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Abstract: Climate change, global warming, the depletion of fossil fuels, and rising energy demand
are the main forces behind the increase in renewable energy sources. However, the unpredictability
of power output from these renewable energy sources presents distribution system integration issues
such as limited feeder capacity, unstable voltage, and network power loss. This study analyses the
African vulture optimisation algorithm to determine the best allocation of distribution generators, with
an emphasis on reducing the ageing of distribution transformers and delaying investment in feeders.
The optimization technique provides faster global convergence and outperforms existing bio-inspired
algorithms verified with benchmark uni-modal functions as a result of a larger crossover between the
exploration and exploitation phases. The key aim is to decrease active power loss while simultaneously
enhancing security margin and voltage stability. The IEEE 69-bus RDS system is utilised to validate
the case studies for appropriate allocation of photovoltaic, wind turbine generation, and battery energy
storage systems units, as well as offering the ideal energy management approach. During simulation,
uncertainty on the characteristics of renewable energy source is accounted for. The results demonstrate
the efficacy of the proposed algorithm with a substantial improvement in voltage profile, the benefit of
lower CO2 emissions, an increase in security margin of up to 143%, and the advantage of extending
the feeder investment deferral period by more than 50 years. In addition, the distribution transformer
ageing acceleration factor improves significantly in the case of an increase in load demand.

Keywords: photovoltaic; distribution transformer ageing; battery energy storage system; wind turbine
generation; African vulture optimisation; feeder investment deferral
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Abbreviation

AVO

BESS Battery energy storage system

DE Differential evolution optimisation

DG Distributed generation

DISCOM Distribution company

DT Distribution transformer

FFA Fire-fly algorithm

HST Hot-spot temperature

MFO Moth-flame optimisation

MINLP  Mixed-integer non-linear programming

NFL No free lunch

PL Power loss

VD Voltage deviation

VS Voltage stability

VSI Voltage stability index

WTG Wind turbine generation
Nomenclature

Ppy Output power of PV in kW

Ppy, . Rated power of PV module in kW

T, Ambient temperature in Celsius

np Converter efficiency

1. Solar insolation

Pwrc Output power of WTG in kW

Pwrg,,, Rated power of WTG in kW

Vy Nominal wind velocity

Veout Cut-out wind velocity

Vein Cut-in wind velocity

wy, Load factor

C Operating cost of i DG unit

African vulture optimisation
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PV
PSO
RDS
RES
RPPI
RTS
SOC

YVR
Yioss

CLoss
Cyr
HHS T

Oro

FAA
LOld

XCap

Photovoltaic

Particle swarm optimisation

Radial distribution system
Renewable energy sources
Renewable power production index
Residual tensile strength

State of charge

Voltage regulation cost

Power loss cost

Electricity price at #" hour

Cost of power loss

Cost of voltage regulation
Hottest-spot winding temperature
of DT in Celsius

Top oil temperature of DT in
Celsius

Accelerated ageing factor of DT
Percentage loss of life of DT
Power rating of DT

Installation cost of DT
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1. Introduction

Nowadays, increased demands make radial distribution system (RDS) vulnerable to voltage drops
and line losses. The distribution companies (DISCOM) are always aiming to expand to satisfy rising
load requirements [1]. Building a new substation or enlarging the old one is the conventional solution to
this problem. However, this is not economically sustainable due to the incurred operational expenses.
Additionally, this technology has a detrimental influence on the environment due to its reliance on
fossil fuels for electricity production. Utilizing photovoltaic (PV) solar energy, wind turbine generation
(WTG), and several other distributed generators (DG) in distribution networks is a realistic option for
reducing fossil fuel usage and achieving the United Nations sustainable development plan for climate
change mitigation [2]. The objective of energy management using DGs of appropriate placement
and size can be achieved. Recently published research has used numerous optimization techniques
to tackle optimum DG allocation issues in radial distribution systems (RDS). The goals include the
elimination of power loss (PL), the reduction of voltage deviation (VD), the maximisation of the
voltage stability index (VSI), the enhancement of transient stability, the improvement of dependability,
and the reduction of greenhouse gas emissions [3—5]. Incorporating BESS and DGs into the RDS
improves the voltage profile of the lines. BESS often provides both technological and economic
benefits [6].

The unpredictability of energy consumption raises the difficulty of occasionally overloading
distribution transformers (DT) [7]. Sarker et al. [8] introduced an efficient charging technique that
minimises the influence of load fluctuation on the ageing of a DT. A peak-shaving approach that
increases the durability of DT insulation was formulated. Islam et al. [9] found that transferring
loads to off-peak hours via an appropriate BESS management technique might extend the life of
DTs. On the other hand, off-peak pricing might result in a new peak load during the early off-peak
hours. Therefore, limiting DT life loss under higher load circumstances is necessary [10]. Setting
maximum limitations on the DT to avoid overloads may seem to be a simple solution to the accelerated-
ageing issue, given that transformer ageing is a function of its loading. However, such a strategy
might overlook crucial loads at peak demand. Moreover, the authors have emphasised the utility’s
necessity for BESS charge management during off-peak hours. A substantial incentive has been
recognised as cost minimization pricing. Frequently, the meta-heuristic algorithm may be separated
into following categories: evolutionary algorithm, swarm intelligence, and physical algorithm. The
meta-heuristics optimization approach primarily focuses on organism performance and accumulates
the collective knowledge of all individuals. Meta-heuristic algorithms based on evolution are crucial
to the theory of evolution for organisms. Meta-heuristic procedures based on a physical model are
distinguished by whether search agent contact is signaled per the physical procedure’s requirements.
Although several solutions have been created, none can handle all optimisation difficulties. The No
Free Lunch (NFL) argument reasonably shows the same [11]. This work presented the African
vulture optimisation (AVO) algorithm, a population-based algorithm inspired by the lifestyle, food-
seeking, and competition for food of various vultures. This method has a low computing cost and
is more flexible than previous meta-heuristic algorithms; this is the proposed algorithm’s defining
characteristic and strength in balancing resonance and variability [12]. Comparing the suggested
issues and proposed meta-heuristic algorithm to other robust meta-heuristic algorithms such as Particle
Swarm Optimisation (PSO), Differential Evolution (DE), Moth-Flame Optimisation (MFO), Fire-Fly

AIMS Electronics and Electrical Engineering Volume 6, Issue 4, 397-417.



400

algorithm (FFA), etc., it was discovered that the proposed meta-heuristic algorithm is exceptionally
promising and superior compared to the current algorithms. However, with reference to computational
complexity and execution time, this method is far more efficient compared to other similar algorithms,
and it performs wonderfully when applied to large-scale problems.

From an objective standpoint, the capitalization of DG and BESS integration is seen as a
multifaceted challenge. Several analytical approaches based on an precise formula have been utilised to
address optimal DG integration issues [13], including mixed-integer nonlinear programming (MINLP),
loss sensitivity, and others [14]. In the first step of the two-stage architecture described in [15], bus
locations were identified based on voltage stability (VS) and loss sensitivity factors. The second step
determined the optimal DG size using an analytical approach. Analytical procedures are user-friendly
and require minimal processing time [16]. However, the aforementioned solutions are susceptible to
various difficulties, including DG kinds, different DG unit numbers, and multi-objective functions [17].
The categorization of single and multi-objective optimization techniques is used to handle the DG
allocation issues. The grid-connected PV and BESS optimise capacity and placement using an
evolutionary algorithm. The best solution to a dual-objective optimisation issue is presented in as DG
and BESS energy optimisation [18]. However, the transformer ageing factor for the distribution system
under investigation was not established. In addition, none of the reviewed literature took into account
the loss of energy energy, reliability, environmental benefits and operational consumer benefits of time-
of-use pricing strategy in BESS, when they shift their charging profile that promotes the slowing of
transformer ageing in a distribution system.

In order to fill the gap in previous research works, this paper proposes a multi-objective design for
PV, WTG, and BESS systems that integrates technical, environmental, and economic goals using an
interdisciplinary approach including the transformer loss of life cost. BESS management using time-
of use pricing helps reduce peak load demand and improves DT ageing profile during increased load
demand. PV and WTG help the environment by lowering greenhouse gas emissions from fossil fuel
alternatives. The following summarises the primary contributions of this manuscript:

(1) The objective function is formulated, considering the advantages of reduction in voltage
deviation index, benefit of reduction in environmental emission, distribution transformer ageing cost,
and energy loss cost.

(2) A unique African vulture optimisation (AVO) technique is introduced to resolve highly nonlinear
power system problems successfully.

(3) After integrating PV, WTG, and BESS, the system’s performance in terms of voltage profile,
security margin, energy loss, etc., has been evaluated.

(4) BESS’s charging and discharging profiles have been analysed in light of time-of-use pricing.

(5) The improvement in feeder investment deferral time is analysed in light of the combination of
DG and BESS.

(6) The ageing factor of distribution transformers is examined as the load demand increases.

The remainder of the paper is organised as follows. Section 2 of the paper focuses on modelling for
PV, WTG, BESS, and load demand. The third section demonstrates the formulation of goal functions,
system restrictions, and system parameters. Section 4 covers the principles of the African vulture
algorithm, flowchart, and formulation. In Section 5, algorithm performance is evaluated using IEEE-
69 bus RDS in various scenarios, and the results are compared and analysed. In the concluding portion
of the study, the findings are summarised.
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2. Modelling of system

The solar PV and BESS provide DC output, and WTG provides AC output power. A separate
DC/DC converter is used for both PV and BESS, and for WTG, an AC/DC converter is used. The
PV and WTG converters are unidirectional, and for BESS, a bidirectional converter is deployed. A
bidirectional inverter transforms the DC power generated by the PV, WTG, and BESS to AC power.
The system under consideration is a IEEE-69 bus radial distribution system and the loads are connected
to different bus location. The consumer daily load variations across 24 hours are considered for the
study. The exchange of power for the system and the utility grid is through a distribution transformer
or a substation transformer. The placement of PV, WTG, and BESS bus locations in the RDS are at
independent locations for providing maximum benefit to the system. The battery converter works as
a charge controller throughout the BESS’s charging procedure. The system’s fundamental topology is
presented in Figure 1.

Pload, 1 (t), Qioad, 1 () Pload, i (t), Quoad, i (t) ~ Pload,(t), Quoad.j(t)  Pload, k (t), Quoad, k (t) Pload, N (), Qioad, N ()

i L+ X Rj +jX Ri + jXk RN + X
Ri1+ X1 M f]\)ﬁm i+ A mlrw N+ JAN
Distribution .
transformer BUS 1 BUS i BUS k BUS N
(eseecccdecccccaay foececccdecccccan,
t Pevac(t) ? H Pwtc ac (t)
QP ac (t) :QWTG‘ac (t)

Figure 1. Single line diagram of RDS with PV, WTG and BESS.

2.1. Modelling of PV

The output power of photovoltaic systems is greatly influenced by the amount of sunlight they get.
The solar irradiation profile [19] is shown as per Figure 2. Equation expresses the solar output power
as can be evaluated as per (2.1).

Ppy = 0,Ppy,,,.,1.(1 — 0.004(T, — 25)) 2.1

where Ppy represents the PV output power (kW),T, denotes the ambient temperature in degree celcius,
1. denotes the solar insolation on the PV module collector, Ppy,.q is the rated output power of the PV
module, which is considered as 5 kW, and 5, is the converter efficiency including losses in the cable.
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Figure 2. Solar insolation and ambient temperature.

2.2. Modelling of WTG

The mechanical power generation of WTG (Py7¢) depends on wind speed and can be evaluated
using Eqn (2.2)

Pyr¢g =0 Vag < Vein or Vag > Veou
= (a* vy +b* Pwrg,u,) » Ven < Vag < Viy (2.2)

= PWTGm,gd , V< Vag < Veou
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Figure 3. Load weight factor and wind speed.
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where Pyrg,,., = 3 kW represents the maximum amount of power that may be produced by WTG;
(V.our) represents the cut-out wind velocity. The wind speed variation for a typical day [20] is shown in
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Figure 3. a and b are function of cut-in wind velocity (V,;,) and nominal wind velocity (Vy), and can
be evaluated by Eqn (2.2) and Eqn (2.3).

2.3. Modelling of BESS

In this study, the BESS units are deployed at independent bus locations, which are not integrated
with PV and WTG units. The BESS will support in peak shaving, and grid demand variation
minimization. If excess power production is observed at the grid, the BESS is charged. In time ¢,
the capacity or state of charge (SOC) Ej, of k™ BESS is updated [21] as Eqn (2.4) -

(1-00) pz;

2.4)
i

s _ s ch..ch
Ek,t - Ek,t—l + i Okt=1Pi e —

where o, pu s, pts pE, ni and 77 denotes the decision variables for charging, BESS participation,
charging and discharging power, charging and discharging efficiencies, in time ¢ of k" BESS. The
maximum obtainable charging capacities of a BESS, U B;ﬁ, in time ¢ along with charging decision
variables are respectively evaluated as in Eqn (2.5) and Eqn (6) -

0, ifE}, , =EM>
UB" = PR ALE, | + Py < By (2.5)
kt — ax s .
! (E;iw ; B .
. Max ¢ Max
ifE;, | + P30 > E;
1 if55 <0
o _{ IO vh (2.6)

where E}/**, P%“kx , and IS represents the maximum capacity and maximum hourly power charging
capacity of k" BESS and, current injected from grid to RDS respectively. The BESS is typically
discharged during peak demand hours to reduce power loss and voltage variation. The capacity Ej,
will be adjusted as described in Eqn (2.4), however the maximum obtainable discharge limit of the

BESS may be represented as Eqn (2.7) -

ifES Max

0, ifE}, | <Ep

Max S Pt%(zkx Min
disch ~Paex MEL,, — oz E,
UB, " = _(ES _ pMin 2.7

k,t—1 ” k

. pMax ]

ifES, | — hh < EMin
’ k

Here, E}'** and Pycf‘kx, are the BESS’s minimum stated SOC and hourly power discharge limit.

2.4. Modelling of load

The IEEE 69-bus RDS system’s load factor was calculated using test data collected across time
periods of hours, days, weeks, and seasons and has been graphically shown in Figure 3. This Eq (2.8)
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was used to estimate the real load demand for each bus, taking into consideration the bus’s peak load
demand. The projected load on bus i at any fixed instant  may be represented as follows:

Poaa,j(t) = wy(t) X P; (2.8)

where, wy,(1) represents the load factor at instant 7, P; represents the load at the j™ node of the
distribution system, and Pj,4q, ;(¢) represents the load at instant ¢ for the 7™ node.

3. Problem formulation

The challenge entails determining the optimal position and size for PV, WTG, and BESS, as well
as when they should be charged and discharged, while improving RDS’s performance within the
operational restrictions.

3.1. Objective function

The idea is to minimise distribution network power loss cost, DT aging cost, voltage regulation
cost, operation cost of DGs and also improving renewable power production index. As a result, the
mathematical formulation can be expressed as:

B

24 N
fonj = min [Z( D (CiPy, )+Z JPEESS)=CiPoi= ) (CHPEERS))+ Cur+ Cross+ Croor=Crny)

i=1 =1

3.1

where Ppg, implies the output power from i DG unit, C; implies the operating cost of i DG unit,
C; implies the operating cost of j BESS unit, P5"% is the BESS discharging power, C;P%%)% is the
BESS charging power, Pg; is the power received from grid, C, is the electricity price at " hour, N
represents number of DGs connected, B represents the number of battery storage units connected to
the system, Cyy is the voltage regulation cost, Cy,, is the power loss cost, Cr,z; is the transformer

aging cost and Cgyy is the environmental benefits of DGs [22-24].

T N
(Z Z V Vref ] *YVR (32)
T M
CLnss = (Z Z(Llne LOSS)] * YLoss (33)

CENV = PDG % RPPI (34)

where N is the total bus number, V; is the voltage at i bus (p.u.), V,.s is the reference voltage (1
p.u.), M is the branch number, yy is the voltage regulation cost and vy, is the power loss cost (yyg =
11.36 Rs/p.u.,yss = 22.72 Rs/kWh) as per [25]. Adverse effects of pollutants emitted by fossil fuel
power plants are the driving force for high penetration of renewable energy sources. The DGs have zero
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emission and the savings on pollutant emissions have benefits. RPPI = 1.2 Rs/kWh, is the renewable
power production index representing the environmental benefits of DGs and the total economic benefits
can be evaluated as per Eqn (3.4).

Insulation failure of a transformer may be analysed to determine the influence of DT ageing. The
hottest-spot temperature (HST) of DT, that is the maximum temperature measured on the winding, is
the primary cause of insulation breakdown. The technique for determining various temperatures, based
on transformer loads and ambient temperature is outlined in IEEE standard C57.91.

Osr = 04 + AO7, + ABjgy (3.5)
1 f1-e
A®Y, = AO, + (ABroy — AOTS ) (1 — ¢ \7ro ) (3.6)
A®fysr = MOy + (A®HST,U - A®ZSIT,U) (1 - e‘(%)) (3.7)
. . (KFR+1Y
A®T0,U = A®T0,R m (38)
AOjsry = AOsrp (ktzm) (3.9)

where @', represents the ambient temperature, A®7., and A@z¢ y represents the top-oil temperature
increase and ultimate top-oil increase over the ambient conditions, A®/,¢, represents the increase
in winding HST over the top-oil temperature during the interval, A®},, , represents ultimate HST
increase over the top-oil temperature,A®7or = 55°C represents the temperature increase of top-oil
over ambient at standard load, A®ys7x = 25°C represents the HST rise over top-oil at standard load,
Tro = Shr represents the top-oil time constant, 7,, = 0.2hr represents the winding time constant, k;
represents the ratio of the transformer load at time ¢ to its rated capacity (4 MVA) , R = 5.5 is a factor
of losses at rated load to no load, and m = 0.8 and n = 0.8 represents cooling parameters of the
DT [17]. The value of A@/,,, A®/¢, can be calculated as per Eqn (3.6) and Eqn (3.7). The ultimate

values of top-oil and HST increase can be evaluated using Eqn (3.8) and Eqn (3.9).

FAA _ e(110+273 o273
L=

15000 15000 )

(3.10)

T AA
FMA
Feqa:Z( 7 ) 3.11)
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FegaTy * 100

Lol; = 3 (3.12)
S xTx a LOld
Crxtol = % (3.13)

The DT ages more rapidly when its HST increases due to increased transformer loads. The
accelerated ageing factor FA4 may be used to calculate the pace of ageing, which is a measure of
how fast the insulation on a transformer breaks down in real life, in terms of deterioration under
standard HST circumstances, which is chosen as 110°C. Considering operation of DTs above this
reference value, F44 will exceed 1, indicating accelerated ageing. F4 May be described as a function
of exponential growth of @ys7, as given in Eqn (3.10). The value of FE¢ shows the comparable
ageing (in days) of the transformer compared to the typical ageing as specified in Eqn 3.11, which
is considered as 1 day for an oxygen-free, well-dried unit working at 110°C. Lol, represents the DT
percent loss of life in hours while 7 is considered to be 24 hours and 8 denotes the standard insulation
life of the DT. The oil-immersed transformer has an RTS of 20% at the reference temperature of 110°C
and a life expectancy of 150,000 Ar as its end-of-life criterion. The daily cost of transformer ageing
may be computed using the formula in Eqn (3.12), where S, and T,¢,, are the transformer power
rating of 4000 kVA and the transformer installation cost per unit of 1.2458 x 10* Rs/kV A, respectively.

3.2. System constraints

The system works within the confines of the following limits on equality and inequity -

Ppr(t) = Pioad(t) + Pioss(t) — Ppy(t) = Pwrc(t) F Ppss (1) (3.14)
Opr(t) = Qioad(t) + Qloss(t) = Opv(1) — Qwrc(t) F Opess (1) (3.15)
SOC™" < SOC(t) < S OC™™* (3.16)

Vit < Vit) < Ve (3.17)

Lo < 1™ (3.18)

where Ppr(?), Pioad(t), Pioss(t), Ppess (1), Ppyv(t), Pwrc(t), Opr (1), Qload (), Quoss(t), Opess (1), Qpy (1),
represents power injected from distribution transformer, power supplied to load, transmission loss,

BESS power injected to/received from grid , power generated from PV, power generated from WTG,
reactive power injected from distribution transformer, reactive power supplied to load, reactive power
loss, BESS reactive power injected/received from grid, reactive power generated from PV, reactive
power generated from WTG respectively, at time . S OC™" and S OC™** show the BESS’s lowest and
highest levels of charge.
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3.3. System parameters

An IEEE 69-bus RDS system’s branch current loading may be calculated utilising the security
margin parameter. It is represented as a percentage of the rated branch current capacity as in Eqn
(3.19).

I rated

min (Irated - Iaclual) (319)

Thermal stress damages a distribution system over time. Distribution feeders must be replaced or
upgraded. The maximum thermal stress capacity is computed as (3.20).

S, =8 e ) (3.20)

where, S, denotes the power requirement from grid at year y = 0, and r, denotes the rise in load
demand, which is assumed at 1.5 % per year.

4. African vulture optimisation (AVO) algorithm

This study is based on a novel meta-heuristic approach to vulture eating and seeking habits in Africa.
Each of the African vultures has unique morphological characteristics, and the suggested algorithm
consists of four distinct phases, each of which is detailed in detail below.

4.1. Identifying the two best vultures

The fitness of each solution is determined once the initial population has been generated. The
optimum candidate is chosen as the best vulture in the first group, and the second-best candidate is
chosen as the best vulture in the second group. Using Eqn (4.1), various solutions go near the best
solutions for the first and second groups. The population is recalculated each time a fitness iteration is
performed.

.~ _ |BestVulture, ifp; =L,
R = {BestVultur62 ifpi=1L, “.D

4.2. The rate of starvation of vultures

In good health, vultures can fly further in search of food, but when they are starving, they lack
the endurance to keep up with the stronger vultures and, as a result, become aggressive toward the
stronger vultures. To describe this behaviour mathematically, we used Eqn (4.2) as our starting point.
In addition, it has been used to go from the exploration phase to the exploitation phase, which is
based on the rate at which the vultures are either satiated or hungry. Quantifying the falling rate of
satisfaction, Eqn (4.3) has been used to model this phenomenon.

o (T iteration, T iteration;
t=h(sin"|z ¥ —— |+ cos|z* ————| -1
2 maxiterations 2  maxiterations

4.2)
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terati
F=Q%rand; + 1) % 7% (1 — —2410M_y 4.3)
maxiterations

4.3. Exploration

In the wild, vultures have excellent visual acuity and the capacity to identify food and recognise sick
or dying animals. However, locating food for vultures may be quite challenging. In the AVO algorithm,
vultures may scan various random regions depending on two distinct tactics, and a parameter known
as P1 determines which approach to use. This option must be assigned a value between 0 and 1 before
to the search operation, which determines which of the two search techniques is used.

R(i) — D(i) * F > rand,,
P(i+ 1) ={R(i) — F + rand, * (ub — Ib) * rand, 4.4)
+1b) < rand,,

4.4. Exploitation

During this phase, the AVOA’s efficiency stage is looked into. If F is below 1, the AVOA moves on
to the exploitation phase. This phase also has two parts, and each part uses a different strategy. Two
parameters, P2 and P3, show how likely it is that each strategy will be chosen in each internal phase.
The first phase strategies are chosen with parameter P2, and the strategies available in the second phase
are chosen with parameter P3. When the value of F is within 1 and 0.5, the AVOA enters the first phase
of the Exploitation phase. In the first phase, there are two different flight and siege-fight strategies that
are used in a rotating fashion. P2 is used to figure out which strategy each player will choose. This
value must be between 0 and 1 before the searching operation is done. Eq (4.5) shows how to do this -

i _ | D) * (F + randy) — d(t) > rand
Pu+ )= { RG) = (S1 +S2) < randyy *5)
S| = R() * (%;P(i))cos(ﬂi)) (4.6)
S, = R(i) * (%:P(i)) sin(P(i)) (4.7)

Food Competition: When F = 0.5, the vultures are pretty full and have enough energy. When a lot
of vultures gather around the same food source, it can lead to violent fights over the food. At these
times, physically strong vultures don’t like to share food with others. The weaker ones attempt to tire
out the healthier ones and get food from them by gathering and engaging in little battles. This step is
shown by Eqn (4.6) and (4.7).

D; * (F + rand,) sin(P(i)) (4.8)
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S, = R() * (%;P(i)) sin(P(i)) 4.9)

Pi+1)=R3G-(S1+S2) (4.10)

In Egn (4.9) and (4.10), R(1) indicates the location of the two optimum solutions, which is derived
using Eqn (4.8). In Eqn (4.6) and (4.7), cos and sin correspond to the sine and cosine functions,
respectively. The random numbers rand5 and rand6 are between 0 and 1. Finally, the location of the
vultures is calculated using Eq (4.10).

We constructed our optimisation method in the manner described in Figure 4.

Start N

%/

Input data of 69-bus RDS system, Load
factor and meteorological data etc.

Declaration of variables, definition of Objective
functions and System constraints

Vulture population, Bound
‘ Variables and other parameters

A

African Vulture optimisation
initialisation

&>

Yes
Fitness Evaluation, find first and second ‘ N

best vulture

»

»<_j<Pop

Yes
v

Select first and second best vulture

v

No Update t, z and calculate F ‘

Exploration Phase

Yes 4@ No

Exploitation Phase

Yes No—
Yes No
i Yes No Yes No
v v v v
Update Update Update Update Update Update
Vulture Vulture || Vulture Vulture Vulture Vulture
position position || position position position position

! b L

+ Return first best solution (vulture)
Finish
inish )

Figure 4. Flowchart of African vulture optimisation algorithm (AVOA).
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4.5. Experiment and discussion

A series of simulation runs were conducted to compare the performance of the AVOA against that of
other algorithms. There are six benchmark functions, including uni-modal and multi-modal functions,
described in Table 1 for measuring the performance index.

Table 1. Benchmark functions.

Benchmark function type Minimisation of function Range of variables
(Definition)
Uni-modal A =34, 22 x = [-100, 100]
Uni-modal £ =34 (3, x) x € [~100, 100]
Uni-modal A = 25100 (x40 - xl?)2 + (- 1)7? x € [-30,30]
Uni-modal fi(x) = 24, (Ix; +0.5]) x € [-100, 100]
Multi-modal fs(0) = -3, (xSin( |x,~|))2 x € [-500, 500]
Multi-modal fo) = —20exp (—0.2 \/ Lyd xf) ~ | xe[-32,32]
exp (é Zflzl c0s27rx,-) +20+e

This performance evaluation of optimisation algorithm is based on the outcomes of 30 distinct
runs containing 500 iterations. The standard deviation, mean error, worst error, and best error were
determined and compared.

The performance metrics derived from MFO, FFA, PSO and DE algorithm and AVOA are compared
in Table 2. As indicated in Table, AVOA has greatly outperformed other optimization methods while
evaluating f1-f6 benchmark functions.

5. Results and analysis

The proposed method is evaluated by its implementation on IEEE 69-bus RDS. The AVO algorithm
was used with the maximum population count of 50, number of iterations is 30 for all test cases. The
backward-forward algorithm is used for solving load flow analysis. Valve regulated deep cycle lead
acid Batteries having nominal voltage and current rating of 12 V and 97 Ah, respectively are used. The
dispatch cycle of BESS is assumed in this research to be 24 hours long with an equal gap of one hour
between each stage (s). Five distinct instances are analysed in the study are Case-1: Base case (without
DG), Case-2: With PV only, Case-3: With WTG only, Case-4: With PV and WTG and Case-5: With
PV, WTG and BESS.

The results obtained for each of the above cases are as below. The results indicate an improvement
in reduction in power loss (Case-5) by 62% to 898.38 kW compared to base case (Case-1). The security
margin of the system has also improved (Case-5) by 144% to 0.56 compared to 0.23 in base case (Case-
1). The feeder deferal limit has been calculated by considering maximum apparent power demand in
each cases throughout the day and base is taken as 4 MVA. Considering 5% increase in load in each
year and maximum apparent power demand from grid in each cases, it was found that the feeder
investment deferral will be maximum in Case-5 up to 55 years. This signifies the loads can be added
to the existing RDS without additional investment in feeder expansion.
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Table 2. Results of performance metric for benchmark funtion evaluation. (comparison with
MFO, FFA, PSO and DE algorithms.

Benchmark function | Parameter | AVOA MFO FFA PSO DE
(Uni-modal / Multi-
modal)
filx) Best 5.44e — 269 1.018e — 01 2.27e¢ — 07 1.37¢ + 03 7.46¢ — 05
(Uni-modal) Worst 6.05¢ — 198 1.00e + 04 2.17e¢ — 06 4.27e¢ + 03 7.89¢ — 04
Mean 2.0le — 199 1.66¢ + 03 7.88¢ — 07 2.37¢ + 03 3.36e — 04
Std dev 0.00e + 00 4.36e — 96 5.15¢ — 07 6.17¢ — 02 1.83e¢ — 04
f(x) Best 4.92¢ — 217 3.45¢ + 03 2.78e + 03 4.07¢ + 03 2.17e + 04
(Uni-modal) Worst 2.35¢ — 142 4.49¢ + 04 7.40e + 03 2.29¢ + 04 5.36¢ + 04
Mean 7.83¢ — 145 2.23e + 04 5.03¢ + 03 9.20e + 03 3.64e + 04
Std dev 4.29¢ — 144 1.19¢ + 04 1.32¢ + 03 4.24¢ - 03 7.01e + 03
f3(x) Best 1.96¢e — 05 1.17e + 02 1.51e + 01 1.48e + 05 2.75¢ + 01
(Uni-modal) Worst 2.56e — 02 7.99¢ + 07 1.85¢ + 02 1.62¢ + 06 2.38¢ + 02
Mean 6.50e — 03 2.69¢ + 06 7.31e + 01 5.15¢ + 05 6.00e + 01
Std dev 7.15¢ — 03 1.45¢ + 07 7.53e¢ - 01 3.37¢ - 05 6.31e — 01
fa(x) Best 2.43e — 07 2.80e — 01 1.07e — 06 1.19¢ + 03 7.32¢ - 05
(Uni-modal) Worst 6.58¢ — 06 1.95¢ + 04 1.24e - 01 3.55¢ + 03 5.72¢ — 04
Mean 2.43e — 06 2.66¢ + 03 4.26¢ — 03 2.35¢ + 03 2.65¢ — 04
Std dev 1.89¢ — 06 5.18¢ + 03 2.25¢ — 02 5.34e + 02 1.47¢ — 04
fs(x) Best —1.25¢ + 04 —1.00e + 04 -9.37¢ - 03 —5.10e + 03 7.32¢ — 05
(Multi-modal) Worst —1.21e + 04 —-6.47¢ + 03 4.88¢ + 03 —2.69¢ + 03 5.72¢ - 04
Mean —1.25¢ + 04 -8.51e+ 03 —6.89¢ + 03 -3.82¢ + 03 2.65¢ — 04
Std dev 1.00e + 02 7.76e + 02 1.14e + 03 6.19¢ + 02 1.47¢ — 04
fo(x) Best 8.89¢ — 16 5.58¢ — 01 9.24e — 05 6.71e + 00 3.04e — 03
(Multi-modal) Worst 8.89¢ — 16 2.00e + 01 8.73¢ — 04 1.20e + 01 7.78¢ — 03
Mean 8.89¢ — 16 1.40e + 01 3.44e - 04 1.02¢ + 01 5.19¢ - 03
Std dev 0.00e + 00 7.67¢ — 00 1.62¢ — 04 1.30e — 00 1.32¢ - 03

Table 3 summarises the findings for the suggested strategy for optimum size and positioning of PV,

WTG and BESS.

Figure 5 indicates hourly minimum voltage profile for all test cases. It is observed that in Case-2
(PV only) the voltage profile improves from 6 AM to 6 PM considering the solar insolation during
the period, however in Case-5 (PV, WTG and BESS) the system voltage profile improves throughout
the day. Figure 6 represents the improvement in minimum hourly bus voltage profile in Case-5 as
compared to other scenarios clearly across all nodes of RDS. Figure 7 indicates hourly minimum
security margin profile for all test cases. It is observed that in Case-2 (PV only) the voltage profile
improves from 6 AM to 6 PM, however in Case-5 (PV, WTG and BESS) the system security margin
improves throughout the day. Figure 8 represents the improvement in minimum security margin profile
in Case-5 as compared to other scenarios clearly across all branches of RDS.
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Table 3. Results of the optimal solution for sizing & placement of PV, WTG and BESS.

Parameters Base PV WTG PV & WTG PV, WIG &
case BESS
Location of PV (Bus no) - 53, 62, 69 - 24 8, 69
Size of PV (no of units) - 124, 643, 176 - 39 77,115
Location of WTG (Bus no) - - 9,61, 69 2,12, 62 21,29, 61
Size of WTG (no of units) - - 183, 530, 246 34,316, 528 115, 203, 430
Location of BESS (Bus no) - - - - 25, 69
Size of BESS (no of units) - - - - 500, 176
Total power loss (kW) 2346 1570.46 1007.84 983.63 898.38
Environmental cost benefit (Rs) | O 3.6 10* 5.37 % 10* 5.43 % 10* 5.45 % 10*
Min Sec Margin (per unit) 0.23 0.23 0.47 0.5 0.56
Min voltage (per unit) 0.929 0.929 0.953 0.955 0.957
Min Feeder deferral period | 17 17 42 46 55
(Yrs)
0.99F
g ' 2098}
;5_ X \%0.97 r
;g if 0.96F
E . éo.os-
" $ llzs’sf):layse —— llx,%VvTvg(;z BESS 0.94 _é)_ 1'3355:?; ‘ —— 3,8&%6& BESS
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Figure 9 indicates hourly power loss profile for all test cases. It is observed that in Case-5 (PV, WTG
and BESS) the hourly power loss is least throughout the day. Figure 10 represents the improvement
in reduction in power loss profile in Case-5 as compared to other scenarios clearly across all branches
of RDS. Figure 11 indicates the convergence curve of optimisation function with respect to iterations.
The solutions converge for all cases and the minimum cost of objective function is achieved in Case-
5. Figure 12 represents the state of charge after one cycle, which changes between the predefined
lower and higher limits throughout a complete dispatch cycle of BESS. Figure 13 indicates the floating
voltage of BESS and Figure 14 represents the current of BESS during charging and discharging cycle.
Figure 15 indicates HST and DT aging acceleration factor profile. The five different cases were further
compared with base load and an load increase of 50% of base load. It is clearly visible that the Case-1
has the highest HST and DT aging acceleration profile, which signifies the loss of life of DT. Whereas
in Case-5 the HST profile and DT aging acceleration is minimum in both scenarios i.e., base load and
in increased load condition as well. This will further improve the DT life and improve reliability of the
system.
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6. Conclusions

This work aims to optimally place and capacity planning of PV, WTG, and BESS in a radial
distribution system using novel African Vulture optimisation (AVO) algorithm. The proposed work
reduces transmission power loss with the optimal case having PV, WTG, and BESS simultaneous
placement. There is an improvement in the increased minimum security margin of the system to 0.56
(per unit) from the base case value of 0.23 (per unit). Results indicate that the voltage profile of the
system improves as well. Even in increased loading conditions, the transformer aging acceleration
factors are significantly improved. The optimal scenario also attains peak saving, and peak demand
from the grid during the 16” to 20" hour of the day is reduced, and thereby, the feeder capability
is further enhanced. As a result, the investment for feeder expansion can be further deferred up
to 55 years which is a significant economic benefit and benefits of reduction in equivalent savings
on greenhouse gas emissions.Thus the proposed research shows inherent promise for improving
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DT life span, increasing feeder investment deferral period, increased CO, savings with addition to
improvement in system voltage, security margin and power loss. As a result, this research may be
expanded to address additional complex multi-objective problems in a large-scale network.
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