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Abstract: The evolution of smart meters has led to the generation of high-resolution time-series data 

- a stream of data capable of unveiling valuable knowledge from consumption behaviours for 

different applications. The ability to extract hidden knowledge from such massive amounts of data 

requires that it be analysed intelligently. Hence, for a clear representation of the various consumption 

behaviours of consumers, a good number of data mining technologies are usually employed. This 

paper presents a systematic review of the various data mining techniques and methodologies 

employed while profiling energy data streams.  The review identifies the strengths and 

shortcomings of existing data mining methods as applied in research, focusing more on data 

processing techniques and load clustering. Also discussed are data mining methods used to profile 

consumption data, their pros and cons. It was inferred during the research that the choice of data 

mining technique employed is highly dependent on the application it is intended for and the intrinsic 

nature of the dataset. 

Keywords: load profiling; data mining; energy data; smart meters; data pre-processing; load 

clustering 

 

1. Introduction 

With the growing interest in Smart Grid, consumption data in electricity collected are no longer 
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limited to only billing and pricing purposes [1,2]. The need to measure electricity consumption data 

coupled with the recent advances in sensing, measuring and control technologies has also led to 

smart meters that can measure and communicate electricity consumption [3,4]. Smart meters are 

capable of collecting energy data parameters at a higher frequency (15 minutes or less), providing a 

large volume of load data that is capable of giving a quality reflection of consumers‟ behaviours 

compared to traditional meters [5–7]. The data on electricity consumption collected are forwarded 

through reliable communication systems to central collection points, usually via a Wide Area 

Network (WAN) [8,9]. Analytics are then carried out on the data to derive inherent valuable 

knowledge that can be used to make informed decisions that will improve the efficiency of the 

energy systems, such as implementing some demand response programs [10]. As illustrated in Figure 

1, researchers carry out data pre-processing, cleaning, and profiling to derive rich and related 

knowledge from the data on electricity consumption. In some scenarios, analysts augment the 

consumption data with other sociodemographic data features such as weather information. Also, in 

order to simplify the data for analysis, features are often extracted from the data before analysis [11]. 

 

Figure 1. Knowledge discovery process. 

Data analysis for profiling and classifying customers based on their energy usage pattern is 

important for demand and supply-side management. Load Profiling (LP) involves the classification 

of load curves according to consumption patterns over a period [11,12]. It is an essential tool for 

regulators in their bid to manage energy systems. Accurate load profiling leads to better load 

scheduling, peak-load detection and other demand-side management applications [13–16]. However, 

mining energy data has become exerting and expensive, following the phenomenal growth in energy 

databases and the stochastic nature of loads [17,18], such that it is becoming impossible to analyse 

consumer consumption behaviour at an individual level [19,20]. Hence, [6], [21], and [22] noted that 

traditional databases and statistical analysis are no longer sufficient in extracting knowledge from 

raw data coming from smart meters. The conventional approach involves aggregating the time series 

data into a representative profile using simple statistical analysis, but this is impractical for profiling 

or grouping consumers [23]. This approach lumps different consumption behaviours together, hence 

giving poor and misleading Load Profiles (LPs), which in many cases leads to the loss of relevant 

information about the consumers. 

Furthermore, wireless meters occasionally lose data packets due to power loss, transmission 

error or unstable internet connection [4,9,24–26]. However, most challenges posed by big data occur 

during data preparation [26]. Therefore, data analysts must adequately address missing values, 

outliers, duplications in the consumption data received and other related issues. 

Data Mining (DM) techniques are the most auspicious tool for deriving knowledge from large 

datasets and are classified as: supervised and unsupervised analytics [14,27,28]. DM techniques are 

very useful in technically addressing the highlighted complexities without altering the quality of 

extracted embedded information [29]. Hence, DM techniques such as clustering are instrumental to 

load profiling analysis. It involves intelligent grouping of consumers based on their consumption 
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behaviours, identifying similar electricity consumption patterns before any aggregations are applied. 

This way, there is no loss of profile shaping [22,23]. After clustering, the cluster‟s profiles are 

aggregated by evaluating the shape characteristics of each cluster or by aggregating the centroids 

from each cluster depending on the objective(s) of the clustering, thus, giving representative LPs [30].  

Furthermore, the clustering of various consumption behaviours (clusters) of a consumer (knowledge 

discovery) is carried out to obtain LPs for a single household. 

Most previous studies investigated the various techniques used in collecting and applying smart 

meter data. Only a few paid close attention to the techniques employed during data preparation and 

load profiling. A recent comprehensive review on smart meter data analytics was conducted by [11]. 

However, it only reviewed literature around applications, methodologies, and challenges of analysing 

consumption data. Also, [31] reviewed load profiling and its application to demand response 

programs such as price-based and incentive-based programs. The paper excluded issues around data 

preparation. This paper differs from [11] and [31] by focusing on the data mining methodologies 

employed during data preparation and clustering of smart meter data towards load profiling. 

Association rule mining, which is potentially valuable for information extraction and knowledge 

mining from big data, was not considered because its application to smart meter data is relatively 

new. Only a few articles employed the mining technique [32]. This paper emphasises data 

pre-processing and load profiling using unsupervised mining methods to fill the gap. It provides an 

updated review of data mining techniques employed for this purpose. It analyses and evaluates 

existing and novel approaches adopted on outlier detection, data normalisation, data reduction and 

load profiling.  

Pre-processing of data is a fundamental task that transforms acquired raw data into more useful 

and understandable format. Inefficient data pre-processing leads to poor and misleading load profiles 

and data interpretation [25,26]. Adequately addressing issues such as data missing values, outlier 

detection, data reduction, data normalisation, data duplication, and other related issues leads to 

effective detection of information from data that are relevant and useful for stakeholders to make 

informed decisions. 

Section 2 of this paper illustrates the methodology employed in the acquisition of related 

articles that were reviewed. Section 3 presents the results obtained from the systematic review 

conducted. Section 4 discusses the knowledge obtained from the reviewed articles, which includes 

the various data mining techniques employed during data pre-processing and data clustering towards 

the profiling of load consumption data, while Section 5 presents the conclusion that can be drawn 

from the review. 

2. Methods 

This paper conducted a systematic review following the reporting checklist of the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [33]. A bibliometric analysis 

was carried out on the IEEE Xplore and ScienceDirect databases on 12 January 2021 and 28 January 

2021. The query employed for both databases is as follow: ((“smart meter” OR “consumption”) 

AND “data” AND “mining” AND (“technologies” OR “methods”) AND “load” AND “profil*”). The 

query was used to explore the „article title, abstract, keyword, the content‟ of every published 

document in the database between 2010-2021, following the fact that the subject area is a novel and 

growing field and the smart grid initiatives started around the late 2000s [11]. In addition, this review 

only considered research articles around data mining and smart meter data profiling. 
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3. Results 

The first search from the IEEE Xplore and Science Direct databases gave 2,907 and 23,080 

papers, respectively. The authors screened the papers carefully to 99.  

The search result from the IEEE Xplore was first indexed to extract only conference papers, 

journals, early access articles and books, reducing the articles to 2884. During the selection phase 

from the two search results, the paper excluded some “consumption data” related articles such as 

wind power plants and photovoltaic power systems as they are outside the scope of the review; this 

also reduced the articles from the IEEE Xplore database to 1810. The reviewers filtered out 1736 

after reading through the title and abstract, leaving 61 related articles from the IEEE Xplore database. 

On evaluating the results from ScienceDirect, considering only review articles, research articles and 

book reviews and reading through the titles, 31 related articles were selected.  

The review considered articles that combined other socio-economic and demographic factors 

with acquired smart meter data when profiling electricity consumers on both databases. These have a 

significant effect on consumers‟ profiling results. Also excluded are articles with in-depth 

consumption profiling such as household appliances identification and profiling as such subjects are 

broader than the scope of this review. In the sorting, google scholar was used to furthering select 11 

other articles found pivotal to understanding some of the articles obtained from the two significant 

databases, yielding 121 reviewed articles. 

 

Figure 2. Flow chart of the study selection process. 

4. Discussion 

4.1. Data pre-processing 

The quality of high-resolution consumption data does not infer its direct usability. Data 
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Pre-processing is the process of preparing data for knowledge discovery. It consists of tasks such as 

cleaning, transformation, integration and reduction due to incompleteness, noise, ambiguity and 

inconsistency that are obtainable in a dataset [10,34,35]. Data collected must be cleaned, transformed 

and(or) reduced before they can be easily interpreted, visualized and manipulated [36]. Real-world 

data are generally highly susceptible to inconsistencies; hence the need to clean consumption data 

from issues such as missing data and outliers remains fundamental [8,29]. Also, for smooth analysis, 

every column in a dataset is expected to take a standard data format (such as timestamp: date format, 

energy consumed: a processable format). Many technical works of literature are silent about the 

techniques employed in data cleaning [37], while some works of literature such as [38] decided to 

use uncleaned data, noting that cleaning the data obtained may influence the estimation process. A 

substantial percentage of works of literature were silent about their approaches to missing data as 

some made use of already pre-processed datasets [18,39]. However, for practical application of any 

knowledge embedded in raw smart meter data, the data must be cleaned from every abnormality as 

careful pre-processing can improve the result of data analysis [40]. Discussed in this section are the 

major setbacks and the various techniques employed in reviewed literature. 

4.1.1. Missing data treatment 

Missing data is a common issue when processing a dataset. Missing data often arises from 

faults in sensors, technical issues, instability in internet connection or malfunctions from any 

electronic components in a smart meter [35]. Any decision taken on missing data comes with 

consequences, as missing data impacts learning, inference and prediction obtainable from the data, 

depending on its proportion [25]. Therefore, before adopting any approach, it is essential to 

determine the nature and pattern of the missing data (random or non-random) in the complete set. 

This assists in selecting the appropriate approach to adopt in handling missing data. Figure 3 

illustrates the various approaches to missing data. The missing values in a dataset can either be 

ignored or filled. Deleting or ignoring data is the simplest solution, but it is not advisable,it may 

contain valuable information about consumption behaviours. This approach is appropriate when the 

missing data is relatively small compared to the total population, considering that the process might 

drop a single value or entire row(s) [41]. Z.A. Khan et al. [18] also noted that it might be better to 

remove missing data rather than fill them using exploration techniques. Hence, many works of 

literature neglected a subset of the total population of their dataset due to missing data to avoid 

uncertainties and preserve the original features of data [20].  

Replacing missing can be done through general methods such as imputing an evaluated value 

or using the advanced approach, which involves subjecting the data (some portion) to models such 

as K- Nearest Neighbour (KNN). A common approach for non-time series data is mean imputation. 

It involves the replacement of the missing value with the averaged value. This method is strongly 

criticised. It is known to have a significant influence on the data‟s variance [42]. In replacing a time 

series data which the nature of consumption data, the backward fill and the forward fill are very 

ubiquitous, the “backward fill” approach involves the replacement of the missing value with the 

previous reading, while the “forward fill” approach propagates the missing fields with the last valid 

values forward. It is important to note that the techniques mentioned above depend on themselves, 

not other neighbouring variables, according to [43]. This approach often leads to inefficient analysis 

and produces biased estimates of the association investigated. However, techniques such as 

interpolation and regression allow for the maximisation of other dependent and independent 
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variables during data imputation. Illustrated in Table 1 is the nature of the consumption data 

experimented on by some works of literature and the techniques employed in handling missing data. 

 

Figure 3. Dendrogram of general approaches to missing data. 

Table 1. Approaches of literature to missing data. 

Literature Period of Collection/Total 

Size 

Missing Data (%) Method employed 

[44] 1 year / 660 users not stated Linear Interpolation 

[45] not stated / 208 users not stated Multilayer perceptron (MLP) 

Artificial Neural Network 

[41] 1 year/ not stated not stated deletion 

[46] 1 year / 4554 customers not stated deletion 

[47] 537 days / 6445 users 0.18% deletion 

[18] not stated / 5000 users 0.94% deletion 

[22] 6 months / 4000 users 1.25% deletion 

[48] 1 year / 15433 users not stated deletion 

[35] not stated / not stated 1.76% Improved Lagrange 

Interpolation (PB‟Eyes) 

[49] 900 days / 100 users 13.85% deletion 

[40] 7 days / 34418 users 0.2% deletion 

[20] 366 days / 200 users 17.5% deletion 

[29][50]  1 years / 171 users not stated Single exponential smoothing 

& SARMA model 

[30] 1 year / 105 buildings 23% deletion 

[42] 1 year / 30 users not stated Mean Imputation & deletion 

[51] 1 year / 106 users 17% deletion 

[52] 1 year / 269 users 15% Inference Method 
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Among the general methods illustrated in Figure 3, interpolation is the most used [35,44]. It 

involves deriving unknown values from a known set of values in the dataset. Among the various 

mathematical formulae for interpolating, the Lagrange interpolation was well adopted [35]. Another 

ubiquitous approach in Table 1 is the replacement of missing values with the average load of a highly 

correlated time interval.  

Another form of compromise was found in [53], where attention was only given to a series of 

missing data with not more than five (5) days in a row using the inference method. Missing data were 

replaced with data points of the previous week (same day, same hour)[52,54], neglecting the rest. J.P. 

Gouveia et al. [42] used a dual approach: deleting from the total population, i.e. households whose 

missing data is more than 20%, and subjecting other cases to mean imputation methods (using 

neighbouring values). A. Mutanen et al. [44] employed linear interpolation to fill missing data when 

the data interval is not more than five (5) rows, while any pattern of missing data more than five (5) 

rows was removed from the set.  

A good number of general methods have been modified to suit individual researchers‟ purposes; 

an improved linear interpolation model called moving window was found in [54]. They noted that the 

method is easy to implement when the duration of the missing data is small. P. Manembu [25] also 

developed an improved Lagrange interpolation called PB‟Eyes. This solution was used to obtain the 

data pattern of a missing set by subjecting any missing row in the dataset to either first order, second 

order or third order Lagrange Polynomial based on the numerical relationships between the missing 

row and the surrounding rows.  

Besides the conventional methods illustrated in Table 1, many recent works of literature have 

developed unique and novel approaches to handling missing consumption data. An approach called 

forecasting, and exponential smoothing technique was found in [29] and [50]. This method employed 

the single exponential smoothing equation when the missing value window in the dataset was more 

than 12, and Seasonal Auto-Regressive Moving Average (SARMA) model was utilised when less than 

12. However, a recent comparison was made by [55] using power data which still infers the superiority 

of machine learning models over statistical methods. The authors compared two statistical methods: 

autoregressive integrated moving average (ARIMA) and linear interpolation (LI) models, and three 

machine learning methods, KNN, multilayer perceptron (MLP), and support vector regression (SVR). 

More novel and sophisticated approaches to replacing missing data were found in [43,56–60]. In a 

recent work by [43], it was noted that the interpolation technique requires relevancy between the 

neighbouring variables and the variable of interest, which may not be obtainable in all cases. Also, the 

regression technique requires that the form of function be pre-defined. 

Consequently, the parameters of the function need to be estimated by model training. Hence, the 

authors considered the interpolation and regression methods inefficient as they could not capture the 

trend. This conventional setback led to the adoption of a non-linear compensation algorithm for a 

linear strategy of replacing missing data [43,58‒60]. This method was proved by [43] and [60] on 

energy data, but it has not been well adopted by various works of literature related to smart meter data. 

4.1.2. Outlier detection 

Outliers are data points whose values are exceptionally far from the mainstream data value; this 

often results from measurement error or data corruption during communication [10]. Such data points 

could take a negative value or an overly-high value [61]. This data set gives a wrong definition of 
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consumers‟ behaviours if not technically identified and managed. Due to the enormity of consumption 

data, identifying outliers manually by visual observation can be exerting and misleading; hence, the 

need for data mining techniques. Having identified the outliers from a set, they could be dumped or 

replaced using any of the approaches discussed in the previous section. It was observed that not all 

outliers are errors. Some outliers bear some pieces of information about consumers‟ behaviours or the 

power grid, from which relevant knowledge can also be drawn [38,62]. During the pre-processing of 

data by [44], the authors opined that having outliers in load data does not necessarily imply the 

measurements were erroneous but noted the outliers might not be suitable for some applications such 

as anomaly detection [63]. Having identified outliers in data, they can be removed or replaced using 

any treatment techniques discussed in the previous section. Authors in [64] replaced some outliers 

using linear interpolation. They identified and removed the lower and upper outliers of the 

consumption distribution using the Interquartile Range (IQR) of the standard deviation and K-Nearest 

Neighbour (KNN), respectively.  

In [7], they employed three (3) algorithms named distance-based, density-based, and Local 

Outlier Factor (LOF) to identify outliers in the REDD dataset used for consumption analysis. The three 

(3) algorithms gave a similar result, which filtered out 10 out of the 443 houses considered in the 

research. The authors justified the removal because inclusion will influence the clustering analysis 

further done on the entire data set. In [65], daily consumption data points that fall outside three 

standard deviations (3σ) were considered outliers. X. Lin et al. [66] assumed the load data to be a 

normal distribution and set the reject level at α = 0.05. A. Mutanen et al. [44] also followed this 

assumption, customers whose monthly consumptions differ from the average consumption of all 

customers, outside the given probability (80% - 99.99%) from the normal distribution were regarded 

as outliers and therefore not profiled. Furthermore, after obtaining the daily load profile in [41] from 

averaged load diagrams for each consumer, the authors noticed that some days were outrageously 

different from the representative load diagram. The authors dealt with outliers by discarding 10% of 

days with the highest Euclidean error [44]. 

Evaluating a set‟s interquartile range (IQR) is another way to fish out outliers [67]. However, J. 

Yang et al. [68] opined that instead of marking points that lie alone in low-density regions as outliers. 

Furthermore, some outliers are never evident until the data are clustered, while some are identified 

while formulating the representative profile for each consumer [69]. Hence, in recent research works 

such as [62] and [70], the total smart data accrued were first subjected to a clustering technique to 

remove outliers. Z.A. Khan et al. [71] filtered out 0.31% outliers after subjecting the pre-processed 

data to extended K-means clustering. After subjecting the data to K-Means clustering [50]  removed 

outliers by computing an upper-lower band for every consumer cluster, using three scaled median 

absolute deviations to calculate the upper and lower bound using minimum sample points of all load 

profiles in a cluster. Load profiles outside this bound were considered outliers in the formation of the 

representative profile for each cluster. Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) is the most recent clustering technique found in works of literature for detecting outliers. 

The algorithm classifies data points with insufficient neighbours as noise. X. Liu et al. [23] validated 

the efficiency of the hypothesis by using the DBSCAN algorithm to detect outliers of daily electricity 

load profiles before subjecting it to a second clustering step for Typical Load Profile (TLP) extraction. 

D.I. Jurj et al. [62] also carried out a comparative analysis of Interquartile Range/ Median (IQR), LOF 

and DBSCAN methods. The results showed DBSCAN algorithm as a superior technique for outliers‟ 

identification among many other techniques. 
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4.1.3. Data normalisation 

With the diverse and complex consumption data, ML algorithms will not function correctly 

without scaling down and confining the original consumption data to a specific range. Thus, for 

practical analysis of consumers‟ behaviours, it is imperative to set the total population within a 

standard; with this in place, all data points are ably represented in the complete set [20,36,53,72]. 

Normalisation aims to reduce the magnitudes of the data sequence without altering the consumption 

behaviours. [71] and [73] noted that the normalisation‟s choice affects the clustering result as some 

methods fail to maintain the original definition after scaling down. Hence, the method adopted in any 

application work should be wisely selected. Generally, there are three standard methods of 

normalisation: decimal scaling, min-max normalisation, and z-score normalisation. However, the two 

latter methods are the most used in energy data analytics [20,74].  

Minimum-Maximum or Unity based Normalisation: This method ensures all data are linearly 

mapped into the interval [0] – [1]. Unity-based normalization scales consumption data down to the 

range [0-1] before clustering, however, different equations as illustrated in Table 2 were seen in 

literatures but Equation (2) remains the conventional expression, used in 

[13][20][29][38][40][41][47][66][71][75][76][77]. During the hourly load profiling carried out on 112 

feeders by [10], power data were normalized to the range 0 -1 using Equation (4); while ensuring that 

equation (5) is maintained. Furthermore, [23][36][41][51][64][77][78] and [79] normalised the 

readings from each customer in their works by dividing every data point from each consumer by their 

respective maximum power value (which could be daily, monthly or yearly load consumption), [41] 

noted that the method enables the comparison of the consumption profile with other customers, 

regardless of the consumption volume of each one. 

Z-score Normalisation: This normalisation method scales the data sequence using the mean and 

standard deviation of the data sequence. From our review, only a few works of literature employed 

this approach due to its high sensitivity to outliers [65]. However, [80] noted that z-score 

normalisation has no adverse effect on analysis where usage pattern study is insignificant. Equation 

(7) in Table 2 presents the expression for this approach. This method is not as effective as 

Unity-based Normalisation. [30] compared the impact of z-score and min-max normalisation on 

daily and annual profiles, the result showed that many operational intensities were lost using z-score 

normalisation. 

Other approaches to normalisation akin to min-max normalisation were found in some works of 

literature. Different corresponding values were employed rather than normalising each data point by 

dividing by the respective maximum data point. [53] normalised its daily profile using the average of 

the data point of each day. [30] presented a varied approach during the daily load profile formulation 

over one year using a sub-method called maximum normalisation. The hourly raw consumption was 

normalised by dividing each data point by the maximum value in the year instead of the day. The 

authors noted that the method is more preservative as it helps maintain information about the base 

load. Also, a novel method called „de-mining was found in [84]. The minimum load demand was 

first subtracted from each data point before dividing each by the total consumption, following the 

fact established by [85] regarding the „de-mining method‟s high efficiency when linking exogenous 

activities to electricity consumption patterns for analysis. 
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Table 2. Normalisation techniques. 

Normalization 

Techniques 

Literatures Equation Variable Definitions 

Unity or Min-Max 

Normalization 

[20][29][38] [40] 

[41][48] 

[51][61][71] [66] 

[75] [76] [79] 

     (2) 

 

 

 

x =original load data 

sequence, 

 min(x) = maximum values of 

the load data sequence, 

max(x) = maximum values of 

the load data sequence, 

 x‟ = normalized data 

sequence. 

[13]   (4) 

 

                 (5) 

 

𝑌𝑡  = Power drawn by a feeder 

at a time 

𝐴𝑤  = Average Power of the 

day 

𝑒𝑡  = Error in power drawn by 

the feeder 

𝑃𝑡 =Proportion of Daily Load 

that is drawn the tth hour 

interval 

[9] [23] [30]  

[36][41] [51][64] 

[78] [79] [81] [82] 

  (6) 

 

𝑁𝐿𝑑,𝑡  = the normalised load at 

a specific hour, day d and time 

t, 

 𝐿𝑑,𝑡   = the original load at the 

corresponding hour, day and 

time, and, 

 𝐿𝑚𝑎𝑥 ,𝑦𝑒𝑎𝑟  = the maximum 

load data during the year or 

month or day at the 

corresponding day and time 

Z- Score 

Normalization 

 [65][80][83] 
        (7) 

 

v =original load data 

sequence, 

 µ= mean value load data 

sequence, 

𝜎= standard deviation of the 

load data sequence, 

 v‟ = normalized data 

sequence. 

4.2. Data reduction techniques 

Reducing consumption data before analysis has the tendency of reducing the cost of computing 

of high-resolution consumption data and also improving clustering computing performance 

[19][49][65][81], hence, the existence of numerous compression techniques. Compression 
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techniques generally have been classified into two (2) major classes: the lossy and the lossless 

compression techniques [86‒88]. Lossless techniques are known to produce a quality compression 

ratio at the expense of information loss. While the lossy techniques maintain the reverse order as 

they prioritise reducing the information loss at the expense of the compression ratio. Among the 

various lossy techniques are the Discrete Wavelet Transform (DWT), the Discrete Fourier 

Transform (DFT), Piecewise Aggregate Approximation (PAA), Principal Component Analysis 

(PCA), Singular Value Decomposition (SVD). However, the lossy compression techniques are the 

most adopted as they are more useful in accelerating a similarity search and extracting useful 

information [20]. Hence, they are mostly used in dimension reduction before clustering [31].  

According to [89], consumption data reduction can either be raw-data based, feature-based or 

model-based. However, the feature-based and model-based remain the mostly adopted 

[9][23][29][53][61][80][90][91]. 

According to [29], the feature-based method is less sensitive to missing data and can 

effectively reduce raw data having different resolutions with minimal loss [29][73][92]. [29] 

referred to it as a pre-processing step needed for improving clustering, while such is generally 

referred to as Indirect clustering. Feature extraction involves extracting features such as mean, 

standard deviation and some load profile characteristics such as load factor from the raw data 

without changing them, still giving the true definition of the raw data. They can be extracted from 

statistical computation or via a learning algorithm.  

The extracted features are then further normalised and used for clustering [61]. Using feature 

extraction, [31] classified indirect clustering methods into dimension reduction-based clustering and 

time series-based clustering. The former uses linear dimension reduction methods such as PCA and 

deep learning to replace consumption data with artificial variables. The latter uses analytical 

methods to extract features from time-series data, employing PAA, SAX, SVD etc. Extracting the 

frequency domain representation (consisting of the amplitudes and phases) of the time series data 

using algorithms such as Fast Fourier Transform (FFT) is another approach to feature extraction 

found in the literature [93,94]. However, despite the effectiveness of the feature-based approach, the 

residential consumption load dataset is bound to contain noise and unequal time series, a challenge 

that has a significant influence on clustering results [94]. 

In addition to the need to address issues around privacy, some researchers prefer the 

model-based approach. The effectiveness of the model-based approach was validated by [95]. The 

approach was subjected to an incomplete and noisy time series; the authors noted that the approach 

tends to facilitate parallel computing and fast clustering. The result obtained by [29] using feature 

extraction before clustering was compared to that from Self-Organizing Mapping (SOM) based 

clustering using the following performance indices: Davies–Bouldin Index (D.B. index), 

Calinski–Harabasz index (C.H. index) and Silhouette score (S score). The result shows that feature 

extraction as a means to data reduction is far more efficient than direct clustering. However, the 

method is application dependent. [53] also validated the superiority of feature-based clustering by 

comparing the clustering performance obtained when five (5) features were extracted before 

clustering and the direct clustering using the Silhouette score (S score). 

A. Tureczek et al. [40] noted that some principal components such as intrinsic temporal data 

structure hidden in the smart meter data are often overlooked by clustering algorithms (in their case, 

K-Means) if such prominent features are not extracted before clustering. Hence, they employed 

normalisation, wavelet transformation and autocorrelation in their work to extract the temporal 

components before clustering. The result indicated a better clustering and faster performance than 

direct clustering.  
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Y. Wang et al. [39] decomposed daily load profiles into a few partial usage patterns (PUPs). 

They used sparse coding and non-negative K-SVD technique to compress consumption data and 

extract PUPs, respectively, due to the sparse nature of the dataset. The authors noted that high 

electricity consumption only occurs relatively at a small fraction of time for residential consumers, 

leaving consumption for the remaining period as zero. The PUPs extracted were finally combined 

linearly to form a consumption load profile. The K-SVD achieved a better compression ratio and 

lower information loss when compared with other lossy compression techniques (PCA, PAA, DWT). 

However, the time required for coding the K-SVD was 31 minutes higher than PCA and DWT. 

Hence, they opined that the technique needs optimisation for real-time applications. 

S. Lu et al. [20] and Y. Shi et al. [65] made use of Piecewise Aggregate Approximation (PAA) 

to transform dense uncompressed load data into piecewise paned data. PAA performs reduction on 

time series data by obtaining the mean value of each subsequence, which thus becomes the 

representation of the sequence. Using PAA, the number of segments, the number of data points 

represent each time series, is provided before evaluation [65]. Also, in [20], the weekly load data 

consisting of 15-minute (i.e., 672 dimensions) were compressed into 21 dimensions using PAA. 

This was achieved by dividing each day‟s load data into three representative data values, covering 

the average load (mean value) of 0:00-8:00, 8:00-16:00, and 16:00-24:00 daily. The accumulated 

evaluation from each day was then approximated as the week load profile. The efficiency of PAA 

was not compared with other compression techniques. However, the weekly load profile was 

clustered and used to create a model for characterising each cluster. In [65], the raw consumption 

data of each consumer was reduced by setting the number of segments to eight (8), reducing the raw 

daily load data. Symbolic aggregate approximation (SAX) was then introduced to take care of 

possible abnormalities in the obtained profile that may have resulted from faults or reading errors 

from the meter; thus, reducing the data to categorical data. Illustrated in Table 3 are the various 

reduction techniques employed by considered works of literature. 

Table 3. Data reduction techniques. 

SN Data Reduction Technique Literature 

1 Discrete Fourier Transform (DFT), [37] 

2 Symbolic aggregate approximation (SAX) [47][81] 

3 Principal Component Analysis (PCA) [79][96]  

4 Singular Value Decomposition (SVD) [39][97][98] 

5 Piecewise Aggregate Approximation (PAA) [20][65] 

6 Self-Organizing Map (SOM) [89] 

7 Convolutional Autoencoder (CAE) [80] 

8  Fast Fourier Transform (FFT)  [93][94] 

9 Variational Recurrent Autoencoder 

enhanced with LSTM neural networks 

[87] 

10 t-SNE (TDistributedStochastic Neighbor Embedding) [30] 

11 Multidimensional Scaling (MDS) [69] 

4.2.1. Cons of data reduction techniques and way forward 

According to [18][19][39][86] and [99], under certain circumstances, reducing the 
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dimensionality of an input dataset affects the clustering result. It alters the accurate representation of 

the original raw data as some pieces of information are lost during reduction. Also, [19] highlighted 

that the accuracy of any reduction technique is highly dependent on the intrinsic nature of the raw 

data, such as the number of readings captured in each time interval in the time-series data. Therefore, 

different lossy compression techniques have different impacts on different applications. The 

compression technique to be selected should be carefully chosen according to the characteristic 

nature of the dataset (i.e., its sparsity and diversity) [39]. However, novel approaches are evolving 

to reduce the size of time series data with minimal loss on the information. 

It was observed that feature extraction done by the majority of works are manual [90]. 

Considering the variability and non-linearity of individual load data, this is highly ineffective; thus, 

[80][91][87] and [100] recommended the use of deep learning techniques for feature extraction. The 

efficiency of this technique was experimented with in [91] when they used Convolutional Neural 

Network (CNN) to extract features from energy data before subjecting it to Support Vector Machine 

(SVM). They were identifying the socio-economic characteristics of consumers. The result obtained 

gave the best accuracy when compared with seven (7) other methods: Biased Guess (BG), Manual 

Feature Selection (MF), SVM, L1-Based Feature Selection + SVM (LS), PCA + SVM (PS), Sparse 

Coding + SVM (SS), CNN + Softmax (CS). [80] also employed a deep learning-based framework 

(Convolutional Autoencoder, CAE; a combination of an autoencoder and CNN) to reduce a Yearly 

Load Profile (YLP) of 8460-dimensional space to 100-dimensional vectors. The approach gave a 

high compression ratio of 130% and less reconstruction error when compared with other 

dimensionality reduction techniques (PCA, kernel PCA, Independent Component Analysis (ICA), 

autoencoder (AE) and DWT).  

4.3. Clustering 

Clustering is one of the popular techniques employed while profiling streams of load data. It 

involves identifying and grouping consumers with similar consumption behaviour into classes, with 

each class aggregated into a single profile, often called Typical Load Profile (TLP) 

[37][101][102][103], which then becomes the representative profile of the consumers in such class. 

Also, as earlier discussed in the previous section, clustering load data is very instrumental in 

identifying outliers in a dataset [46][90]. Through works of literature, consumption data take any of the 

three (3) different forms before clustering can be performed [29][104]: 

1. Raw time series consumption data 

2. A reduced dataset was obtained from the raw dataset using DM techniques 

3. Features extracted from consumption data 

Contained in this section are the justifications for any of the listed forms. Generally, Clustering is 

classified into direct clustering and indirect clustering [31]. Direct clustering involves the direct 

application of a clustering technique to raw data. On the other hand, indirect clustering involves 

clustering features extracted from raw or reduced data [18][31]. Direct clustering can be 

time-consuming, and high dimensional data can result in anoverfitting of the clustering algorithm. 

Hence, many works reduce the dimension of the pre-processed data using some dimension reduction 

techniques before clustering [18]. However, [89] noted that clustering using raw data comes with a 

clear advantage in performance; hence, in their work, they selected 5% of the original data for 

clustering. [29] noted that dealing with the high-dimensional consumption of raw data by down 

sampling or aggregation often leads to information loss. A good number of recent works of literature 



297 

AIMS Electronics and Electrical Engineering  Volume 5, Issue 4, 284–314. 

have adopted clustering techniques in load profiling. However, disparities were observed in the 

approaches such as (i) period of study, (ii) clustering algorithms adopted, (iii) data reduction 

techniques (iv) the use of features and many more [104]. Discussed in this section are the variants and 

justifications. However, due to the uneconomical cost on computational resources, while clustering too 

many load, optimisation algorithms such as seen in [102] are developed to mitigate the challenge. 

4.3.1. Clustering algorithms 

Numerous data mining techniques can be used to group consumers into classes based on 

consumption behaviours. However, some recent research works tend to employ more than one type of 

clustering algorithm this approach is called second-order clustering. The approach tends to provide 

better Typical Load Profiles (TLPs) in some works, depending on the application in view 

[23][30][51][105]. In the case of [66], the authors employed hierarchical and fuzzy c-means and noted 

that the fuzzy c-means algorithm is susceptible to initial clustering centre selection. Thus, they 

classified the load characteristics using the hierarchical method before subjecting it to fuzzy c-means. 

By so doing, the clustering centre was provided by the hierarchical clustering, which consequently 

influenced the accuracy of the result obtained. [89] also employed three (3) clustering algorithms 

(SOM, K-Means and Hierarchical) while generating load profiles from many customers. The approach 

was adopted based on the fact that; clustering using SOM reduces the size of the data, and it is 

computationally effective than direct clustering. The result obtained indicated that SOM + K-Means 

has better performance than SOM + Hierarchical clustering. 

Most clustering analyses run on real power consumption, not considering the impact of power 

quality. A novel approach was found in [106], where the K-Means clustering algorithm and Fuzzy 

logic were used to cluster real power consumption and Total Harmonic Distortion (THD) pattern 

separately and later combined. Generally, a conventional clustering algorithm cannot handle mixed 

data. Hence, Fuzzy Logic Clustering: an algorithm that can handle multiple patterns, was introduced. 

The result obtained by the authors gave a more precise reflection of the consumption behaviours of 

consumers.  

Multiple-step clustering was also found in works of literature. Step clustering involves the 

subjection of a dataset to a clustering more than once, using the same algorithm. This approach can be 

adopted for outliers removal before subjecting the processed set to another level of clustering for TLP 

identification, this type of clustering is called second step clustering – clustering twice [30][69]. It is 

mainly adopted for a deeper level of grouping. In [69], intra-building clustering was carried out on 

every building in a complete set using Gaussian Mixture Model (GMM) for outlier removal. After that, 

inter-building Hierarchical clustering for extraction of TLP of all buildings was carried out. The 

introduction of this strategy with a reduction technique reduced the computational cost by the ratio of 

16.5:1 compared to the direct hierarchical clustering-based strategy.  

This subsection discusses the working principles, strengths and weaknesses of some of the 

standard clustering techniques obtained in works of literature.  

a) K-means Clustering 

Partitional clustering algorithms are known for quality output due to the iterative optimisation 

process employed by them. Among the various partitional clustering algorithms, K-Means clustering 

is the most employed partitional clustering algorithm applied to load-profiling [15][19][45]. It is 

highly scalable and can sort large datasets relatively fast [106‒108]. The clustering process for 

K-means starts by first carefully selecting the number of clusters, K and the initial centroids. Each data 
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point in the remaining population is assigned to the closest centroid depending on the adopted 

proximity measure. On the formation of the clusters, the centroid of each cluster is recomputed. The 

last two (2) procedures are repeated continuously until the centroid stops changing [14][73]. The need 

to pre-set the number of clusters before clustering is always a challenge. Hence, the adoption of 

automatic assignment of the number of clusters and the possibility of validating a clustering output to 

improve clustering performance led to the modification of K-Means [14]. As illustrated in Figure 4, 

researchers lately adopted the idea of integrating the validation check as part of the clustering 

process [27]. The modification of the K-Means algorithm using this approach is referred to as 

adaptive-K-means. [15][20] used the adaptive K-Means, the evaluation of DBI was integrated as part 

of the process. The lesser the value of the DBI, the better the clustering result. The number of K were 

continuously and automatically increased until the DBI of the clusters no longer decreased. In this way, 

the best number of clusters, K was selected. 

 

Figure 4. Widely adopted clustering mechanism. 

However, there are new ways of optimally and automatically selecting the number of clusters 

based on the load profile data itself. In a recent work by [109], the authors noted that the traditional 

K-Means method does not capture peaks and truffles of the original load profile while clustering. 

Hence, a new technique called Slope-based shape clustering was formulated, resulting in better 

clustering with improved computation efficiency. Another major setback is the rigidity of the process; 

the number of clusters remains the same throughout the iteration. In contrast, it may turn out that more 

or fewer clusters would fit the data better. This led to the use of novel clustering algorithms such as 

ISODATA and affinity propagation akin to K-Means. These clustering techniques automatically adjust 

the number of clusters during iteration. 



299 

AIMS Electronics and Electrical Engineering  Volume 5, Issue 4, 284–314. 

The K-Means algorithm was also identified as impracticable when the number of customers or 

dimensions is high [23][110]. Noting that the algorithm‟s accuracy fades away with increment in the 

number of customers, as it is susceptible to noise and outliers [108]. This assertion was proved in [22], 

that K-means, K-medoids and SOM were used to cluster a relatively large sample size. From the 

results obtained, SOM outshone K-means by giving a consistently lower DB index overall across 

varying numbers of clusters. [19] therefore suggested the use of K-Means when the number of entities 

concerned is minimal. Fuzzy c-means clustering is another similar technique to K-Means clustering. 

The significant difference with this algorithm is: all data points belong to all clusters to some degree, 

such that the degree of membership of each data point from all clusters is equal to one [103]. This 

technique also has the challenge of initial selection of the number of clusters, K. However, when 

compared with K-Means clustering, fuzzy c-means has a long process because both the centroids and 

the degree of membership of each data point are updated at every iteration. Hence, it is hardly 

employed in works of literature. Also, its inferiority to K-Means has been proved in several works 

[93][102]. 

b) Hierarchical clustering 

Hierarchical Clustering is a more deterministic and flexible approach to clustering data objects as 

it does not mandate the predefinition of the number of clusters [73]. It is considered the second most 

crucial clustering technique after partitional clustering, and it is subdivided into two (2) major types, 

named Agglomerative clustering and Divisive clustering methods [14]. Agglomerative Clustering 

starts by taking singleton clusters, that is, making every data point a cluster point. The singleton 

clusters are gradually merged to form a build-up hierarchy of clusters using a dissimilarity matrix until 

the final maximal cluster is obtained in a tree-like structure. The optimal number of clusters is selected 

from the dendrogram drawn by obtaining the most prominent vertical distance that does not intersect 

any clusters. A horizontal line is drawn at the extreme ends of the point; the number of vertical lines 

passing through the horizontal line gives the optimal number of clusters [111]. The Divisive Clustering 

method uses the top-down approach in which a hierarchy of clusters is generated by continuously 

splitting a huge macro-cluster into 2 two (2) groups [73]. The tree-like structure formed after clustering 

using any of the approaches is called a dendrogram. [71] noted that the Divisive Hierarchical 

clustering is not always used in clustering consumption data in a power system due to the algorithm‟s 

complexity and high computational time. Hence, the agglomerative clustering methods were 

employed in works of literature that employed hierarchical clustering. There are different kinds of 

agglomerative clustering methods. These methods differ majorly in the similarity measures they 

employ, and they include the single link (nearest neighbour), complete link (diameter), group average 

(average link), centroid similarity, and Ward‟s criterion (minimum variance) [73]. One major 

shortcoming found with the Hierarchical clustering technique is that it is not flexible. Once a 

dendrogram is merged or split, it cannot be undone. Also, [37] noted that Hierarchical clustering is not 

sturdy towards outliers as they may emerge as additional clusters. Hence, they produce less quality 

clustering when compared to partitional clustering algorithms such as K-means. 

c) Self-Organising Map (SOM) 

Self-Organising Map (SOM) is an unsupervised clustering algorithm that uses artificial neural 

networks and adopts a two (2) dimensional grid [77]. Each neuron is connected to the neighbouring 

neurons, hence, the Euclidean distance between the input vector and the neuron is updated whenever 

the winner neuron is computed. This process is repeated for all input data, and at the end, the most 
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similar data are allocated together or closely [14]. However, some initial parameters such as learning 

rate, number of neurons and number of epochs need to be initialised before clustering. The SOM 

algorithm can map complex and non-linear relationships into lower-dimensional data; hence, it is often 

used to find patterns between electricity consumption and demographics. It is well known for its 

outstanding resilience to outliers and missing values, which helps in reducing noise in data. Hence, in 

[77] and [22], where the sample size population is exceptionally large, SOM outshone K-Means. SOM 

algorithm is also good at creating data abstraction rather than removing missing values from 

consumption data [34]. Due to this uniqueness, SOM is primarily used in indirect clustering much 

more than direct clustering, [89] noted that the algorithm is much more effective in second-order 

clustering works. 

Table 4. Clustering algorithms adopted by literature. 

SN Clustering Algorithm References SN Clustering Algorithm References 

1 Iterative Self-Organizing Data-Analysis 

Technique (ISODATA) 

[44] 14 Adaptive K-Means [20]  

2 Hierarchical, K-Means, fuzzy c-means, 

and two-stage clustering 

[103] 15 SOM and K-Means [77][78] [29] 

[89]  

3 Hierarchical and Fuzzy C Means [66] 16 K-means and Hierarchical Clustering [50] 

4 Fuzzy C-Means Clustering, Markov 

Model 

[111] 17 The Density-based Spatial Clustering 

of Application with Noise 

(DBSCAN) 

[68] 

5 K-Means [9] [13] 

[14][15][30][36] 

[37] [40] [48] [51] 

[53] [61] [65] 

[80][82][107][112][

113][114] [115][116] 

18 K-means, Complete-link (CL), 

Average-link (AL), Ward ś-link 

(WL), Normalized Cut 

algorithm (NC). 

[45] 

6 K-means, normalised N-Cut, Pairwise 

Constrained (PC 

k-means) and Metric Pairwise 

Constrained (MPC k-means). 

[41] 19 K-Means, Fuzzy C-Means, 

Hierarchical Complete linkage, And 

Hierarchical Ward‟s Methods 

 

[93] 

7 SOM + Hierarchical  [78][89]  20 K-means and Fuzzy Logic Clustering [106] 

8 SOM +K-Means++ [94] 21 Hierarchical Clustering [38] [42] [81] 

[117] 

9 K-Means, Hierarchical and Dirichlet 

Process Mixture Model (DPMM) 

[19] 22 Slope-based Shape Cluster Method  [109] 

10 DBSCAN and K-Means [23][105]  23 Affinity Propagation [110] 

11 Fast Search and Find of Density Peaks 

(CFSFDP) 

[47] 24 Follow up Leader [64] 

12 K-means and K-medoids [10] 25 Gaussian Mixture Model (GMM) and 

Hierarchical Clustering 

[69] 

13 Non-negative K-SVD algorithm [86] 26 CVVM [79] 
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4.3.2. Clustering parameters 

Aside from the need to careful select the clustering algorithms for load profiling, some salient 

parameters are also pivotal. Among them are the distance metrics and clustering validation measures. 

Distance metrics is used for measuring the distance between a pair sequence when clustering [73]. The 

distance metric is preselected before clustering, while the validation measure is used as a similarity 

validation index for every formed cluster. 

Distance Metrics 

A distance metric takes a pair of sequences and returns a real number which denotes the 

distance between the given sequences [73]; this is very significant in clustering algorithms. For 

instance, as illustrated in the K-Means algorithm, the closest centroid is computed iteratively based on 

the data points‟ proximities (distance calculations) [73]. Different kinds of proximity measures can be 

adopted: Manhattan distance, Euclidean distance, Hamming distance, Cosine Similarity and many 

more [103]. The choice of the proximity measure adopted during clustering significantly impacts 

quality of clustering [61]. Thus, in a comparative analysis carried out by [61] on the use of Euclidean 

distance, Manhattan distance and Dynamic Time Warping when using the K-Means algorithm on a 

daily load profile. The clustering result inferred that Euclidean distance produces the most consistent 

results among others. Among all the proximity measures in literature, Euclidean distance is the most 

used [4][44][73]. However, a recent similarity measure was adopted by [109], where the curve slope 

method was used. The result obtained inferred the new method to be more efficient. Also, in a recent 

comparison by [67] on the effectiveness of the Pearson Correlation Coefficient and Euclidean distance 

in the clustering daily load profiles using K-Mean clustering, the former outperformed the latter. 

Clustering Validation Measures 

Clustering validation measures are ways of evaluating the results of a clustering algorithm [14], a 

good cluster is known to present records with high similarity among them [41]. According to [73], 

clustering validation measures can either be external or internal. External validation measures use 

external information not present in the data to evaluate the extent of a cluster. However, external 

clustering validation was rarely used in previous works of clustering electricity data [19].  

The internal validation evaluates the goodness of the clustering structure without respect to 

external information. Internal clustering validation can be used to choose the number of clusters and 

the best clustering algorithm without external information. Hence, many internal clustering validation 

criteria have been developed and employed by works of literature to validate the effectiveness of the 

number of clusters preselected. Also considered is the compactness of each cluster and how separated 

the clusters are from one another after clustering. Among them are Calinski–Harabasz Index (CHI) 

[29], Silhouette Coefficient (S score) [13][103], the Scatter Index (SI) [19], Clustering Dispersion 

Indicator (CDI)[19], Davies-Bouldin index (DBI) [20] etc. Furthermore, as inferred from [81], cluster 

validity indexes can also be used to validate the best alphabets numbers as in the case of dimension 

reduction using SAX. Discussed below are the five (5) most used clustering validation indexes for load 

profiling.  

(i) The Davies–Bouldin index (DBI): To evaluate the DBI of a clustering output, for every cluster C, 

the similarities between C and other clusters are calculated. The highest value in terms of proximity is 

apportioned to C as its cluster similarity. The DBI is obtained by finding the average of all the cluster 

similarities. A smaller DBI value indicates that the clusters are more distinct, hence better 

clustering [73]. 

(ii) The Silhouette Index (SI): The Silhouette calculation is done via the equation in Table 5. to 
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validate the clustering performance based on the pairwise difference between and within-cluster 

distances [73]. Where a(i) is the average distance to other objects in the same cluster and b(i) is the 

average distance to objects of the nearest cluster. In this case, the optimal cluster number is determined 

by maximizing the value of this index. However, the index value ranges between -1 and 1. Hence, to 

evaluate the quality of a clustering technique, one can compute the average silhouette coefficient of all 

points in the dataset. 

(iii) The Dunn Index (DI): The Dunn Index is the quotient of the 𝑑𝑚𝑖𝑛  and 𝑑max ⁡. 𝑑𝑚𝑖𝑛  refers to the 

minimum distance between points of different clusters, while 𝑑max ⁡ is the largest distance between 

two (2) distinct points within a cluster, the maximum across the clusters is selected as 𝑑max ⁡. The 

number of clusters that give the highest DI infers a better clustering[118]. 

(iv) Mean Index Adequacy (MIA): This refers to the average of all the distances between the objects 

in the clusters and corresponding centroid. The minimum value from a varying number of clusters 

infers the best clustering result.  

(v) Clustering Dispersion Indicator (CDI): This refers to the ratio of the mean intra-set distance 

between the patterns in the same cluster and the inter-set distance between the cluster‟s 

centroids [103]. The maximum value obtained is used to infer a better clustering result. 

Illustrated in Table 5 are the various clustering validity indices employed by works of literature, 

coupled with their respective mathematical definitions and rules. Many authors used more than a 

clustering algorithm and subjected them to as many validity indices as possible. In the bid to obtain the 

clustering algorithm with the best performance among all [15][19][41][45]. Some works only made 

use of the validity indices as guidance in the preselection of clustering number or reduction technique 

[9][13][20][29][40][65][66][89][105]. Among the clustering indices used are some novel and 

unpopular clustering indices, such as the Xien-Ben cluster validity index (XB) and Point Symmetry 

index (PSI). 

Table 5. Clustering validity measures employed by literatures. 

Clustering Validity 

Indices (CVI) 

Literature Definition Rule 

Clustering Dispersion 

Indicator (CDI)  

[9][15] [19] [40] [79] [110] 
 

 Maximum 

Davies-Bouldin index 

(DBI) 

[9] [19] [20][22] [36] [40] 

[45] [79] [81][89] [93] 

[110] 

 
Minimum 

Dunn index (DI) [19] [23] [36]  [41] [45] 

[67] [69] [103] 
 

Maximum 

Silhouette Index (SI) [13][29] [36] [40] [45] 

[53] [65] [103] [110] [103] 
 

Maximum 

Mean Index Adequacy 

(MIA) 

[9][19] [79] [81] 

 

Minimum 

𝐾 = Total number of Clusters, 𝐿 𝑖  = Set of Objects in cluster I, 𝑟 𝑖  = centre of cluster i, 𝑑 = Sum of the distance between objects in the 

cluster and the cluster centre, 𝑑′ 𝐿 𝑖   = Geometric mean of the inter- distance between objects in 𝐿 𝑖 , 𝑑 𝑟 𝑖 , 𝑟 𝑗    = Distance 

between centres of cluster i and j, 𝐷𝑚𝑎𝑥  = Maximum distances between the cluster centres, 𝐷𝑚𝑖𝑛  = Minimum distances between the 

cluster centres, 𝑑𝑚𝑖𝑛 = minimal distance between points of different clusters, 𝑑max ⁡ = the largest within-cluster distance. 
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Computational Cost of Clustering 

Big data analysis comes with high computational costs [11]. However, it has been observed that 

computational cost during clustering is dependent on the algorithm adopted. Thus, to minimise this 

cost, works of literature have been careful in choosing a clustering algorithm for load profiling.  

During an analysis carried out by [75] on the generation of load profiles from customers with 

automatic meter readings. He observed a trade-off between clustering efficiency and computational 

cost. On subjecting energy data to the three (3) most used clustering algorithms: K-Means, 

Hierarchical and Fuzzy-c clustering. The results obtained indicate that hierarchical clustering takes 

less and consistent processing time over others, regardless of the number of clusters, but it was 

inefficient in reducing the Mean Absolute Error. Whereas K-Means clustering was efficient in 

reducing the Mean Absolute Error but the processing time increases as the number of clusters increases. 

Fuzzy-c clustering, however, took twice the time required by K-Mean clustering, but the result is less 

efficient to that of K-Means. Hence, [73] noted that K-means is only more computationally efficient 

over other techniques when the number of clusters is minimal. 

4.3.3. Post-Clustering 

After clustering consumption data, the classifications need to be properly studied for efficient 

interpretation of the classes obtained. A class among the clusters may represent outliers. Hence, the 

user must technically interpret the result. However, the classes obtained can be interpreted in various 

ways; each class may represent specific seasonal, economic, technical attributes etc. [72]. A 

Representative Load Profile (RLP) is assigned to each class based on any of these attributes. Each RLP 

may be formulated by evaluating the median of each profile in a class or the extraction of the 

centroids [30]. However, there are bound to be many fluctuations in the averaged load profiles, making 

it difficult to extract patterns [71]. These noises can be minimised by introducing a curve smoothening 

technique to smoothen the data. Polynomial curve fitting and moving average smoothing techniques 

are outstanding techniques often employed. The polynomial curve fitting technique requires the use of 

higher degree polynomials to handle higher variations. However, according to Runge‟s phenomenon, 

high degree polynomials are generally unsuitable for interpolation with equidistant nodes. Hence the 

average smoothening technique has been widely adopted in current scenarios,due to its simplicity and 

accuracy [26][71]. However, results from [71] show that smoothing before profiling tends to remove 

peak energy demands that can be found in the raw data. However, he noted that the effect would be 

minimal for applications such as Demand Side Management (DSM) programs, as peaks at this level 

are for a very short duration.  

4.3.4. Impact of data resolution on clustering 

The smart-meter determines the resolution of the acquired dataset. Research has shown that the 

data resolution of a smart meter data affects the clustering quality [31][61]. In a research work [19], the 

impact of data resolution on clustering results was examined on K-Means, Hierarchical and Dirichlet 

Process Mixture Model (DPMM) algorithms by varying the raw data resolution and subjecting the 

results obtained to several validity measures. The research result affirmed that the consumption data‟s 

resolution substantially affect the cluster quality and cluster membership consistency. The authors then 

advised that to obtain accurate and sufficient differences between consumers, the frequency of the data 

should be at least 30 minutes. 

However, [51] established a different fact; they noted that the number of clusters selected has a 

more significant effect on the clustering result than the resolution of the data. Their work aggregated 
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1-minute consumption data into Typical Weekly Profiles (TWPs) and Typical Daily Profiles (TDPs). 

Using DBI and the DI as indicators, no improvement was seen in the clustering result when the time 

resolution was increased. The authors thus opined that the choice of data resolution is application 

dependent; in their works, they cited TWP to be more efficient for revealing consumers that have 

equipment turned on than TDP, a knowledge that is very instrumental to applications such as the 

implementation Time-of-Use tariffs. 

5. Discussion 

Our findings show a gradual replacement of statistical methods by intelligent techniques during 

the pre-processing and profiling of smart meter data across works of literature. The often-overlooked 

non-linearity of data feature bolstered the need for replacements, methodised in statistical learning 

methods. This nuance was unmasked at every stage of pre-processing smart meter data, i.e., outlier 

detection, missing data replacement and data reduction, discussed in this article. Data imputation, 

conventionally carried out using interpolation and regression techniques, is now optimized using 

non-linear algorithms. Also, the compulsory data reduction often done for smart meter data analytics 

are now implemented using deep learning methods. Advancement was also found in the detection of 

outliers; among the various mining techniques.  

Clustering technique as an unsupervised learning technique has been found resourceful; the use of 

DBCAN is more prominent in recent detecting outliers, considering the arduity and inaccuracy that 

accompany other non-intelligent techniques. These advances not only improve the quality of the 

results obtained but also reduce the computational cost. 

To identify hidden patterns, using aggregated data to profile will lead to the loss of some 

information. Hence, the use of clustering, among various clustering techniques, K-Means, Hierarchical, 

fuzzy c-means, Follow-up ladder, and Self-Organising Map (SOM) were considered in the review due 

to the simplicity and accuracy they command [15][31][53][73][104]. However, as shown in Table 6, 

from works of literature, K-Means has been proven to be the best clustering algorithm using various 

clustering validity indices [120]. The technique maintains superiority over other techniques. This 

assertion was validated across the considered works of literature using synthetic and actual smart 

meter data. 

6. Conclusion 

Data mining techniques were found to be very instrumental in the pre-processing (detecting 

outliers and the treatment of missing data) of consumption data and its profiling. However, the nature 

of the consumption data plays a significant role in the choice of the DM technique adopted at every 

phase of load analysis. The review shows that results can be more profound and accurate when the 

raw consumption data is carefully subjected to novel reduction techniques such as feature extraction, 

depending on the intrinsic nature of the dataset. From the results obtained, the comparison was done 

on standard existing clustering algorithms employed in several works towards profiling streams of 

consumption data. It is concluded that the K-means algorithm, when guided by appropriate clustering 

validity indexes, presents better results compared with other algorithms in most cases. Albeit, the 

technique‟s efficiency is hampered by setbacks such as the need to predefine the number of clusters. 

This has engendered a myriad of novel techniques that are yet to be widely adopted but has been 

validated by a few works of literature. Therefore, further validation and modification is imperative 

for a robust K-Means, for better smart meter data profiling. 
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Table 6. Clustering techniques comparison in works of literature using CVI. 

SN Clustering Validity Indices (CVI) Literature Clustering Algorithms or 

Reduction Techniques 

Compared 

Best Performed Clustering 

Algorithm 

1 DI,  

DBI, Root-mean-square standard error 

(RMSSTD), R-squared index (RSI), the SD validity 

index, SI, Xien-Ben cluster validity index (XB), 

Squared Error index (SQE), 

and the Point Symmetry index (PSI) 

[45] K-means, Complete-link 

(CL), 

Average-link (AL), 

Ward ś-link (WL), 

Normalized Cut 

algorithm (NC). 

K-Means 

2 CDI, DBI, DI 

MDI, MIA, SI, and 

Variance Ratio Criterion (VRC). 

[19] K-Means, Hierarchical and 

Dirichlet Process Mixture 

Model (DPMM) 

K-Means 

3 SD validity index, 

PSI, DBI, XBI, DI, the Normalized Hubert Statistic 

(NH) 

[41] K-means, normalised N-Cut, 

Pairwise Constrained (PC 

k-means) and Metric 

Pairwise Constrained (MPC 

k-means) 

K-Means 

4 SI [102] Hierarchical, K-Means, 

fuzzy c-means, and 

two-stage clustering 

K-Means, 

 

 [83] Hierarchical and K-Means K-Means 

5 CDI, MDI, DBI and MIA [79] CVMM,  

Hierarchical (Average),  

Hierarchical (Weighted),  

Hierarchical (Complete),  

K-means, Hierarchical 

(Ward), Gaussian mixture 

model (GMM)  

CVMM 

6 DBI [22] K-Means, k-medoid and 

SOM 

SOM 

[93] K-Means, Fuzzy C-Means, 

Hierarchical Complete 

linkage, And Hierarchical 

Ward‟s Methods  

Hierarchical Complete linkage  

7 DBI, CHI and SI [65] PCA + K-Means, Locally 

Linear Embedding (LLE) + 

K-Means, PAA + SAX + 

K-Means 

PAA + SAX + K-Means 
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8 MIA, CDI, DBI [9] Variance score, Laplacian 

Score, Sparse K-Means score 

(SK-Means), Proposed 

method 

Proposed method + K-Means 

9 Adjusted Rand Index (ARI) [77] K-Means and SOM SOM 

10 SI, CHI, DBI, DI, Ratio of the within-cluster sum of 

squares to between-cluster 

variation (WCBCR) and CDI 

[92] Affinity Propagation, 

k-mean, k-medoids and 

spectral clustering 

Affinity Propagation 

11 Elbow method, SI, DI [120] k-means, fuzzy k-means, 

agglomerative 

hierarchical 

K-Means 

12 DI [23] [67] DBSCAN + K-Means, 

Gaussian mixture 

model (GMM) clustering 

algorithm, K-Means.  

 

DBSCAN + K-Means.  

[69] Partitioning Around 

Medoids (PAM) clustering, 

Hierarchical clustering.  

 

Hierarchical clustering.  

[45] established the superiority of K-Means in a classification work carried out on 208 medium voltage (MV) electricity 

consumers in a smart grid environment. The result obtained from K-Means were compared with four (4) other different 

clustering algorithms (Complete-link (CL); Average-link (AL); Ward ś-link (WL); Normalized Cut (NC)), using twelve 

(12) clustering validity indices. The 12 indices all asserted K-Means as the best as it gave the best partition. K-Means also 

showed the best clustering in [41] when compared with the other three (3) clustering algorithms (normalised N-Cut, 

Pairwise Constrained (PC K-means), and Metric Pairwise Constrained (MPC K-means)) using eight (8) validity indices.  

Furthermore, during the generation of a Virtual Load Profile (VLP) for consumers with Non-Automated Meter Reading 

(non-AMR) by [103] from Typical Load Profile (TLP) data obtained from clustered AMR consumption data, clustering 

performance from Hierarchical, K-Means, fuzzy c-means, and two-stage clustering were compared. K-Means clustering 

also showed a better Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Silhouette value in each 

cluster set.  

However, K-means clustering is encumbered with some significant setbacks that are being mitigated by works of 

literature to sustain the quality result the method commands. One of the biggest shortcomings with traditional K-Means 

algorithms is that the number of clusters that needs to be pre-defined before the clustering processes, a decision that directly 

influences the identification of the typical load profiles [20][67]. This lag engendered some novel methods and packages 

such as the replication analysis, the lower bound technique,  NbClust and many more [82][121]. These updates led to the 

modification of the K-Means algorithm, as in K-Means++, adaptive K-Means, ISODATA [94]. However, the efficiencies of 

these novel algorithms cannot be affirmed generally to be more than the traditional K-Means because they have only been 

employed in a few works of literature [44][110]. 
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