semigroup theory. However, since X also contains non-classical solutions, (6)

requires a proof in the present context—but as noted, it suffices just to reinforce
the classical argument by the injectivity of e~*4 in Proposition 5:

Proof of Proposition 2. To address the last statement first, once (6) has been shown,
Proposition 1 yields e"*4ug € X for f = 0. For general (f,ug) one has u € X, so
the last term containing f also belongs to X.
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To obtain (6) in the above set-up, note that all terms in d;u + Au = f are
in Ly(0,T;V*). Therefore e~ (=94 applies for a.e. t € [0,T] to both sides as an
integration factor, so as an identity in Lo(0,7; V™),

(43) at(e_(T_t)Au(t)) = e_(T_t)Aatu(t) + e_(T_t)AAu(t) = e_(T_t)Af(t).

Indeed, on the left-hand side e~ (T=944(t) is in L1(0,T;V*) and its derivative in
D'(0,T;V*) follows the Leibniz rule in Lemma 3.2, since v € H'(0,T;V*) as a
member of X.

As C([0,T); H) C Lo(0,T;V*) C L1(0,T;V*), it is seen in the above that
e~ T=D4(t) and e~ (T=Y4£(t) both belong to L1(0,T;V*). So when the Funda-
mental Theorem for vector functions (cf. [31, Lem. III.1.1], or [5, Lem. 1]) is applied
and followed by use of the semigroup property and a commutation of e~ (T=H4 with
the integral, using Bochner’s identity, cf. Remark 5 below, one finds that

t
e~ T4y (t) = e T4y, +/ e~ T=9)A41(s)ds
(44) 0 ;
_ e—(T—t)Ae—tAuO+e—(T—t)A/ e~(t=94 £ () s,
0
Since e~ (T=Y4 is linear and injective, cf. Proposition 5, equation (6) now results at
once. 0

Remark 5. It is recalled that for f € L;(0,T; B), where B is a Banach space, it is
a basic property that for every functional ¢ in the dual space B’, one has Bochner’s

identity: ([ f(t)dt, @) = [ (f(t), ) dt.

3.3. Concerning Theorem 1.1. As all terms in (6) are in C([0,T]; H), it is safe
to evaluate at ¢ = 7', which in view of (7) gives that u(T) = e~ T4u(0) + y;. This
is the flow map

(45) w(0) — u(T).

Owing to the injectivity of e=T4 once again, and that Duhamel’s formula implies
u(T) — yy = e~ T4u(0), which clearly belongs to D(eT4), this flow is inverted by

(46) u(0) = " (u(T) — yy).

In other words, not only are the solutions in X to v’ + Au = f parametrised by
the initial states u(0) in H (for fixed f) according to Proposition 1, but also the
final states u(T) are parametrised by the u(0). Departing from this observation,
one may give an intuitive

Proof of Theorem 1.1. If (2) is solved by u € X, then u(T") = ur is reached from the
unique initial state «(0) in (46). But the argument for (46) showed that ur —yy =
e~ TAu(0) € D(eT4), so (9) is necessary.

Given data (f,ur) that fulfill (9), then ug = €7 (ur —y;) is a well-defined vector
in H, so Proposition 1 yields a function v € X solving v’ + Au = f and w(0) = ug.
By the flow (45), this u(¢) has final state u(T) = e~ T4eT4(ur — ys) + ys = ur,
hence satisfies both equations in (2). Thus (9) suffices for solvability.

In the affirmative case, (11) results for any solution u € X by inserting formula
(46) for u(0) into (6). Uniqueness of u in X is seen from the right-hand side of (11),
where all terms depend only on the given f, ur, A and T > 0. That each term in
(11) is a function belonging to X was seen in Proposition 2.
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Moreover, the solution can be estimated in X by substituting the expression (46)
for ug into the inequality in Proposition 7 for t = T. For the norm in (31) this gives

202 1 r
2 L ) max(Ca ) ol + [ 15(5) 12 )
4 0

< c(le™ ur —yp))* + ||fH2L2(O,T;V*))'

Here one may add |ur|? on the right-hand side to arrive at the expression for
I(f,ur)|ly in Theorem 1. 0

uy M=t

Remark 6. It is easy to see from the definitions and proofs that Pu = (Jyu +
Au,u(T)) is a bounded operator X — Y. The statement in Theorem 1.1 means
that the solution operator R(f,ur) = u (is well defined and) satisfies PR = I, but
by the uniqueness also RP = I holds. Hence R is a linear homeomorphism ¥ — X.

4. THE HEAT PROBLEM WITH THE NEUMANN CONDITION

In the sequel Q stands for a C* smooth, open bounded set in R", n > 2 as
described in [12, App. C]. In particular €2 is locally on one side of its boundary
I' = 99Q. For such , the problem is to characterise the u(t, x) satisfying

Opu(t, ) — Au(t,x) = f(t,z) in ]0,T[xQ,
(48) yu(t,z) =0 on |0, T[xT,
reu(z) = ur(x)  at {T} x Q.

While rru(z) = u(T, x), the Neumann trace on I' is written in the operator notation
vu = (v - Vu)|p, whereby v is the outward pointing normal vector at « € T.
Similarly ~; is used for traces on ]0, 7T xT.

Moreover, H™ () denotes the usual Sobolev space that is normed by ||u|l,, =

(ngm Jo 10%u|? dx) 1/2, which up to equivalent norms equals the space H™ ()
of restrictions to 2 of H™(R"™) endowed with the infimum norm.

Correspondingly the dual of e.g. H'(Q) has an identification with the closed
subspace of H~1(R") given by the support condition in

(49) Hy'(©Q)={ue H'(R") | suppucC Q}.

For these matters the reader is referred to [16, App. B.2]. Chapter 6 and (9.25) in
[12] could also be references for this and basic facts on boundary value problems;
cf. also [9, 27].

The main result in Theorem 1.1 applies to (48) for V = H'(Q), H = Ly(9) and
V* ~ H;'(Q), for which there are inclusions H'(Q) C Lo(Q) C Hy*(Q), when
g € La(Q) via eq (extension by zero outside of ) is identified with eqg belonging

to Hy ' (Q). The Dirichlet form

(50) s(u,v) = Z(é‘ju |05V ) 1a(0) = Z/ O;ud;vdx
j=1 j=1"%
satisfies |s(v,w)| < ||v||1||w]|1, and the coercivity in (1) holds for Cy = 1, k =1
since s(v,v) = [|v][F — [|v]3.
The induced Lax—Milgram operator is the Neumann realisation —Ap, which is
selfadjoint due to the symmetry of s and has its domain given by D(Ay) = {u €
H?(Q) | yau = 0}. This is a classical but non-trivial result (cf. the remarks prior
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to Theorem 4.28 in [12], or Section 11.3 ff. there; or [27]). Thus the homogeneous
boundary condition is imposed via the condition u(t) € D(Ay) for 0 < ¢ < T.

By the coercivity, —A = Ay generates an analytic semigroup of injections e 4~
in B(Ly(0)), and the bounded extension A: H'(Q) — H;'(Q) induces the ana-
lytic semigroup e*2 on H L(Q); both are defined for z € S, /4. As previously,
(etAN)—l — e—tAN_

The action of A is (slightly surprisingly) given by Au = div(eq grad u) for each
u € HY(Q), for when w € HY(R") coincides with v in Q, then (50) gives

n

<—Au,v> = s(u,v) = Z/Rn eq(0;u) - Ojw dx

—

ZERNA

(51) = <7aj(egaju)’w>H_1(]R")><H1(Rn)

-

To make a further identification one may recall the formula 9;(uxq) = (9ju)xa —
v;(you)dS, valid for u € C'(R™) when g denotes the characteristic function of €,
and g, S the restriction to I' and the surface measure at I', respectively; a proof
is given in [16, Thm. 3.1.9]. Replacing u by d;u for some u € C?(Q), and using
that v(x) is a smooth vector field around T, we obtain that 9;(eqd;u) = egz(afu) -

—0;(eql;u), U>H0*1(§)><H1(ﬁ)'
1

J

(Yov;0ju)dS. This now extends to all u € H?(Q) by density and continuity, and by
summation one finds that in D’(R"),

(52) Au = div(eq gradu) = eq(Au) — (y1u)dS.

Clearly the last term vanishes for u € D(Ay); whence div(eq grad u) identifies in §2
with the Lo-function Awu for such u. But for general v in the form domain H*(Q),
none of the terms on the right-hand side make sense.

The solution space for (48) amounts to

Xo = Lo(0,T; H'(2)) () C([0, T); La(Q)) () H'(0, T3 Hy (),

T
G Melxo = ([ ol o
¥ ju(e, 1) d +/Tna(ww ar)”
sup u(z, T U .
telo, 1] JQ 0 ! Hy (@)

The corresponding data space is here given in terms of y; = fOT eT=DAf(t)dt, cf.
(7), as
(54)

Yo = {(f,ur) € La(0, T3 H (@) @ La(Q) | ur — yy € D™ 4"},

T
Hmwmfﬁénmmﬁ@ﬁ

+ /Q (|'LLT(£C)|2 + e TAN (ugp — yf)(x)\2) dx) 1/2.

With this framework, Theorem 1.1 at once gives the following new result on a
classical problem:
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Theorem 4.1. Let A= —Ay be the Neumann realization of the Laplacian in L2 (€2)
and —A = — div(eq grad -) its extension H'(Q) — Hy ' (Q). When up € La(Q) and
f € Ly(0,T; Hy ' (Q)), then there exists a solution u € Xq of

(55) Oru — div(eq gradu) = f, rru = ur
if and only if the data (f,ur) are given in Yy, i.e. if and only if

T -
(56) up — / eT=92f(s)ds  belongs to  D(e”TAV) = R(eTAN).
0

In the affirmative case, u is uniquely determined in Xy and satisfies the estimate
lullx, < ell(fsur)|lyvy- It is given by the formula, in which all terms belong to Xy,

(57) u(t) = e!Bve T AN (uT - /T e(T_t)Af(t) dt) + /t e(t_s)Af(s) ds.

0 0
Furthermore the difference in (56) equals e” 2N u(0) in Ly(9).

Besides the fact that A = div(eq grad -) appears in the differential equation (in-
stead of A), it is noteworthy that there is no information on the boundary condition.
However, there is at least one simple remedy for this, for it is well known in analytic
semigroup theory, cf. [26, Thm. 4.2.3] and [26, Cor. 4.3.3], that if the source term
f(t) is valued in H and satisfies a global condition of Hélder continuity, that is, for
some o €]0,1[,

(58) sup{\f(t)—f(s)\-|t—s|_”‘O§s<t§T}<oo,

then the integral in (6) takes values in D(A) for 0 < ¢ < T and A fg e~ =9)Af(s)ds
is continuous ]0,7[— H.

When this is applied in the above framework, the additional Hélder continuity
yields u(t) € D(An) = {u € H*Q) | qu = 0} for ¢t > 0, so the homogeneous
Neumann condition is fulfilled and Aw identifies with Aw, as noted after (52).
Therefore one has the following novelty:

Theorem 4.2. Ifup € Ly(Q) and f: [0,T] — L2(Q) is Hélder continuous of some
order o €10,1[, and if up — ys fulfils the criterion (56), then the homogeneous
Neumann heat conduction final value problem (48) has a uniquely determined solu-
tion u in Xo, satisfying u(t) € {u € H*(Q) | Yiu =0} for t >0, and depending
continuously on (f,ur) in Yy. Hence the problem is well posed in the sense of
Hadamard.

It would be desirable, of course, to show the well-posedness in a strong form,
with an isomorphism between the data and solution spaces.

5. FINAL REMARKS

Remark 7. Grubb and Solonnikov [13] systematically treated a large class of ini-
tial-boundary problems of parabolic pseudo-differential equations and worked out
compatibility conditions characterising well-posedness in full scales of anisotropic
Lo-Sobolev spaces (such conditions have a long history in the differential opera-
tor case, going back at least to work of Lions and Magenes [24] and Ladyzenskaya,
Solonnikov and Ural’ceva [22]). Their conditions are explicit and local at the curved
corner I' x {0}, except for half-integer values of the smoothness s that were shown
to require so-called coincidence, which is expressed in integrals over the Cartesian
product of the two boundaries {0} x Q and 0,7 x I'; hence coincidence is also a
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non-local condition. Whilst the conditions of Grubb and Solonnikov are decisive
for the solution’s regularity, condition (9) in Theorem 1.1 is in comparison crucial
for the ezistence question.

Remark 8. Injectivity of the linear map u(0) — u(7T) for the homogeneneous
equation v’ + Au = 0, or equivalently its backwards uniqueness, was proved much
earlier for problems with ¢-dependent sesquilinear forms a(t;u,v) by Lions and
Malgrange [23]. In addition to some Cl-regularity properties in ¢, they assumed
that (the principal part of) a(t;u,v) is symmetric and uniformly V-coercive in the
sense that a(t; v, v)+\||[v]|? > af|v||? for certain fixed A € R, @ > 0and allv € V. In
Problem 3.4 of [23], they asked whether backward uniqueness can be shown without
assuming symmetry (i.e., for non-selfadjoint operators A(t) in the principal case),
more precisely under the hypothesis Ra(t; v, v)+ Al[v||? > a|v||?. The present paper
gives an affirmative answer for the ¢-independent case of their problem.

REFERENCES

[1] Y. Almog and B. Helffer, On the spectrum of non-selfadjoint Schrodinger operators with
compact resolvent, Comm. PDE, 40 (2015), 1441-1466. MR 3355499
[2] H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, Abstract Linear Theory,
Monographs in Mathematics, vol. 89, Birkhauser Boston, Inc., Boston, MA, 1995. MR 1345385
[3] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms
and Cauchy Problems, 2™ ed., Monographs in Mathematics, vol. 96, Birkhauser/Springer
Basel AG, Basel, 2011. MR 2798103
[4] A.-E. Christensen and J. Johnsen, On parabolic final value problems and well-posedness, C.
R. Acad. Sci. Paris, Ser. I, 356 (2018), 301-305. MR 3767600
[5] A.-E. Christensen and J. Johnsen, Final value problems for parabolic differential equations
and their well-posedness, Azioms, 7 (2018), 31.
[6] R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers,
Inc., New York, N.Y., 1953. MR 0065391
[7] E. B. Davies, One-parameter Semigroups, London Mathematical Society Monographs, vol. 15,
Academic Press, Inc., London-New York, 1980. MR 591851
[8] L. Eldén, Approximations for a Cauchy problem for the heat equation, Inverse Problems, 3
(1987), 263-273. MR 913397
[9] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, second
ed., American Mathematical Society, Providence, RI, 2010. MR 2597943
[10] D.S. Grebenkov, B. Helffer and R. Henry, The complex Airy operator on the line with a
semipermeable barrier, STAM J. Math. Anal., 49 (2017), 1844-1894. MR 3654881
[11] D. S. Grebenkov and B. Helffer, On the spectral properties of the Bloch—Torrey operator in
two dimensions, STAM J. Math. Anal., 50 (2018), 622-676. MR 3757099
[12] G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, vol. 252, Springer,
New York, 2009. MR 2453959
[13] G. Grubb and V. A. Solonnikov, Solution of parabolic pseudo-differential initial-boundary
value problems, J. Differential Equations, 87 (1990), 256-304. MR 1072902
[14] B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathemat-
ics, vol. 139, Cambridge University Press, Cambridge, 2013. MR 3027462
[15] I. W. Herbst, Dilation analyticity in constant electric field. I. The two body problem, Comm.
Math. Phys., 64 (1979), 279-298. MR 520094
[16] L. Hérmander, The Analysis of Linear Partial Differential Operators I, Grundlehren der
mathematischen Wissenschaften, Springer Verlag, Berlin, 1983. MR 717035
[17] L. Hormander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques &
Applications, vol. 26, Springer Verlag, Berlin, 1997. MR 1466700
[18] J. Janas, On unbounded hyponormal operators III, Studia Mathematica, 112 (1994), 75-82.
MR 1307601
[19] F. John, Numerical solution of the equation of heat conduction for preceding times, Ann.
Mat. Pura Appl. (4), 40 (1955), 129-142. MR 87224


http://dx.doi.org/10.1080/03605302.2015.1025978
http://dx.doi.org/10.1080/03605302.2015.1025978
http://www.ams.org/mathscinet-getitem?mr=3355499&return=pdf
http://dx.doi.org/10.1007/978-3-0348-9221-6
http://www.ams.org/mathscinet-getitem?mr=1345385&return=pdf
http://dx.doi.org/10.1007/978-3-0348-0087-7
http://dx.doi.org/10.1007/978-3-0348-0087-7
http://www.ams.org/mathscinet-getitem?mr=2798103&return=pdf
http://dx.doi.org/10.1016/j.crma.2018.01.019
http://www.ams.org/mathscinet-getitem?mr=3767600&return=pdf
http://dx.doi.org/10.3390/axioms7020031
http://dx.doi.org/10.3390/axioms7020031
http://www.ams.org/mathscinet-getitem?mr=0065391&return=pdf
http://www.ams.org/mathscinet-getitem?mr=591851&return=pdf
http://dx.doi.org/10.1088/0266-5611/3/2/009
http://www.ams.org/mathscinet-getitem?mr=913397&return=pdf
http://dx.doi.org/10.1090/gsm/019
http://www.ams.org/mathscinet-getitem?mr=2597943&return=pdf
http://dx.doi.org/10.1137/16M1067408
http://dx.doi.org/10.1137/16M1067408
http://www.ams.org/mathscinet-getitem?mr=3654881&return=pdf
http://dx.doi.org/10.1137/16M1088387
http://dx.doi.org/10.1137/16M1088387
http://www.ams.org/mathscinet-getitem?mr=3757099&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2453959&return=pdf
http://dx.doi.org/10.1016/0022-0396(90)90003-8
http://dx.doi.org/10.1016/0022-0396(90)90003-8
http://www.ams.org/mathscinet-getitem?mr=1072902&return=pdf
http://www.ams.org/mathscinet-getitem?mr=3027462&return=pdf
http://dx.doi.org/10.1007/BF01221735
http://www.ams.org/mathscinet-getitem?mr=520094&return=pdf
http://dx.doi.org/10.1007/978-3-642-96750-4
http://www.ams.org/mathscinet-getitem?mr=717035&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1466700&return=pdf
http://dx.doi.org/10.4064/sm-112-1-75-82
http://www.ams.org/mathscinet-getitem?mr=1307601&return=pdf
http://dx.doi.org/10.1007/BF02416528
http://www.ams.org/mathscinet-getitem?mr=87224&return=pdf

36

JON JOHNSEN

[20] J. Johnsen, Characterization of log-convex decay in non-selfadjoint dynamics, Elec. Res. Ann.

Math., 25 (2018), 72-86. MR 3915539

[21] J. Johnsen, A class of well-posed parabolic final value problems, Appl. Num. Harm. Ana.,

Birkhduser (to appear). arXiv:1904.05190.

[22] O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations

of Parabolic Type, Translations of mathematical monographs, vol. 23, Amer. Math. Soc., 1968.
MR 0241822

[23] J.-L. Lions and B. Malgrange, Sur 'unicité rétrograde dans les problémes mixtes parabolic,

Math. Scand., 8 (1960), 227-286. MR 140855

[24] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications.

Vol. I, Springer-Verlag, New York-Heidelberg, 1972, Translated from the French by P. Ken-
neth, Die Grundlehren der mathematischen Wissenschaften, Band 181. MR 0350177

[25] W. L. Miranker, A well posed problem for the backward heat equation, Proc. Amer. Math.

Soc., 12 (1961), 243-247. MR 120462

[26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,

27)
(28]

29]
(30]
(31]

(32]

Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486

J. Rauch, Partial Differential Equations, Springer, 1991. MR 1223093

L. Schwartz, Théorie Des Distributions, revised and enlarged ed., Hermann, Paris, 1966. MR
0209834

R. E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl., 47
(1974), 563-572. MR 352644

H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, vol. 6, Pitman,
Boston, Mass., 1979. MR 533824

R. Temam, Navier—Stokes Equations, Theory and Numerical Analysis, Elsevier Science Pub-
lishers B.V., Amsterdam, 1984. MR 769654

K. Yosida, Functional Analysis, 6" ed., Springer-Verlag, Berlin-New York, 1980. MR 617913

JON JOHNSEN, DEPARTMENT OF MATHEMATICS, AALBORG UNIVERSITY, SKJERNVEJ 4A, DK-

9220 AALBORG ST, DENMARK

E-mail address: jjohnsen@math.aau.dk


http://dx.doi.org/10.3934/era.2018.25.008
http://www.ams.org/mathscinet-getitem?mr=3915539&return=pdf
http://arxiv.org/pdf/1904.05190
http://www.ams.org/mathscinet-getitem?mr=0241822&return=pdf
http://dx.doi.org/10.7146/math.scand.a-10611
http://www.ams.org/mathscinet-getitem?mr=140855&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0350177&return=pdf
http://dx.doi.org/10.1090/S0002-9939-1961-0120462-2
http://www.ams.org/mathscinet-getitem?mr=120462&return=pdf
http://dx.doi.org/10.1007/978-1-4612-5561-1
http://www.ams.org/mathscinet-getitem?mr=710486&return=pdf
http://dx.doi.org/10.1007/978-1-4612-0953-9
http://www.ams.org/mathscinet-getitem?mr=1223093&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0209834&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0209834&return=pdf
http://dx.doi.org/10.1016/0022-247X(74)90008-0
http://www.ams.org/mathscinet-getitem?mr=352644&return=pdf
http://www.ams.org/mathscinet-getitem?mr=533824&return=pdf
http://www.ams.org/mathscinet-getitem?mr=769654&return=pdf
http://www.ams.org/mathscinet-getitem?mr=617913&return=pdf

	1. Introduction
	2. Preliminaries: Injectivity of analytic semigroups
	3. Proof of Theorem 1.1
	3.1. Concerning Proposition 1
	3.2. On the proof of the Duhamel formula
	3.3. Concerning Theorem 1.1

	4. The heat problem with the Neumann condition
	5. Final remarks
	References

