
ELECTRONIC RESEARCH ARCHIVE doi:10.3934/era.2019007
Volume 27, Pages 7–19 (September 12, 2019)
eISSN: 2688-1594 AIMS (2019)

ON THE TIME DECAY IN PHASE–LAG THERMOELASTICITY

WITH TWO TEMPERATURES

ANTONIO MAGAÑA, ALAIN MIRANVILLE AND RAMÓN QUINTANILLA

(Communicated by Laurence Cherfils)

Abstract. The aim of this paper is to study the time decay of the solutions

for two models of the one-dimensional phase-lag thermoelasticity with two tem-
peratures. The first one is obtained when the heat flux vector and the inductive

temperature are approximated by a second-order and first-order Taylor polyno-

mial, respectively. In this case, the solutions decay in a slow way. The second
model that we consider is obtained taking first-order Taylor approximations for

the inductive thermal displacement, the inductive temperature and the heat

flux. The decay is, therefore, of exponential type.

1. Introduction

The Fourier formulation to describe heat conduction is widely used by mathe-
maticians, physicists and engineers. For this model, the heat flux is proportional to
the gradient of the temperature. Unfortunately, this formulation jointly with the
usual energy equation

(1) c θ̇ + div q = 0, (c > 0)

leads to the instantaneous propagation of heat, a drawback of the model because
this fact is incompatible with real observations. In the above equation q = (qi) is
the heat flux vector and θ is the temperature. In order to overcome this drawback,
alternative proposals have been stated.

In 1995, Tzou proposed a theory in which the heat flux and the gradient of the
temperature have a delay in the constitutive equations [32]. When this consideration
is taken into account, it is usual to speak of phase-lag theories. In that case, the
constitutive equations are given by:

(2) qi(x, t+ τ1) = −kθ,i(x, t+ τ2), k > 0,

where τ1 and τ2 are the delay parameters which are assumed to be positive. As
usual, the notation θ,i means the derivative of θ with respect to the variable xi, and
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repeated subscripts means summation. The derivative with respect to the time is
denoted using a dot over the function.

This equation suggests that the temperature gradient established across a mate-
rial volume at position x and time t+ τ2 results in a heat flux to flow at a different
time t + τ1. These delays can be understood in terms of the microstructure of the
material. This theory is usually known as dual-phase-lag.

In 2007, Choudhuri [7] suggested an extension of Tzou’s theory in which the heat
flux is described using the following constitutive equations:

(3) qi(x, t+ τ1) = −k1α,i(x, t+ τ3)− k2θ,i(x, t+ τ2),

where α̇ = θ. The variable α is called the thermal displacement, and was intro-
duced by Green and Naghdi [10, 11]. The parameter τ3 is another delay parameter.
Choudhuri’s version is commonly known as three-dual-phase-lag.

It is worth noting that both proposals, those of Tzou and Choudhuri, lead to
ill-posed problems in the sense of Hadamard. To be more precise, it has been
shown that combining equation (2) (or (3)) with the energy equation (1) leads to
the existence of a sequence of elements in the point spectrum such that its real part
tends to infinity [8].

These two aforementioned theories have several derivations when the heat flux
and the gradients of the temperature and the thermal displacement are replaced
by Taylor approximations. In fact, one can think that Choudhuri’s proposal aims
to recover Green and Naghdi theories when different Taylor approximations are
considered. This new approach gives rise to different equations (depending on the
selected Taylor approximation) to describe heat conduction that have been analyzed
by many authors (see, for example, [1, 3, 12, 19, 23, 26, 27, 28, 29, 30, 31, 34]).

In order to obtain a heat conduction theory with delays but without such an
explosive behavior, Quintanilla [24, 25] combined the delay parameters of Tzou
and Choudhuri with the two-temperatures theory proposed by Chen and Gurtin
[4, 5, 6, 33]. The basic constitutive equations read

(4) qi(x, t+ τ1) = −k1β,i(x, t+ τ3)− k2T,i(x, t+ τ2),

where α = β −m∆β, θ = T −m∆T and m is a positive constant.
This theory has also been extended to the thermoelasticity context [24, 25]. To

do so, one must assume the equation of motion

(5) tji,j = ρüi,

the energy equation

(6) η̇ = −qi,i

and the constitutive equations

(7)
tji = 2µeij + λerrδij + a θδij
η = −a eii + cθ

where tji represents the stress tensor, η is the entropy, (ui) is the displacement
vector, eij is the strain tensor, λ and µ are the Lamé constants and a is related
with the thermal expansion constant and ρ and c are the mass density and the
thermal capacity, respectively.

It is worth noting that these new thermomechanical theories have attracted a lot
of attention recently [2, 9, 14, 20, 21, 34].
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In this work we restrict our attention to the homogeneous one-dimensional case.
Therefore, the system of equations that we want to study is given by

(8)
tx = ρü
η̇ = −qx

with the following constitutive equations:

(9)
q(t+ τ1) = −k1βx(t+ τ3)− k2Tx(t+ τ2)
t = µux + aθ
η = −aux + cθ

In this paper we assume that the delay parameters τ1, τ2 and τ3 are nonnegative
and, in each section, we will impose several conditions on them to guarantee the
stability or instability of the solutions. A similar assumption is made on k1 and k2.

In a recent paper [15], it was proved that the Lord-Shulman thermoelasticity
combined with the two-temperatures theory leads to the slow decay of the solu-
tions, that is: the decay cannot be controlled in a uniform way by means of a
negative exponential. Nevertheless, the Green-Lindsay thermoelastic theory with
two-temperatures leads to the exponential decay. The aim of this paper is to con-
tinue this line of research. To be more precise, in this work we consider two third-
order in time heat conduction models with two temperatures. The first one comes
from the dual-phase-lag theory (see approach [24]), and the other one from the
three-dual-phase-lag theory (see [25]). We prove the slow decay of solutions for the
first model and the exponential decay for the second.

The plan of the paper is the following. In the next section we consider the dual-
phase-lag thermoelasticity taking a second-order Taylor approximation for the heat
flux and a first-order approximation for the inductive temperature. We first prove
the well-posedness of the problem using the semigroup arguments in a convenient
Hilbert space. Then we show the slow decay of the solutions by proving that el-
ements of the point spectrum can be found as close as desired to the imaginary
axis. In Section 3 we study the three-dual-phase-lag thermoelasticity introducing
first-order Taylor approximations for the heat flux, for the inductive thermal dis-
placement and for the inductive temperature. By using semigroup arguments, we
prove again the existence and uniqueness of solutions. Next we show the exponential
decay of the solutions by means of the semigroup of linear operators theory.

2. First case: Dual-phase-lag

In this first case we assume that k1 = 0 and k2 > 0 in the basic constitutive
equations. Notice that taking k1 = 0 is equivalent to consider the dual-phase-lag
case. We take a second-order Taylor approximation for the heat flux qi and a
first-order Taylor approximation for the inductive temperature T .

(10)
q(x, t+ τ1) ≈ q(x) + τ1q̇(x) +

τ2
1

2 q̈(x),

T (x, t+ τ2) ≈ T (x) + τ2Ṫ (x).

Replacing the above expressions into the constitutive equations, we obtain the fol-
lowing system of equations for our model:

(11)


ρü = µuxx + a θx

c
(
θ̇ + τ1θ̈ +

τ2
1

2

...
θ
)

= k2Txx + k2τ2Ṫxx + a
(
u̇x + τ1üx +

τ2
1

2

...
ux

)
θ = T −mTxx.
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Here u is the displacement, θ is the temperature and T is the inductive temper-
ature. As usual, ρ represents the mass density, µ is the elasticity, c is the thermal
capacity, k2 plays a similar role to the thermal conductivity, a is the coupling co-
efficient between the displacement and the temperature, τ1 and τ2 are two delay
parameters and m is a positive constant related with the two temperatures theory.
We also assume that 2τ2 > τ1. This assumption comes from a previous work and
it is related with the exponential stability of the heat equation (see [17]). To be
precise, the exponential stability of solutions was proved assuming this condition.
It would be interesting to know if this property is conserved when the elasticity is
also considered.

We study the system in [0, π]× [0,∞).
To have a well-posed problem we need to impose initial and boundary conditions.

We assume null Dirichlet boundary conditions, that is,

(12) u(0, t) = u(π, t) = T (0, t) = T (π, t) = 0 for t ∈ [0,∞).

As far as the initial conditions are concerned, we assume that

(13)
u(x, 0) = u0(x), u̇(x, 0) = v0(x),

θ(x, 0) = θ0(x), θ̇(x, 0) = φ0(x), θ̈(x, 0) = ψ0(x) for x ∈ (0, π).

We study the problem determined by system (11), the boundary conditions (12)
and the initial conditions (13).

We will transform the given problem into an abstract problem involving a con-
venient Hilbert space.

First, we note that Id − m∂xx : T → T − m∂xxT = θ is an isomorphism on
W 2,2 ∩W 1,2

0 and takes values in L2, where W 2,2,W 1,2
0 and L2 are the usual Hilbert

spaces. We shall denote by Φ(θ) = T the inverse operator.
From the definition of θ and in view of the boundary conditions we see that

(14) ‖θ‖2 = ‖T‖2 + 2m‖Tx‖2 +m2‖Txx‖2.

Therefore, the L2 norm of θ is equivalent to the W 2,2 norm of T .

2.1. On the well-posedness. Let us denote v = u̇, φ = θ̇ and ψ = φ̇. We
introduce also the following notation:

f̂ = f + τ1ḟ +
τ2
1

2
f̈ .

Therefore, system (11) may be written as

(15)



˙̂u = v̂
˙̂v = 1

ρ

(
µûxx + a(θx + τ1φx +

τ2
1

2 ψx)
)

θ̇ = φ

φ̇ = ψ

ψ̇ = 2
cτ2

1
(k2Φ(θ)xx + k2τ2Φ(φ)xx) + 2a

cτ2
1
v̂x − a

τ2
1
φ− 2

τ1
ψ

If the above system is solved, then we will find u from û solving a second-order
ordinary differential equation.
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To ease the notation, we remove the hat from variables u and v and rewrite the
system as follows:

(16)



u̇ = v

v̇ = 1
ρ

(
µuxx + a(θx + τ1φx +

τ2
1

2 ψx)
)

θ̇ = φ

φ̇ = ψ

ψ̇ = 2
cτ2

1
(k2Φ(θ)xx + k2τ2Φ(φ)xx) + 2a

cτ2
1
vx − a

τ2
1
φ− 2

τ1
ψ

To prove the existence and uniqueness of solutions we consider the Hilbert space

H = {U = (u, v, θ, φ, ψ) : u ∈W 1,2
0 , v, θ, φ, ψ ∈ L2}

with the inner product defined by

〈U,U∗〉 =
1

2

∫ π

0

(
ρvv∗ + µuxu∗x + c(θ + τ1φ+

τ2
1

2
ψ)(θ∗ + τ1φ∗ +

τ2
1

2
ψ∗)

+ k2(τ1 + τ2)
(

Φ(θ)xΦ(θ∗)x +mΦ(θ)xxΦ(θ∗)xx

)
+
k2τ

2
1 τ2
2

(
Φ(φ)xΦ(φ∗)x +mΦ(φ)xxΦ(φ∗)xx

)
+
k2τ

2
1

2(
Φ(θ)xΦ(φ∗)x + Φ(φ)xΦ(θ∗)x +mΦ(θ)xxΦ(φ∗)xx +mΦ(φ)xxΦ(θ∗)xx

))
dx.

(17)

Here, and from now on, the bar means the conjugate complex. Notice that the
norm induced by this inner product is equivalent to the usual one in H.

To propose a synthetic expression to the above problem, we define the matrix
operator:

(18) A =


0 I 0 0 0

µ
ρD

2 0 a
ρI

aτ1
ρ D

aτ2
1

2ρ D

0 0 0 I 0
0 0 0 0 I

0 2a
cτ2

1
D 2k2

cτ2
1
D2Φ 2k2τ2

cτ2
1
D2Φ− 2

τ2
1
I − 2

τ1
I

 .

Here I is the identity operator and D denotes the derivative with respect to x.
Therefore, our problem can be written as

(19)
dU

dt
= AU, U(0) = (u0, v0, θ0, φ0, ψ0).

Notice that the domain of A is the set D = {U ∈ H such that AU ∈ H}, which
is a dense subspace of H.

Lemma 2.1. The operator A is dissipative. That is:

<〈AU,U〉 ≤ 0

for every U ∈ D.
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Proof. If we take into account the evolution equations and the boundary conditions
we see that

<〈AU,U〉 = −k2

∫ π

0

(
|Φ(θ)x|2 +m|Φ(θ)xx|2

)
dx

− k2τ1
2

(2τ2 − τ1)

∫ π

0

(
|Φ(φ)x|2 +m|Φ(φ)xx|2

)
dx.

As we assume that 2τ2 > τ1, the lemma is proved. �

Lemma 2.2. 0 belongs to the resolvent of A.

Proof. We have to prove that for any F = (f1, f2, f3, f4, f5) ∈ H the equation
AU = F has a solution. If we write this equation term by term we get:

(20)

v = f1

µuxx + a
(
θx + τ1φx +

τ2
1

2 ψx
)

= ρf2

φ = f3

ψ = f4

k2Φ(θ)xx + k2τ2Φ(φ)xx + avx − cφ− cτ1ψ =
cτ2

1

2 f5


We obtain v, φ and ψ straight away. Therefore, we have to solve the system given
by

(21)
µuxx + aθx = ρf2 − aτ1f3,x − a τ

2
1

2 f4,x

k2Φ(θ)xx =
cτ2

1

2 f5 − af1,x + cf3 + cτ1f4 − k2τ2Φ(f3)xx

}
If we assume homogeneous boundary conditions on Φ(θ), we can solve the second
equation of the above system. Once we have θ, substituting it in the first equation
we obtain u.

It is also clear that the inequality ‖U‖ ≤ K‖F‖ holds for a positive constant K
independent of U . �

As a consequence of the above lemmas and the Lumer–Phillips corollary to the
Hille–Yosida Theorem (see [18], page 136) we obtain the well–posedness.

Theorem 2.3. The operator A generates a contractive semigroup in H, and for
each U(0) ∈ D there exists a unique solution U(t) ∈ C1([0,∞),H) ∩ C0([0,∞),D)
to the problem determined by the system (11) with boundary conditions (12) and
initial conditions (13).

Remark 1. The continuous dependence of solutions on initial data and supply
terms (in case they were assumed) can also be obtained.

These facts prove that the problem is well-posed in the sense of Hadamard.

Remark 2. We could have also considered the problem determined by system (11)
with the following boundary conditions:

(22) u(0, t) = u(π, t) = Tx(0, t) = Tx(π, t) = 0 for t ∈ [0,∞).

In this case, the operator Φ acts on

L2
? =

{
θ ∈ L2 :

∫ π

0

θdx = 0

}
,

and takes values in W 2,2 ∩L2
? ∩ {T : Tx(0) = Tx(π) = 0}. Nevertheless, Φ is still an

isomorphism and the equality (14) also holds.
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2.2. On the stability. We will prove that a uniform rate of decay of exponential
type cannot be obtained for the solutions of system (11) with the initial conditions
(13) and the boundary conditions (22).

Theorem 2.4. Let (u, T ) be a solution of the problem determined by (11), (13)
and (22). Then (u, T ) decays in a slow way.

Proof. We will prove that there exists a solution of system (11) of the form

u = K1e
ωt sin(nx), T = K2e

ωt cos(nx),

such that <(ω) > −ε for all positive ε. Hence, a solution ω as close as desired to
the imaginary axis can be found. Imposing that u and T are as above and replacing
them in (11) the following homogeneous system in the unknowns K1 and K2 is
obtained: (

A1 A2

A3 A4

)(
K1

K2

)
=

(
0
0

)
where

A1 = an
(
mn2 + 1

)
A2 = µn2 + ω2ρ
A3 = cω

(
mn2 + 1

) (
τ2
1ω

2 + 2τ1ω + 2
)

+ 2k2n
2(τ2ω + 1)

A4 = −anω
(
τ2
1ω

2 + 2τ1ω + 2
)

This system will have nontrivial solutions if and only if the determinant of the
coefficients matrix is equal to zero. We denote by p(x) the determinant once ω is
replaced by x. Straightforward calculations (made using Mathematica) show that
p(x) is a fifth degree polynomial:

p(x) = a0x
5 + a1x

4 + a2x
3 + a3x

2 + a4x+ a5,

where
a0 =cτ2

1 ρ(mn2 + 1)

a1 =2cτ1ρ(mn2 + 1)

a2 =n2τ2
1

(
mn2 + 1

) (
a2 + cµ

)
+ 2%

(
cmn2 + c+ k2n

2τ2
)

a3 =2n2
(
τ1
(
mn2 + 1

) (
a2 + cµ

)
+ k2%

)
a4 =2n2

((
mn2 + 1

) (
a2 + cµ

)
+ k2µn

2τ2
)

a5 =2k2µn
4

To prove that p(x) has roots as close as we want to the complex axis, we will
show that for any ε > 0 there are roots of p(x) located on the right-hand side of
the vertical line <(z) = −ε. This fact will be shown if the polynomial p(x− ε) has
a root with positive real part. To prove that, we use the Routh–Hurwitz theorem.
It assesses that, if b0 > 0, then all the roots of polynomial

b0x
5 + b1x

4 + b2x
3 + b3x

2 + b4x+ b5

have negative real part if, and only if, all the leading minors of the matrix
b1 b0 0 0 0
b3 b2 b1 b0 0
b5 b4 b3 b2 b1
0 0 b5 b4 b3
0 0 0 0 b5


are positive. We denote by Li, for i = 1, 2, 3, 4, 5, the leading minors of this matrix.
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Direct computations show that the second leading minor, L2, is a sixth degree
polynomial on n:

L2 = −2cm2τ4
1 ερ

(
a2 + cµ

)
n6 +R(n),

where R(n) is a polynomial on n of degree 4. Thus, for n large enough, L2 is
negative and p(x−ε) has a root with positive real part. (We have used Mathematica
to compute L2.)

This argument shows that the solutions of system (11) decay in a slowly way, or,
in other words, that a uniform rate of decay of exponential type for all the solutions
can not be obtained. �

We want to point out that this result differs considerably from the one known
for the usual dual-phase-lag thermoelasticity: if only one temperature is considered,
the solutions decay in an exponential way [26]. Let us also highlight the following
fact. If in the second equation of system (11) variable T is replaced by θ, then the
resulting equation would be hyperbolic and, therefore, in some sense we can say
that the second equation of system (11) is a combination of an hyperbolic equation
with the two temperatures theory. We have seen that this combination, when it is
coupled in the usual way with the elasticity, drives the solutions of the system to
the slow decay. This result was already observed in [15] for another combination of
an hyperbolic equation with the two temperatures theory.

3. Second case: Three-dual-phase-lag

We consider now another system. We assume that k1 > 0 and k2 > 0. We take a
first-order Taylor approximation for qi, for β and for T . Therefore, we assume that

(23)

q(x, t+ τ1) ≈ q(x) + τ1q̇(x),

β(x, t+ τ3) ≈ β(x) + τ3β̇(x),

T (x, t+ τ2) ≈ T (x) + τ2Ṫ (x).

Substituting these expressions into the constitutive equations, we obtain the
following system:

(24)


ρü = µuxx + a θx

c
(
θ̈ + τ1

...
θ
)

= k1Txx + τ4Ṫxx + k2τ2T̈xx + a
(
üx + τ1

...
ux

)
θ = T −mTxx,

where τ4 = τ3k1 + k2.
As in the previous case, ρ, µ and m are positive. The delay parameters are also

positive and τ4 − k1τ1 > 0. This last assumption comes again from the exponential
stability of the heat equation (see [17]). The sign of a is not relevant, but it must
be different from zero. The parameters k1 and k2 are also assumed positive.

We assume the same boundary and initial conditions as in the previous section.

As before, we introduce suitable notation. In this case we write f̂ = f + τ1ḟ .
Moreover, we use w = v̇. Therefore, we consider the system given by

(25)



˙̂v = ŵ
˙̂w = 1

ρ (µv̂xx + a(φx + τ1ψx))

θ̇ = φ

φ̇ = ψ

ψ̇ = 1
cτ1

(k1Φ(θ)xx + τ4Φ(φ)xx + k2τ2Φ(ψ)xx)) + a
cτ1
ŵx − 1

cψ
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If this system is solved, then we can also find v by solving an ordinary differential
equation.

To ease the notation we remove the hat from the variables and we concentrate
in the following system of equations:

(26)


v̇ = w
ẇ = 1

ρ (µvxx + a(φx + τ1ψx))

θ̇ = φ

φ̇ = ψ

ψ̇ = 1
cτ1

(k1Φ(θ)xx + τ4Φ(φ)xx + k2τ2Φ(ψ)xx)) + a
cτ1
wx − 1

cψ

3.1. On the well-posedness. To prove the existence and uniqueness of solutions
we consider the Hilbert space

H = {U = (v, w, θ, φ, ψ) : v ∈W 1,2
0 , w, θ, φ, ψ ∈ L2}

with the inner product defined by

〈U,U∗〉 =
1

2

∫ π

0

(
ρww∗ + µvxv∗x + c(φ+ τ1ψ)(φ∗ + τ1ψ∗)

+ k1

(
Φ(θ)x + τ1Φ(φ)x

)(
Φ(θ∗)x + τ1Φ(φ∗)x

)
+mk1

(
Φ(θ)xx + τ1Φ(φ)xx

)(
Φ(θ∗)xx + τ1Φ(φ∗)xx

)
+ (τ1(τ4 − k1τ1) + k2τ2)

(
Φ(φ)xΦ(φ∗)x +mΦ(φ)xxΦ(φ∗)xx

))
dx.

(27)

Again, this inner product defines a norm which is equivalent to the usual norm
in H.

We abuse the notation a little bit and denote the following matrix operator again
by A:

(28) A =


0 I 0 0 0

µ
ρD

2 0 0 a
ρD

aτ1
ρ D

0 0 0 I 0
0 0 0 0 I

0 a
cτ1
D k1

cτ1
D2Φ τ4

cτ1
D2Φ k2τ2

cτ1
D2Φ− 1

c I

 .

Therefore, our problem can be written as

(29)
dU

dt
= AU, U(0) = (v0, w0, θ0, φ0, ψ0).

Notice that the domain of A is the set D = {U ∈ H such that AU ∈ H}, which
is a dense subspace of H.

Lemma 3.1. The operator A is dissipative. That is:

<〈AU,U〉 ≤ 0

for every U ∈ D.

Proof. In view of the evolution equations and the boundary conditions we see that

<〈AU,U〉 =− (τ4 − k1τ1)

∫ π

0

(
|Φ(φ)x|2 +m|Φ(φ)xx|2

)
dx

− k2τ1τ2

∫ π

0

(
|Φ(ψ)x|2 +m|Φ(ψ)xx|2

)
dx.

As we assume that τ4 > k1τ1, k2, τ1 and τ2 positive, the lemma is proved. �
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Lemma 3.2. 0 belongs to the resolvent of A.

Proof. We have to prove that for any F = (f1, f2, f3, f4, f5) ∈ H the equation
AU = F has a solution. If we write this equation term by term we get:

(30)

w = f1

µvxx + a
(
φx + τ1ψx

)
= ρf2

φ = f3

ψ = f4

k1Φ(θ)xx + τ4Φ(φ)xx + k2τ2Φ(ψ)xx + awx − τ1ψ = cτ1f5


As in the previous section, we obtain w, φ and ψ straight away. Therefore, we have
to solve the system given by

(31)
µvxx = ρf2 − a(f3,x + τ1f4,x)

k1Φ(θ)xx = cτ1f5 − af1,x + τ1f4 − τ4Φ(f3)xx − k2τ2Φ(f4)xx

}
If we assume homogeneous Dirichlet boundary conditions, we can solve this system
as in the previous case. Hence, we can get θ by means of the isomorfism. Again,
an inequality of the type ‖U‖ ≤ K‖F‖ can be obtained. �

As a consequence of the above lemmas and the Lumer–Phillips corollary to the
Hille–Yosida Theorem we obtain the well–posedness in the sense of Hadamard.

Theorem 3.3. The operator A generates a contractive semigroup, S(t) = {etA},
in H, and for each U(0) ∈ D there exists a unique solution U(t) ∈ C1([0,∞),H) ∩
C0([0,∞),D) to the problem determined by the system (24) with boundary condi-
tions (12) and initial conditions (13).

3.2. On the stability. We have now the basic tools to prove the main result of
this section. Before doing this, we recall the caractherization stated in the book of
Liu and Zheng that ensures the exponential decay (see [13], [16] or [22]).

Theorem 3.4. Let S(t) = {eAt}t≥0 be a C0-semigroup of contractions on a Hilbert
space. Then S(t) is exponentially stable if and only if the following two conditions
are satisfied:

(i) iR ⊂ ρ(A), (here ρ(A) means the resolvent of A).
(ii) lim

|λ|→∞
‖(iλI − A)−1‖L(H) <∞.

Theorem 3.5. The operator A defined at (28) generates a semigroup which is
exponentially stable.

Proof. Following the arguments given by Liu and Zheng ([16], page 25), the proof
consists of the following steps:

(i) Since 0 is in the resolvent of A, using the contraction mapping theorem,
we have that for any real λ such that |λ| < ||A−1||−1, the operator iλI − A =
A(iλA−1 −I) is invertible. Moreover, ||(iλI −A)−1|| is a continuous function of λ
in the interval (−||A−1||−1, ||A−1||−1).

(ii) If sup{||(iλI − A)−1||, |λ| < ||A−1||−1} = M < ∞, then by the contraction
theorem, the operator

iλI − A = (iλ0I − A)
(
I + i(λ− λ0)(iλ0I − A)−1

)
,

is invertible for |λ − λ0| < M−1. It turns out that, by choosing λ0 as close to
||A−1||−1 as we can, the set {λ, |λ| < ||A−1||−1 +M−1} is contained in the resolvent
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of A and ||(iλI −A)−1|| is a continuous function of λ in the interval (−||A−1||−1−
M−1, ||A−1||−1 +M−1).

(iii) Let us assume that the intersection of the imaginary axis and the spectrum is
not empty. Then there exists a real number $ with ||A−1||−1 ≤ |$| <∞ such that
the set {iλ, |λ| < |$|} is in the resolvent of A and sup{||(iλI −A)−1||, |λ| < |$|} =
∞. Therefore, there exist a sequence of real numbers λn with λn → $, |λn| < |$|
and a sequence of vectors Un = (vn, wn, θn, φn, ψn) in the domain of the operator
A and with unit norm such that

(32) ‖(iλnI − A)Un‖ → 0.

If we write (32) in components, we obtain the following conditions:

iλnvn − wn → 0, in W 1,2(33)

iλnwn −
1

ρ

(
µD2vn + a(Dφn + τ1Dψn)

)
→ 0, in L2(34)

iλnθn − φn → 0, in L2(35)

iλnφn − ψn → 0, in L2(36)

iλnψn −
1

cτ1

(
k1D

2Φ(θn) + τ4D
2Φ(φn) + k2τ2D

2Φ(ψn) + aDwn

)
+

1

c
ψn → 0, in L2

(37)

In view of the dissipative term of the operator (see the proof of Lemma 3.1), we see
that

DΦ(φn), D2Φ(φn), DΦ(ψn), D2Φ(ψn)→ 0 in L2.

Therefore, from (14) we conclude that φn → 0 inW 2,2 and, consequently, θn, ψn → 0
in L2. Now, from (37) we obtain

iλnψn −
a

cτ1
Dwn → 0, in L2,

which, after simplifying, implies that

iψn −
a

cτ1
Dvn → 0, in L2.

Then, as a is different from 0, Dvn → 0 in L2. Finally, from (33) and (34) we
conclude that wn → 0 in W 1,2. These behaviors contradict the hypothesis that Un
has unit norm.

We can prove the second condition of the Theorem 3.4 following a similar argu-
ment. �

Remark 3. The analysis proposed in this section can be easily adapted to the
boundary conditions

u(0, t) = u(π, t) = Tx(0, t) = Tx(π, t) = 0.

That means that we can obtain the existence, the uniqueness and the exponential
decay of the solutions for the problem determined by system (24) with the initial
conditions given by (13) and the above boundary conditions.

We also point out that this behavior differs from the one obtained in the previous
section. This is because now the heat conduction is described by the combination
of a parabolic equation with the two temperatures theory.
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4. Conclusions

In this paper we have analised two systems of equations for the phase-lag ther-
moelasticicty with two temperatures, theory which is currently being studied from
different points of view. We have focused on the decay of solutions. To be precise,
we have analysed the following situations:

• Dual-phase-lag. We have introduced a second order Taylor approximation
for the heat flux and a first-order approximation for the inductive tempera-
ture and we have obtained system (11). The second equation of this system
can be seen as a combination of a hyperbolic equation with the two tem-
peratures theory. We have proved that the solutions of this thermoelastic
system of equations decay in a slow way.
• Three-dual-phase-lag. In this case we have considered first order Taylor

approximations for the heat flux, for the inductive temperature and for
the inductive thermal displacement, and we have obtained system (24). In
this case, the second equation can be seen as the combination of a para-
bolic equation with the two temperatures theory. We have proved that the
solutions of this thermoelastic system of equations decay exponentially.

These results seem to suggest a different behavior for the decay of the solutions
depending on the type of equation (hyperbolic or parabolic) that is combined with
the two temperatures theory.
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