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Abstract: Modulation classification (MC) is a critical task in wireless communication systems,
enabling the identification of the modulation class in the received signals. In this paper, we analyzed a
novel multi-layer convolutional neural network (CNN) to extract hierarchical features directly from the
raw baseband samples. Moreover, we compared the training and testing accuracy of the CNN model
for various decimation rates, input sample size and the number of convolutional layers. The results
showed that the three-layer CNN model provided better classification accuracy with less computation
cost. Furthermore, we observed that the MC performance of the proposed CNN model was better than
the other deep learning (DL) and cumulant-based models.
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1. Introduction

Modulation classification (MC) has been found to be a fundamental task in wireless communication
systems that involves identifying the modulation class used to encode information in the received
signal. It plays a crucial part in various applications, including signal analysis, spectrum monitoring [1]
and cognitive radio (CR) [2]. The primary goal of MC is to blindly recognize the modulation types of
the received signal based on characteristics, such as amplitude, phase and frequency variations. This
enables the receivers to properly demodulate the signal and extract the transmitted information. To
perform MC, several techniques and algorithms have been developed [3]. These methods leverage
different features extracted from the received signal and employ various classification algorithms, such
as machine learning and statistical analysis. The key steps involved in MC are as follows [4]:
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• Signal Preprocessing: The received signal is typically processed to remove noise, interference,
and other unwanted effects that may affect the classification accuracy. This processing technique
involves filtering, signal normalization and sampling rate adjustment.
• Feature Extraction: Relevant features are extracted from the preprocessed signal to capture

its unique characteristics. Commonly used features include statistical moments, power spectral
density, cyclic auto-correlation and higher-order cumulants. These features aim to capture the
temporal and spectral properties of the received signal.
• MC: Once the feature set is obtained, the model generation process is carried out by either

the likelihood-based or the feature-based method. The different machine learning (ML) / deep
learning (DL) algorithms have been adopted to perform the classification task. These algorithms
are trained using labeled data to learn the patterns and characteristics associated with each
modulation class.
• Performance Evaluation: The accuracy of the MC system is assessed using performance metrics

such as classification accuracy, confusion matrix and detection probability. These metrics provide
insights into the system’s ability to correctly classify different modulation classes.

In [5], the authors suggested that the MC can be performed by using ML methods such as the
random forest (RF), support vector machine (SVM) and neural network (NN). Further, in DL, salient
features have been extracted from the received signals [6], such as power spectral density, instantaneous
voltage, phase and frequency for MC. The obtained features are suffering from channel impairments
and fading environments that may lead to a major challenge for recognizing modulation type under
different channel conditions [7].

The improvement in classification accuracy has been achieved at the expense of increased
computational complexity by the traditional convolutional neural network (CNN) [8] models such as
Alexnet, Inception [9] and GoogleNet [10]. Similarly, the channel state information (CSI) parameters,
such as rank indicator (RI), delay spread (DS), and signal to interference noise ratio (SINR), have been
classified with higher accuracy than the third generation partnership project (3GPP) recommended
value by using a CNN model [11]. The authors in [9] suggest that the combination of the Inception and
ResNet network model has a faster convergence rate among all traditional CNN models. Similarly, the
hybrid residual and long short term memory (LSTM)-based model has been developed to improve the
classification accuracy at low signal to noise ratio (SNR) scenarios [12]. The automatic modulation
recognition (AMR)-based NN [13] and CNN [14] have been implemented on field programmable
gate arrays (FPGA) for dynamic spectrum access (DSA) and CR systems with a latency of 8µs.
Moreover, the LSTM-based channel estimator has been demonstrated to detect received orthogonal
frequency division multiplexing (OFDM) signals [15]. In [16], the authors proposed an adversarial
transfer learning architecture (ATLA), which performs the domain-level asymmetric mapping with an
accuracy of 17.3% higher than parameter-based transfer methods. Moreover, ATLA is applicable for
knowledge transfer between the parameters for the reduced training data and assists the CNN model
to improve model accuracy. Although ATLA provides optimal performance, it is also sensitive to
parameter variations and becomes impractical for real-time prediction scenarios.

To recognize the radio signals, various datasets are available as listed in Table 1. It has been
noticed that the graphics processing unit (GPU) has been used to create the model, which reduces
the training overhead more than the central processing unit (CPU). Moreover, Hisarmod2019.1 and
RadioML2018.10.a datasets have been adopted with channel impairments such as multipath fading
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and frequency offset. The aforementioned simulation-based dataset may not be sufficient for real-world
problems. Moreover, improvements in MC models for smaller variations with respect to decimation
rate, number of signals and number of layers are still lacking in the literature.

Table 1. Comparison of traditional datasets adopted for MC based on various salient
characteristics.

Dataset
Input

Samples
Format

No.of.
Classes

Training
Platform

Testing
Platform

Channel
Impair
ments

Real
time

Execution

Real
time

Prediction
RadioML

2016.10.a [17]
I/Q 10 GPU GPU × × ×

RadioML
2016.10.b [18]

I/Q 10 GPU GPU × × ×

Hisarmod
2019.1 [19]

I/Q 26 GPU GPU ✓ × ×

RadioML
2018.10.a [20]

Polar 24 GPU CPU ✓ × ×

RFSC [21] I/Q 10 CPU GPU ✓ ✓ ✓

In resource-constrained applications, the above-mentioned parameters play an important role
in decoding physical resource block (PRB), primary synchronization signal (PSS) and secondary
synchronization signal (SSS) in the physical channels. In this work, we have utilized radio frequency
signal classification (RFSC) dataset [21] to analyze the multi-layer CNN model performance. We
leverage the benefits of CNN models to tackle the issues of MC, which severely hinders the practical
resource-constrained scenarios. The main contributions of this paper are summarized as follows:

• We propose a multilayer CNN model for MC using the RFSC dataset.
• We investigate the performance analysis of the multilayer CNN model for different decimation

rates (D), input signals (K), number of input frames (F) and number of CNN layers (l).
• We evaluate the proposed model performance in terms of confusion matrix, training/testing loss

and accuracy.
• We demonstrate the recognition accuracy comparison among different DL models and cumulant-

based models for RFSC dataset.
• We also analyze the performance of generated models using RadioML, Hisarmod and RFSC

datasets.

The paper is organized as follows: In section two, the proposed CNN architecture with different
hyperparameters has been presented in detail. The simulation results are discussed in section three.
The conclusions are finally drawn in section four.

2. Proposed model

The proposed CNN architecture incorporates feature extraction capabilities to learn the
discriminating representations directly from the raw data. The CNN model receives input in a time-
domain representation, which is translated into a 2D matrix containing the amplitude and phase
information. The CNN architecture is made up of numerous convolutional layers with increased
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complexities that allow for the extraction of low-level and high-level features from the input signal.
After each convolutional layer, a pooling layer is applied to perform the down-sampling on the feature
map to retain the most important information.

2.1. Convolutional layer

The received signal r(t) is modeled as,

r(t) = s(t) ∗ h(t, τ). (2.1)

Here, s(t) denotes the transmitted signal and h(t, τ) is a channel output described as a complex channel
finite impulse response (FIR) filter. The received signal r(t) is down-converted and sampled to derive
the baseband digital samples (rb[n] = r[nTs] = rb,I[n] + jrb,Q[n]). The k-th dataset vector of a r(t)
sample is denoted as:

rk =
[
rb[0], rb[1], ..., rb[N − 1]

]T
. (2.2)

The k-th feature vector of the m-th class xmk that is derived from a dataset of N samples and
decimated by a factor D is given by,

xmk =

[
r′b,I[0], r′b,Q[0], r′b,I[1], r′b,Q[1], ............, r′b,I[N

′ − 1], r′b,Q[N′ − 1]
]
,N′ =

N
D
. (2.3)

Here, m = 1, 2, .....,M.

Figure 1. A proposed multilayer CNN model composed of l convolutional layers and two
dense layers.

The k-th feature vector is further translated into a matrix (R) to train the proposed CNN model, xmk ∈

R fH× fW×Cin with size ( fH × fW × Cin), where fH is the height, fW is the width of an image and Cin is the
number of channels, respectively. The matrix R is fed as an input to the CNN model to perform feature
extraction through the activation function. The features are extracted by the consecutive convolutional
layers that contain the multiple kernels to perform the convolution operation. Kernels are acting as
feature detectors, generally FIR filters, which perform the convolution operation on the input image
samples and produce the transformed version as an output. The proposed CNN architecture with l
convolutional layers and two dense layers has been shown in Figure 1.

The mathematical representation of the convolutional layer is as follows: For l-th convolutional
layer with n-th filter, the convolution operation using filters has been performed as:

z[l]
x,y,n =

 fH−1∑
m=0

fW−1∑
n=0

Cin−1∑
c=0

K[l]
m,n,c,n · a

[l−1]
x+m,y+n,c + b[l]

n

 , (2.4)

AIMS Electronics and Electrical Engineering Volume 7, Issue 4, 337–353.



341

where z[l]
x,y,n = conv

(
a[l−1],K(n)

)
x,y,n

is the output value at position (x, y) in the n-th feature map (output
channel) of the l-th convolutional layer. fH and fW are the height and width of the filter K, respectively.
Cin is the number of input channels in the previous layer (a[l−1]). Where a[l−1] = xmk,∀m, k is an input to
the l-th layer. K[l]

m,n,c,n represents the weight (filter) value at position (m, n) in the c-th input channel and
n-th output channel of the l-th convolutional layer. a[l−1]

x+m,y+n,c is the input value at position (x+m, y+ n)
in the c-th feature map of the (l − 1)-th layer. b[l]

n is the bias term for the n-th output channel.

f [l]
H =


[ f [l−1]

H + 2p[l] − f [l]

s[l] + 1
]
, s > 0;

f [l−1]
H + 2p[l] − f [l], s = 0 . (2.5)

f [l]
W =


[ f [l−1]

W + 2p[l] − f [l]

s[l] + 1
]
, s > 0;

f [l−1]
W + 2p[l] − f [l], s = 0. (2.6)

Here, s is a stride parameter used to define the step size of the convolution operation; p represents the
amount of zero padding; K(n) is a kernel represented by ( f [l], f [l],C[l−1]

in ); f [l] denotes the size of the
filter in the l-th layer. The activation function applied at the l-th layer can be defined as:

a[l]
x,y,n = ψ

[l](z[l]
x,y,n), (2.7)

where a[l]
x,y,n is the output value at position (x, y) in the n-th feature map of the l-th activation layer. The

activation function ψ[l] is applied element-wise to the output of the convolutional layer and it is defined
as:

ψ[l](x) = max(0, x). (2.8)

The output of the l-th convolutional layer can be obtained as

a[l] =

[
ψ[l](conv(a[l−1],K(1))), ψ[l](conv(a[l−1],K(2))), ..........., ψ[l](conv(a[l−1],K(C[l]

in )))
]
, (2.9)

with dimension [a[l]] = [ f [l]
H , f [l]

W ,C[l]
in ].

The number of learning parameters at l-th layer is given by

f[l] × f[l] × C[l−1]
in × C[l]

in + b[l]
n . (2.10)

2.2. Pooling layer

At each convolution layer, CNN uses the pooling layers for feature map dimensionality reduction
to avoid overfitting and improves the model accuracy. The down-sampling has been performed using
a 2×2 kernel with a stride of two. Here, it uses a max-pooling operation, which takes the maximum
value from the set of four values after each stride. The output of the l-th pooling layer is given by,

p[l]
x,y,z =

ph−1
max

i=0

pw−1
max

j=0
a[l−1]

x·sx+i,y·sy+ j,z. (2.11)
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Here, (p[l]
x,y,z) is the output value at position (x, y) in the z-th feature map of the l-th pooling layer. ph

and pw are the height and width of the pooling window, respectively. The pooling window is applied
with these dimensions to the input feature map. sx and sy are the stride values in the horizontal and
vertical directions, respectively. The pooling window moves with these strides over the input feature
map. (a[l−1]

x·sx+i,y·sy+ j,z) represents the input value at position (x · sx + i, y · sy + j) in the z-th feature map
of the (l − 1)-th layer. The max-pooling operation selects the maximum value within a local region,
which is determined by the pooling window size and stride of the previous layer (a[l−1]), assigns to the
corresponding position in the pooling layer.

2.3. Flatten and dense layers

The extracted features from the convolutional layer have been passed to the flattening layer to create
a 1D vector. The flattened layer converts the 2D feature map matrix into 1D vector: [ f [l−1]

H × f [l−1]
W ×

C[l−1]
in , 1]. This 1D vector has been fed into the fully connected layer, which contains the dense layers

for the MC technique.

o[l]
n =

Hl−1−1∑
i=0

Wl−1−1∑
j=0

Cl−1−1∑
c=0

a[l−1]
i, j,c ·W

[l]
i, j,c,n + b[l]

n , (2.12)

where (on
[l]) is the output value of the n-th neuron in the output vector of the fully connected layer

(l-th layer). (Hl−1) and (Wl−1) are the height and width of the feature map in the (l − 1)-th layer (a[l−1]),
respectively. Cl−1 is the number of input channels in the (l − 1)-th layer. (W [l]

i, j,c,n) represents the weight
connecting the (i, j, c) position in the (l−1)-th layer to the n-th neuron in the fully connected layer. The
input a[l−1] represents the output from the flattened layer or previous dense layer, and (b[l]

n ) represents
the bias term. The n-th node of l-th layer of a fully connected network is given by,

a[l]
n = ϕ

[l]o[l]
n , (2.13)

where ϕ[l] is an activation function. The last dense layer performs the maximum likelihood probability
over M modulation classes, using softmax classifier.

In the output softmax layer, m represents the index of the classes. In a classification problem, the
softmax layer computes the probabilities of the input belonging to each class. If there are M classes
in the classification task, m ranges from zero to M − 1, representing the M class labels. The softmax
function takes the raw scores o[l]

n from the previous fully connected layer and converts them into a
probability distribution over the classes. The probability of the input belonging to class m is denoted
by p[l]

m . The softmax function is defined as follows:

p[l]
m =

eo[l]
m∑M−1

j=0 eo[l]
j

, (2.14)

where o[l]
m is the raw score for class m in the output vector and M is the total number of classes. Each

p[l]
m represents the probability of the input being classified into class m and the sum of all p[l]

m values will
be equal to one, ensuring that the probabilities form a valid probability distribution. The class with the
highest probability (max(p[l]

m )) is typically considered as the predicted class (ŷi) for the applied input
during inference.
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Table 2. Type, dimension and the learning parameters for each layer of CNN model.
Layer Type Dimension Value Total Parameters

Input Layer ( fH , fW ,Cin) (28, 28, 2) 0
Conv2D 1 (n[1]

H , n[1]
W , n[1]

C ) (28, 28, 256) 4864
MaxPooling 1 (n[1]

H , n[1]
W , n[1]

C ) (14, 14, 256) 0
Conv2D 2 (n[2]

H , n[2]
W , n[2]

C ) ( 14, 14, 64) 147520
MaxPooling 2 (n[2]

H , n[2]
W , n[2]

C ) (7, 7, 64) 0
Conv2D 3 (n[3]

H , n[3]
W , n[3]

C ) ( 7, 7, 64) 36928
MaxPooling 3 (n[3]

H , n[3]
W , n[3]

C ) (4, 4, 64) 0
Conv2D 4 (n[4]

H , n[4]
W , n[4]

C ) ( 4, 4, 64) 36928
MaxPooling 4 (n[4]

H , n[4]
W , n[4]

C ) (2, 2, 64) 0
Conv2D 5 (n[5]

H , n[5]
W , n[5]

C ) ( 2, 2, 64) 36928
MaxPooling 5 (n[5]

H , n[5]
W , n[5]

C ) (1, 1, 64) 0
Flatten (n[5]

H × n[5]
W × n[5]

C ) (64) 0
Dense 1 Number of neurons (n1) (128) 8320
Dense 2 Number of neurons (n2) (7) 903

Total Trainable parameters 2,72,391

The likelihood probability of a particular modulation type belongs to the input signal x, denoted
as p(y = k|x;Θ), where k is a 1D tensor and k ∈ RM is for the different modulation types of the
classification task. The CNN parameter (Θ) has been determined to minimize the training loss in the
dataset (xi, yi)i∈S with training dataset size S ,

min
Θ

∑
i∈S

lp(ŷi, yi), (2.15)

where lp(.) denotes the categorical cross-entropy. It is defined as a log-likelihood function and
represented by

lp(ŷi, yi) =
M∑

i=1

yi log(ŷi), (2.16)

where i = 1, 2, ...,M. The loss function lp is evaluated at the last dense layer (softmax layer), which
evaluates the error between the predicted ŷi and the actual modulation labels yi.

The classification testing accuracy (Atest) for the given testing dataset can be calculated by

Atest(%) =
∑M

i=1(ŷi == yi)∑M
i=1 yi

× 100%. (2.17)

The layer type, dimension and learning parameters of each layer for a five convolutional layer CNN
model have been shown in Table 2. It has been clearly mentioned that the learning parameters have
been calculated for each convolution and dense layer. It can be found that the total learning parameters
for the five layer model (5-CNN) are 2,72,391, whereas for the three layer (3-CNN) model, the total
learnable parameters are 3,21,415.

3. Results

The simulations have been conducted with the Intel R Core™ i5 processor. The Ubuntu OS and
Python 3.5 have been utilized to carry out the simulation using parameters as listed in Table 3.
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Table 3. Simulation parameters.
Parameters Value

Distance between TX and RX in m 1
SNR in dB -5 to 10

Sampling Rate ( fs) in MSps 2.4
Center Frequency ( fc) in MHz 810

In this work, we choose samples of different modulation types such as binary phase-shift keying
(BPSK), quadrature phase-shift keying (QPSK), continuous-phase frequency-shift keying (CPFSK), 16
quadrature amplitude modulation (16QAM), 64 quadrature amplitude modulation (64QAM), gaussian
minimum shift keying (GMSK) and gaussian frequency shift keying (GFSK) at a high SNR position
(10 dB) from the RFSC dataset [21] for the generation of the multilayer CNN model. The RFSC dataset
created in the laboratory environment includes the exact channel conditions as well as the controlled
channel parameters. The verification of the generated CNN models has been performed by using the
collected testing dataset from the assumed receiver position.

Figure 2. Dataset split-up for CNN model generation, validation and classification.

3.1. Model training performance analysis

The dataset split-up framework for the CNN model generation, validation and classification has
been depicted in Figure 2. We can observe that the partition set {(P% : (100 − P)%)× input
data samples} represents the number of samples used for training and testing process, and {(Q% :
(100 − Q)%)× training data samples} denotes the number of samples used for model generation and
validation process, respectively. For the adopted RFSC dataset, we have 1,500 and 500 samples (75:25)
for each modulation type for the training and testing process. Further, the dataset for the training
process (10,500 samples) has been divided into 7,350 and 3,150 samples (70:30) for model generation
and validation, respectively. Note that the models are generated with a training epoch of 70 using the
samples collected at locations very close to the transmitter. Here, the training samples are collected
from the chosen receiver position with the presence of transmitter at location one (TX1). The proposed
CNN model is trained on the RFSC dataset comprised of the labeled signals with known modulation

AIMS Electronics and Electrical Engineering Volume 7, Issue 4, 337–353.



345

classes. The back-propagation and stochastic gradient descent algorithms are used to optimize the
model parameters and minimize the classification loss.

3.1.1. Training loss and accuracy

Figure 3(a) shows the model training with a minimal training loss. It can be noticed that the CNN
model with l > 2 provides a similar performance throughout the epoch. Figure 3(b) depicts the training
accuracy for all four models. It has been observed that the overshoot gets reduced after 60 epochs,
where all the models converge with similar performance.

(a) Training loss (b) Training accuracy

Figure 3. Training performance comparison of various CNN layers for different epoch
numbers.

3.1.2. Visualization of feature maps, weights and bias value of the layer

In the training process, the CNN model extracts the features using the filters in each convolutional
layer that capture and activate similar patterns. The captured pattern has been visualized as a feature
map corresponding to each layer of the CNN model. While passing an input image into a CNN model,
each layer generates the feature maps that are moving on to the next successive layer. The initial
convolutional layer extracts the horizontal/diagonal edges of an image. The consecutive layers detect
the corners of an image. On moving deeper into the network, we can identify even more complex
features. The features extracted by the filters used in the third convolutional layer have been depicted
in Figure 4.

The mathematical representations of neurons in the convolutional and pooling layers are used to
calculate the weighted sum of multiple inputs and outputs. For each neuron, the weights are real
values associated with each feature and indicate the significance of that related feature in predicting
the modulation type. The weights assigned to each feature play an important role in selecting the
output class. The weights close to zero tend to be less important in the classification process than the
weights with higher values. The weight value for different index values has been represented in Figure
5(a). The bias value of a neuron is used to push the activation function toward left/right as shown in
Figure 5(b).

AIMS Electronics and Electrical Engineering Volume 7, Issue 4, 337–353.



346

Figure 4. Feature map representation for the fifth layer of 3-CNN model.

(a) weight (b) bias

Figure 5. Representation of weights and bias values for a third convolution layer of the 3-
CNN model.

3.2. Model testing analysis

In this section, we analyze the multilayer CNN model performance for different input parameters
such as decimation factor, image frame size, sample size and the number of convolutional layers.

3.2.1. Different decimation factor

Table 4 shows the testing accuracy of the CNN model for different input frame sizes (F = 1, 2, 3, 4)
and various decimation rates (D = 6, 12, 24, 48). It has been observed that the model generated with
four input frames and D = 12 yields the highest testing accuracy among other configurations. It has
been noticed that accuracy gets reduced with increasing the modulation classes.
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Table 4. Testing accuracy of CNN model for a varying number of frames, decimation factor
and number of modulation classes.

No. of Frames (F)→ 1 2 3 4
Decimation (D)→

No. of classes ↓
6 12 24 48 6 12 24 48 6 12 24 48 6 12 24 48

2 (16QAM, 64QAM) 99.5 99.5 99.2 100 99.5 99.8 99.4 99.8 99.8 99.3 99.0 99.8 99.8 98.9 99.1 99.6
3 (16QAM,64QAM,

BPSK)
98.9 99.1 98.6 97.6 98.1 98.7 98.7 98.5 98.8 99.1 98.4 98.3 98.6 99.1 98.6 98.4

4 (16QAM,64QAM,
BPSK, CPFSK)

84.7 99.0 99.4 97.3 85.0 98.2 98.6 98.1 85.3 99.1 99.0 98.6 85.1 99 98.5 98.3

5 (16QAM,64QAM,
BPSK, CPFSK

GFSK)
86.5 98.2 96.6 96.5 87.5 97.8 97.7 98.0 86.9 97.9 96.9 97.8 86.4 97.8 97.4 97.5

6 (16QAM,64QAM,
BPSK, CPFSK
GFSK, GMSK)

86.0 95.3 94.1 96.1 88.1 97.0 96.7 97.0 87.1 94.7 96.0 97.4 83.4 97.2 96.2 96.8

7 (16QAM,64QAM,
BPSK, CPFSK
GFSK, GMSK

QPSK)

78.6 89.9 95.2 95.5 79.5 91.7 95.6 95.9 78.3 95.9 96.2 96.9 78.3 96.5 96.9 97.6

3.2.2. Different input sample size

In 1D, the actual samples are converted into images with a single frame for a single channel. In 2D,
the actual samples are converted into images with four frames. Each frame consists of two channels.
For both 1D and 2D cases, the generated CNN model has been tested for K = 500 and 1,000 signals.
Table 5 compares the model testing accuracy and loss in both cases. It has been observed that the
accuracy increases with the respective increment in sample size for both 1D and 2D formats.

Table 5. Comparison of CNN model classification performance for different input sizes,
number of samples, image size and number of signals.

Input size 1D 2D
Actual

sample size
1568 6272 25088 1568 6272 25088

Image size
( fH × fW ×Cin)

1568 × 1 × 1 6272 × 1 × 1 25088 × 1 × 1 14 × 14 × 2 28 × 28 × 2 56 × 56 × 2

Total number of
signals (K)

500 1000 500 1000 500 1000 500 1000 500 1000 500 1000

Testing accuracy
Atest(%)

86.1 85.7 94.5 94.3 94.8 98.25 88.2 87.8 96.4 96.7 99.0 99.3

Testing loss
(lp)

0.72 0.78 0.27 0.28 0.27 0.06 0.65 0.66 0.22 0.2 0.08 0.04

For K = 500 signals, the model classification accuracies (Atest) for an image of size ( fH × fW ×Cin)
of 14× 14× 2, 28× 28× 2 and 56× 56× 2 are 88.2%, 96.4% and 99%, respectively. Correspondingly,
the model testing losses (lp) are 0.655, 0.22 and 0.084. Similarly, for K = 1,000 signals, the model
classification accuracies (Atest) for 14 × 14 × 2, 28 × 28 × 2 and 56 × 56 × 2 are 87.8%, 96.7% and
99.3%, respectively. Correspondingly, the model testing losses (lp) are 0.66, 0.2 and 0.0403. It has
been noticed that the image size 28 × 28 × 2 gives an optimum classification accuracy with moderate
computational complexity compared with the other two image sizes. As K increases from 100 to 500
signals, there is a corresponding increase in the testing accuracy, which is found to be 96.3% as shown
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in Figure 6. A gradual increase in the number of signals leads to increased testing accuracy. So, we
have chosen K as 500 signals for our work to save computation time.

Figure 6. MC accuracy comparison of CNN model for two, three, four and five convolution
layers.

3.2.3. Different numbers of CNN layers

Table 6 compares the testing loss and testing accuracy of the CNN model for a varying number of
convolution layers (l) in the feature extraction phase. It can be observed that the increasing number
of convolution layers in the CNN model yields a reduced testing loss (lp) and improved accuracy.
Moreover, it can be noticed that the testing accuracy remains static after three convolution layers.

Table 6. Testing loss and testing accuracy of CNN model.
No. of Convolutional Layers (l) Two Three Four Five
Testing loss (lp) 0.24 0.16 0.15 0.13
Testing accuracy (Atest(%)) 95.82 97.0 97.01 97.12

To minimize the computational complexity, we carry out the work with 3-CNN architecture.
The classification accuracy increases with increasing convolutional layers as shown in Figure 6.
Simultaneously, increasing the number of layers and signals will lead to over-fitting errors. Also, there
are chances for noise to be misinterpreted as a signal and vice versa. It is mandatory for the designer to
properly tune the convolutional layers based on the number of input signals (K). So, we have chosen
a 3-CNN model that provides better testing accuracy and reduced computational time compared with
other models.

3.3. Confusion matrix

The confusion matrix for the three-layer CNN at the selected receiver position in the presence of
TX1 is shown in Figure 7. The probability values in each box represent the classification accuracy of
each modulation type. It has been observed that the model provides an improved performance with
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Figure 7. Confusion matrix for three-layer CNN model.

the chosen receiver position. Moreover, the misclassification rate among different modulation classes
has been found to be reduced with predicted labels. Due to the nature of MC systems, the multilayer
CNN model performs well for the higher SNR values. The proposed model shows better classification
performance for the adopted seven modulation classes.

3.4. Analysis of RFSC dataset classification results

From the RFSC dataset [21] we have selected seven modulation types that are used to test the
proposed CNN model for different SNR values. Similarly, the different DL models have been generated
and compared against various SNR values as shown in Figure 8(a). It has been observed that the
proposed CNN model shows higher performance than the other models at SNR levels lower than 2 dB.
The cumulant model has been found to be effective with a maximum accuracy of 88.5%. Moreover, the
proposed CNN model performs with a maximum accuracy of 95.7%. Furthermore, the other models
provide up to 93% accuracy, along with high computational complexity.

In Table 7, it has been noticed that the proposed CNN model provides the best performance with
the least number of convolutional layers and learnable parameters. Furthermore, the proposed 3-
CNN model provides a peak training accuracy of 98% for the least time per epoch than the prior
models adopted for comparison. Also, the proposed 3-CNN model has been generated with the lowest
trainable parameters in a short duration of 15 minutes. The proposed CNN model produces the lowest
complexity and CPU inference time at the expense of memory usage allocated for feature extraction.

Table 7. Training parameters and computational complexity of different DL models.

Model
Number of

Layers
Number of
Parameters

Duration for
Model Generation

(Minutes)

Training
Accuracy

(%)

Time per
Epoch

(Seconds)
CNN 6 3,21,415 15 98 8

ResNet 11 6,90,503 30 95 15
CLDNN 9 11,69,607 65 96 25

Inception 15 25,992,327 90 89 10
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3.5. Comparison of model performance between RadioML and RFSC dataset

(a) Performance of different DL models (b) Performance of CNN model among different dataset

Figure 8. Recognition accuracy values against different SNR values.

In this section, we also compare the proposed CNN models generated using RadioML, Hisarmod
and RFSC datasets. The RadioML and Hisarmod consists of different modulation classes that have
been created using GNU Radio [22], which include a variety of channel impairments such as fading,
frequency offset and sample rate offset [17]. We have analyzed the model performance for the SNR
range varying between -5 dB to 10 dB. From Figure 8(b), we can observe that the proposed CNN
achieves better recognition accuracy at the low SNR scenario. The RFSC dataset produces the best
classification accuracy in the medium SNR scenario. Moreover, the proposed multilayer CNN model
has been tested for limited SNR values (-5 dB to 10 dB). Here, the modulation recognition has been
restricted to single-carrier modulation types. Moreover, it has been noticed that the CNN model
generated using RadioML and the Hisarmod dataset provides less than 80% recognition accuracy for
SNR values between 4 dB and 10 dB.

In ATLA [16], the authors have frozen the weights of the convolution layers, which reduces
the feature extraction capability, whereas in our proposed 3-CNN model, we have not frozen the
convolutional layers but adjusted (proper selection/tuning) the weights and bias of the convolutional
kernels/filters to achieve the highest classification accuracy. This provides an improvement in the
classification accuracy compared with existing DL-based models. Additionally, only two convolutional
layers are adopted in ATLA to extract fewer features than the 3-CNN model. Moreover, authors vary
the size of the dataset only with sampling frequency. However, in our proposed work, we not only
vary the sampling rate but also include the number of signals and decimation rate. This greatly reduces
the issues associated with decoding PRB/master information block (MIB), particularly in resource-
constrained Internet of Things (IoT) applications.

4. Conclusions and future enhancements

MC has been used extensively in the military, civilian and future-generation wireless systems to
detect and classify modulation types, hence preserving the radio spectrum. A detailed mathematical
framework for the proposed multilayer CNN model has been presented. We adopted the RFSC
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dataset for the generation of the proposed multilayer CNN model. Moreover, improvements in the
classification accuracy for better decimation rates, frame size and input sample size for the different
convolutional layer model have been discussed. Furthermore, the 3-CNN model achieved nearly 98%
classification accuracy. Thus, we conclude that there exists a trade-off while choosing the CNN
model between the model parameter size and the computational complexity, which are more viable
for resource-limited scenarios. We presented the recognition performance comparison between the
DL models and the cumulant-based model. We also showed that the model generated by the RFSC
dataset achieves higher accuracy than the models generated by the RadioML and Hisarmod datasets. In
the near future, we will investigate MC for various modulation orders by identifying each modulation
class. Extensive research for varying the number and size of convolutional filters finds an interesting
topic to be investigated in resource-constrained applications.
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