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Abstract: For reliable and accurate multimodal biometric based person verification, demands an
effective discriminant feature representation and fusion of the extracted relevant information across
multiple biometric modalities. In this paper, we propose feature level fusion by adopting the concept
of canonical correlation analysis (CCA) to fuse Iris and Fingerprint feature sets of the same person.
The uniqueness of this approach is that it extracts maximized correlated features from feature sets
of both modalities as effective discriminant information within the features sets. CCA is, therefore,
suitable to analyze the underlying relationship between two feature spaces and generates more powerful
feature vectors by removing redundant information. We demonstrate that an efficient multimodal
recognition can be achieved with a significant reduction in feature dimensions with less computational
complexity and recognition time less than one second by exploiting CCA based joint feature fusion
and optimization. To evaluate the performance of the proposed system, Left and Right Iris, and
thumb Fingerprints from both hands of the SDUMLA-HMT multimodal dataset are considered in this
experiment. We show that our proposed approach significantly outperforms in terms of equal error rate
(EER) than unimodal system recognition performance. We also demonstrate that CCA based feature
fusion excels than the match score level fusion. Further, an exploration of the correlation between
Right Iris and Left Fingerprint images (EER of 0.1050%), and Left Iris and Right Fingerprint images
(EER of 1.4286%) are also presented to consider the effect of feature dominance and laterality of the
selected modalities for the robust multimodal biometric system.

Keywords: feature level fusion; canonical correlation analysis; cosine similarity; fingerprint
recognition; iris recognition; multimodal biometric system
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1. Introduction

Biometrics recognition of individuals has gained attention recently including international border
crossing to unlock mobile devices. Technological advances, improved accuracy coupled with increased
demands of the development of real applications have led to emerging a multimodal biometric
system. The integration of multiple biometric modalities in the multimodal system has proven more
robustness to non-universality, noisy data, the possibility of spoof attacks [1, 2], and shown to be very
effective in improving recognition performance [1, 3]. However, the design and implementation of the
fusion algorithm is a challenging task as its benefits depend on the selection of biometrics modality,
computational and storage resources, accuracy, choice of fusion strategy, and cost [1, 3, 4]. The fusion
of multiple biometric evidences may be carried out at four different levels - sensor, feature, match
score, or decision [1–7]. Among these fusion levels, feature level fusion results in better recognition
performance as more discriminative features from different modalities can be well preserved [1, 8]. In
the multimodal system, usually, feature fusion is performed by integrating different features extracted
from different modalities into a joint and compact feature representation. For homogeneous extracted
feature sets (having the same measurement scale and dimension), it is easier to apply feature fusion, and
a fused feature vector can be obtained using the weighted average technique. While in heterogeneous
feature sets(e.g., face and fingerprint) - feature sets extracted for different modalities using different
feature extraction algorithms, a single feature set can be formed by concatenating them [9]. But for
incompatible feature sets (e.g., IrisCode feature of Iris and minutiae feature of fingerprint), it becomes
difficult to perform concatenation directly due to inherent differences in the feature representation [10].
Several authors [7, 9–17] have explored different feature fusion approaches in order to fuse different
modalities reasonably and effectively for multimodal systems.

From the literature, the conventional fusion methods such as the weighted feature fusion or
concatenation or weighted concatenation, ignore the intrinsic relationship of the feature sets, are
inefficient as the dimensionality of feature space increases and also requires complex matcher to
classify fused feature vector. To address these limitations, for feature fusion, the learning method
based on maximizing mutual information is proposed in this paper. Thus, it can retain the effective
discriminant information within the features sets and removes the redundant information [18], which is
especially required for effective recognition. For this, we explore canonical correlation analysis (CCA)
for feature fusion which deals with the mutual information between two sets of multidimensional
data [19,20] by identifying linear relationships. The objective function of CCA is to maximize the pair-
wise correlations between two feature sets. CCA looks for the optimal transformation which makes
the corresponding variables in the two feature sets maximally correlated. This approach can learn and
map the function into a space for correlation measurement. For optimal transformation, it aims to
maximize the similarity between the discriminatory feature sets of different modalities by removing
the redundant ones. In addition, CCA is independent of affine transformation which eliminates the
need for a complex matcher design. In the literature, CCA and its several variants have been proposed
for finding maximally correlated projections and demonstrated outstanding results than the prevalent
feature fusion methods in a wide variety of domains. In [18] CCA is proposed for feature fusion where
canonical correlation features from face and handwritten Arabic numerals are extracted as effective
discriminant information for recognition. In another work [21], extracted feature vectors from the
palmprint and finger geometry are fused using CCA to get a reduced feature space dimension thus
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improving the average recognition rate. In the study [22], kernel CCA (KCCA) based feature fusion
is explored to discover the nonlinear subspace learning representation between the ear and profile
face modalities. In order to improve the performance of CCA in classification, a supervised local-
preserving canonical correlation analysis method (SLPCCAM) is proposed for fingerprint and finger-
vein [23]. For a good representation of the similarity between the samples in the same class and to
evaluate the dissimilarity between the samples in different classes, a feature level fusion approach
based on the Discriminant Correlation Analysis (DCA) is presented in [24] for Iris, Fingerprint,
and Face multimodal recognition. To deal with multiple sets of features, a feature fusion approach
based on multiset generalized canonical discriminant projection (MGCDP) that incorporates the class
associations are studied in [25]. Experiments show that MGCDP achieves promising recognition
accuracy on palm vein, face, and fingerprint.

Further, a feature fusion approach based on CCA is presented in [26] for Iris and Fingerprint images
and achieved significantly improved performance. In another work [27], CCA based on L1-norm
minimization (CCA-L1) and its extension are proposed to deal with multi-feature data for feature
learning and image recognition. In the study [28], two-dimensional supervised canonical correlation
analysis (2D-SCCA) and multiple-rank supervised canonical correlation analysis (MSCCA) algorithms
are proposed to perform multiple feature extraction for classification. Experiments show that MSCCA
achieves promising recognition accuracy on object, face, and fingerprint recognition. In another
study, [29], multiple rank canonical correlation analysis (MRCCA) and its multiset version referred
as multiple rank multiset canonical correlation analysis (MRMCCA) are explored for effective feature
extraction from matrix data. The authors demonstrated the superiority of the proposed methods
in terms of classification accuracy and computing time on the face, fingerprint, and Palm data
sets. Recently, 2D models for multi-view feature extraction and fusion of matrix data such as two-
dimensional locality preserving canonical correlation analysis (2D-LPCCA) and two-dimensional
sparsity preserving canonical correlation analysis (2D-SPCCA) are proposed in [30]. In this work,
to reveal the inherent data structure with relations, 2D-LPCCA utilizes the neighborhood information
while 2D-SPCCA utilizes the sparse reconstruction information.

Motivated by the success of CCA and its extensions in the feature fusion, in this paper, we propose
CCA to represent discriminative features by exploring significant relationships between the Iris and
Fingerprint feature sets of the same person. In this aspect, we propose a simple, extremely fast, and
promising approach to make a unified framework that can conveniently investigate the feature fusion
information mainly contributed by the CCA. In summary, the key contributions of this work are:

• We propose a novel approach for accurately modeling the feature fusion of Iris and Fingerprint
modalities by maximizing the pair-wise correlations between them.
• We show the effectiveness of the proposed model by experimenting with it on a publicly available

SDUMLA-HMT multimodal dataset. The affine invariance property of CCA eliminates the need
for a complex matcher and helps to design a rotation-invariant recognition system.
• We explore the effect of feature dominance and laterality of the selected modalities on the

performance of a developed system by performing cross-match biometrics feature fusion. For
that, performance evaluation is carried out considering i) Left Iris and Right Fingerprint ii) Right
Iris and Left Fingerprint images of the same person and obtained interesting initial results for the
developed robust multimodal biometric system.
• We evaluate our proposed approach showing significantly improved recognition performance of
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the multimodal biometric system over other existing methods.

Paper organization: Proposed CCA based feature fusion multimodal system with different distance
measures is outlined in Section 2. An experimental setup is described in Section 3. Experimental
results and analysis are presented in Section 4. Cross match experimentation and analysis based on the
proposed fusion approach are discussed in Section 5 and then conclusions in Section 6.

2. Proposed system framework

In this paper, we present a framework for feature level fusion using canonical correlation analysis.
Although our proposed framework applies to any biometric modality, we restricted it to the Fingerprint
and Iris modality of the same subjects. Both Fingerprint [2,3] and Iris [31,32] recognition, have higher
accuracy, reliability, simplicity, and are well-accepted, making them very promising technologies
for wide deployments compared to other biometric modalities. An overview of our framework is
demonstrated in Figure 1 which mainly consists of a training phase and recognition phase. Here, we
try to learn canonical correlation features from Iris and Fingerprint feature sets in the canonical space
by adopting correlation criterion function and devise effective discriminant representations. During the
training phase, transformation matrix or basis vectors are found to project Iris and Fingerprint feature
sets in the canonical space. Then, by applying the summation method in the canonical space, the fused
feature vectors are created for ‘n’ number of training samples and stored in the database. During the
recognition phase, first, extract canonical correlation features for the test sample, projects them in the
canonical space using the same transformation matrix, and then by applying the summation method
test fused feature is created. This test fused feature vector is compared with the stored fused vector to
find match or non-match. In the following sections, we explain the fundamentals of CCA and show
how it is suitable for information fusion at the feature level.

Figure 1. Overview of proposed feature fusion model for multimodal system using canonical
correlation analysis(CCA).

2.1. Canonical correlation analysis concept

CCA is a subspace learning method that learns a common representation by maximizing the
correlation between two sets of feature vectors when projected on the common space [19, 20]. Given,
two feature sets X = [X1, X2...Xn] and Y = [Y1,Y2...Yn] with zero-mean such that X ∈ Rpxn and Y ∈ Rqxn,
from the same ‘n’ number of subjects. As proposed by Hotelling [19], CCA is used to compute linear
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transformations, Wx and Wy, one for each feature sets, which make the corresponding variables in the
two feature sets, maximally correlated in the projected space. The information on associations between
two feature sets X and Y can be obtained by considering the within sets covariance and between sets
covariance matrices. Following correlation function [33] is to be maximized to find Wx and Wy,

ρ = max
(wx,wy)

WT
x CxyWy√

WT
x CxxWxWT

y CyyWy

(2.1)

Here, within sets covariance matrices are denoted by Cxx ∈ R
pxp and Cyy ∈ R

qxq, and between sets
covariance matrices are indicated by Cxy ∈ R

pxq and Cyx = CT
xy.

The maximization of Eq (2.1) is equal to maximizing the numerator [20], subject to WT
x CxxWx =

WT
y CyyWy = 1 for i = j, the subsequent canonical correlations are uncorrelated for different solutions

where i , j. According to [20] the canonical correlations between X and Y found by solving the
eigenvalue equations,

C−1
xx CxyC−1

yy CyxWx = ρ2Wx

C−1
yy CyxC−1

xx CxyWy = ρ2Wy

 (2.2)

where, ρ2 eigenvalues, are the squared canonical correlations or the diagonal matrix of eigenvalues
and Wx and Wy eigenvectors, are normalised canonical correlation basis vectors. From Eq (2.2), both
matrices C−1

xx CxyC−1
yy Cyx and C−1

yy CyxC−1
xx Cxy have the same eigenvalues but different eigenvectors and its

solutions are related by [33],

CxyWy = ρλxCxxWx and CyxWx = ρλyCyyWy where λx = λ−1
y =

√
WT

y CyyWy

WT
x CxxWx

(2.3)

Equation (2.3) consists of nonzero eigenvalues equal to d = rank (Cxy) ≤ min(p, q), such that λ1 ≥

λ2 ≥ · · · ... ≥ λd. While the sorted eigenvectors are given by the transformation matrices Wx and
Wy, and x = WT

x X ∈ Rdxn and y = WT
y Y ∈ Rdxn are refereed as canonical variates or projected

correlation features. These canonical variates are uncorrelated within each feature set as it shows
nonzero correlation only on their corresponding indices of the canonical variates.

2.2. Feature fusion

The graphical interpretation for the application of CCA in our experiment on Iris and Fingerprint
images of the same subjects is shown in Figure 2. Here we are interested in learning common
representations contained in the Iris feature space and Fingerprints feature space which is reflected
in correlations between them. By finding transformation matrix Wx and Wy, such that it maximizes the
pair-wise correlations between two sets. We applied CCA to project the extracted Iris and Fingerprint
feature set of ‘n’ number of training samples in the canonical space. Within the canonical space,
a fused feature may be obtained by performing either concatenation or summation [18]. Given,
X = [X1, X2...Xn] ∈ Rpxn and Y = [Y1,Y2...Yn] ∈ Rqxn, the corresponding feature sets - Iris and
Fingerprint respectively, and, p and q be their feature dimensions. After obtaining eigenvectors
Wx = [wx1,wx2...wxd] ∈ Rpxd,Wy = [wy1,wy2...wyd] ∈ Rqxd, for any sample Xi,Yi, let X̃i = Xi − X
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Figure 2. Graphical interpretation where Iris and Fingerprint feature sets are mapped to a
common subspace using CCA.

and Ỹi = Yi − Y , where X is the mean of feature vectors X and Y is the mean of feature vectors Y. Then
fused feature vector Z using concatenation Eq (2.4) and summation Eq (2.5) of the transformed feature
vectors [18] can be computed as:

Z =

WT
x X̃i

WT
y Ỹi

 =

Wx 0
0 Wy

T X̃i

Ỹi

 (2.4)

Or

Z = WT
x X̃i + WT

y Ỹi =
[
WT

x WT
y

] X̃i

Ỹi

 (2.5)

We used summation method Eq (2.5) in our proposed approach to reduce computational complexity as
the vector length of the concatenation method is twice that of the summation method. Then, during the
training phase, the fused feature vectors Z are stored as a template in the gallery. While in the testing
phase, the fused feature vector of the query sample can be classified using any classifier.

2.3. Distance measures as a matcher

In this paper, the fused feature of test image Zt is matched with gallery fused feature vectors Z,
by using three different distance measures, namely, Manhattan, Euclidean, and Cosine Similarity for
the feature level fusion. By definition [34], Euclidean and Manhattan distance, exhibit the distance
between two vectors, considering the magnitude. The cosine similarity measure only considers the
angle similarity and discards the scaling on the magnitude and also overcomes the limitations of the
Euclidean which is sensitive to outliers. At the matching stage, to classify fused feature vector in
canonical subspace instead of a single vector, the distance measures are no longer effective, but the
angles between subspaces become a practical measurement. Hence, simple matchers are selected to
make the matching process extremely fast and to study the performance of the multimodal system,
mainly contributed by the CCA based feature fusion algorithm. In Manhattan distance, the match
image is found by performing the matching between the test vector Zt with training vectors using
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Eq (2.6)

arg min
i∈[1,2,...,n]

1
N

∑
|Zt − Zi| (2.6)

where N is used as a scaling factor and equal to the length of the fused feature vector. As this distance
measure does not take the shortest path possible, it yields a higher distance estimate.

To find a match using Euclidean distance, we find the matching training image that satisfies Eq (2.7)

arg min
i∈[1,2,...,n]

‖Zt − Zi‖
2 (2.7)

In Cosine similarity measure, the cosine of the angle between the test vector and training vectors is
computed. The match for the test vector Zt is found by Eq (2.8). Here, the angle value closer to zero
indicate a better match.

arg min
i∈[1,2,...,n]

cos−1
(

ZT
t Zi

‖Zt‖.‖Zi‖

)
(2.8)

The distance between Zt and Zi approaches ‘0’, when the estimates are close to each other.

3. Experimental setup

3.1. Multimodal biometric database

SDUMLA-HMT Multimodal Database from Shandong University [35] consists of total five
biometric modalities such as Face, Finger vein, Gait, Iris, and Fingerprint of the same subject (person).
This database has a total of 106 subjects, including 61 males and 45 females with ages between 17 and
31 [35]. Here, we chose Iris and Fingerprint modalities for evaluation with details shown in Table 1.

Table 1. Details of Iris and Fingerprint SDUMLA-HMT database.

Iris Image Resolution Format (No. Subjects * Iris Samples per Subject ) Total Images

768x576 256 gray Left Iris 106*5 =530 1060
level BMP Right Iris 106*5 =530

Fingerprint Resolution Format (No.Subjects * No.of Finger * Finger Impressions per Subject) Type of sensor

256x304 256 gray Total images=106*6*8=5088 FPR620
level BMP (For only one finger Optical

Total images=106*1*8=848) Scanner

3.2. Image quality assessment

The recognition performance of the biometric system heavily depends on the quality of biometric
sample in consideration [36]. The information about the quality of the biometric sample prior to
matching may be used to extract the reliable features and boost the performance of a biometric
recognition system [37].

3.2.1. Iris

In this work, Iris image quality is assessed using VASIR (Video-based Automatic System for Iris
Recognition) [38], developed by NIST Iris recognition software platform. VASIR uses the automatic
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image quality measurement (AIQM) method to generate scalar quality scores [37, 38]. For each Iris
image, the quality score is calculated as shown in Figure 3. For SDUMLA database, the threshold
comes to be 14.73615 using Threshold = Average− ((Max−Min)/4) from the entire database quality
score. Iris images having a quality score greater than or equal to the threshold are selected to perform
experiments.

Figure 3. Bottom row indicates the quality score for each Iris image using VASIR (Video-
based Automatic System for Iris Recognition).

3.2.2. Fingerprint

In this work, NIST Fingerprint Image Quality algorithm (NFIQ) [39] is used to assess the quality of
Fingerprints. NFIQ analyses a Fingerprint image and assigns five different quality levels with ‘1’ being
the highest quality and ‘5’ being the lowest quality [40]. For each Fingerprint image, the quality level
is calculated as shown in Figure 4. Images having a quality level of 1, 2, and 3 are selected to perform
experiments. Fingerprint images with NFIQ score quality 4 and 5 are considered as bad Fingerprint
images and not recommended to be enrolled for biometric purposes.

Figure 4. Bottom row indicates the NIST Fingerprint Image Quality (NFIQ) level for each
Fingerprint Image.

3.3. Preprocessing

From the quality assessment results of the Iris images, it is found that Iris images from the
SDUMLA-HMT database have very low contrast between sclera and iris, and failed to segment iris
correctly. Hence, Iris image enhancement step is necessary before performing segmentation. Resized
768x576 gray level eye images to 384x288 and contrast enhancement are performed using ‘imadjust’
and log transformation. This results in a smoother transformation that mostly enhances useful details
and thus improves segmentation. Then, we have used the automatic Iris segmentation approach
presented in [41] for extraction of Iris region from the eye image. For perfect segmentation, the radius
values are in the range of 78 to 148 pixels for the Iris and 14 to 58 pixels for the pupil.

After Quality Assessment using NFIQ of Fingerprint images, it is resized to 256x256 pixels. Then
the center point (the uppermost point of the innermost curving ridge) is detected from the resized
images. The translation invariance of Fingerprint images can be achieved by using this center point as
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a reference point. Here, a circular region of interest around the reference point is determined which is
tessellated into concentric bands, and each band is further divided into sectors.

3.4. Feature extraction

To achieve good performance on both unimodal Iris [42] and unimodal Fingerprints [43] system, a
fixed length IrisCode and FingerCode are generated by extracting the features from the preprocessed
images using the Gabor filter. For Iris images, following the segmentation step, normalization is done
to make Iris representation invariant to the size of iris and pupil dilation. The extracted iris is mapped
into fixed dimensions of 20(r) x 240(θ) of polar image coordinates. These values indicate the radial and
angular resolution of the normalized image respectively, which is a trade-off between noise removal
and obtaining reasonable size templates. For Iris images, normalized images are convolved with a log-
Gabor filter for feature extraction. Then, encoding is performed by mapping the phase responses of the
filter to one of the four quadrants in the complex plane and are quantized to ‘0’s and ‘1’s. This encoded
binary representation of the Iris image is referred as the IrisCode. As per [41], the total number of bits
in the IrisCode is the angular resolution times the radial resolution, times 2, times the number of filters.
This produces a fixed-length (240*20*2*1) 9600x1 dimensional feature vector in binary form.

We have used Gabor filters to capture the texture information of the preprocessed Fingerprint images
at a different orientation. Features for Fingerprint images are obtained by convolving the preprocessed
images with Gabor filters at eight different orientations as proposed in [43]. The advantages of using
Gabor filters in the Fingerprint are i) removes noise, ii) preserves the ridge and valley structures, iii)
provides the information contained in an orientation, iv) Minutia viewed as an anomaly in parallel
ridges. All this texture information is captured by determining the average absolute deviation from
the mean of gray values in individual sectors in filtered images, to represent Fingerprint feature vector
‘FingerCode’. In our experiment, we have used a total of 5 concentric bands having width of 18 pixels
each and each band of 16 sectors. Hence, a FingerCode of size 640x1 is formed using the selected
parameter [No. of concentric band * No. of sectors per band * No. of Gabor filter]. The generated
features vector is real-valued vectors. In this work, a static one-bit discretization scheme that uses
simple threshold-based binarization for the quantization of a feature element [44] is implemented. For
this, feature mean of the entire training set is computed and set as a threshold. Then by applying
quantization, a binary representation of the real valued feature vector of 640x1 dimensions is obtained.
The primary purpose of using a discretization step is to employ Hamming distance matcher even for
FingerCode features.

3.5. Unimodal biometric system

In this work, the performance of unimodal Iris recognition system as well as unimodal Fingerprint
recognition system is evaluated using Hamming distance (HD) matcher. The advantage of using the
single matcher for both modalities is that it improves the processing speed, reduces the complexity
of the system, and also simplifies the design process. HD offers fast matching speed because the
calculation of the HD is taken only with bits that are generated from the actual Iris region or Fingerprint
region. Both feature representations, Iriscode and FingerCodes are not rotationally invariant. In
order to make a rotation invariant recognition system, a circular shift of −150 to +150 is used while
calculating the HD for IrisCodes as well as for FingerCodes. The minimum HD from these shifts
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indicates a better match [41]. Further, unimodal system performance is also tested with Manhattan,
Euclidian, and Cosine Similarity measures.

3.6. Feature fusion

We first performed dimensionality reduction on extracted feature vectors of multimodal Iris and
Fingerprint samples using principal component analysis (PCA). It helps to minimize the computational
cost in the training phase as well as avoid small sample problem [18]. In PCA, the upper bound of the
feature vector length corresponds to nonzero eigenvalues which is equal to ‘total images -1’ for each
modality. In this work, we reduce the Iris feature vector of 9600x1 dimensions and the Fingerprint
feature vector of 640x1 dimensions to two decreased dimension feature vectors of the same dimensions
(e.g., Feature dimensions of 235x1 for right images). In the training phase, the reduced dimension
feature vectors of Iris and Fingerprint are further processed by CCA as shown in Figure 5. The two
projection matrix Wx and Wy, and single fused feature vector Z are obtained as defined in Eq (2.5) and
then stored in the database, Wx,Wy and Z as the template.

Figure 5. Proposed feature level fusion approach.

In the testing phase, test sample features are first projected in the canonical space using the same
projection matrix Wx and Wy. Then by applying the summation method Eq (2.5) test fused feature
vector Zt is created. This test fused feature vector Zt is compared with the fused vector templates Z for
matching based on different distance or similarity measures as described by Eqs (2.6), (2.7) and (2.8).

4. Experimental result and analysis

4.1. Performance evaluation: Right Iris and Right Fingerprint

The recognition performance of the proposed feature fusion method is evaluated on the Right Iris
and Right thumb Fingerprint images of the multimodal database in order to do rigorous testing of
the designed framework and algorithm. Here, based on the quality result and the added constraints of
correct segmentation of Iris and correct detection of the central point of Fingerprint, out of 106 subjects,
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only 59 common subjects are selected having both modalities. In this work, for both modalities, we
use the first 4 images per subject in the training set (total 59 Classes and 4 impressions per Class)
and the remaining for testing. Thus, for both modalities, a total of 2*59*4 = 472 images are used for
training, with a total of 354 intra-class comparisons (genuine trials) and 27376 inter-class comparisons
(imposter trials).

The experimental results for the Right Iris unimodal system and Right Fingerprint unimodal system
is presented in Table 2. The performance, in terms of EER of 1.9762% and 2.7287%, is obtained
for individual Iris recognition system and Fingerprint recognition system using Hamming distance
matcher, respectively. Furthermore, for a fair comparison, we have applied PCA to extracted features
from individual modalities (IrisCode and FingerCode) and performed recognition using PCs. Table 2
shows the performance of individual Iris recognition systems and Fingerprint recognition systems,
in terms of EER, for similarity metrics such as Manhattan, Euclidian, and Cosine Similarity, and
corresponding ROC curves are shown in the Figure 7(a).

Table 2. Unimodal system performance using Right Iris and Right Fingerprint.

Modality Feature Vector PCA Feature Genuine Imposter Matcher EER%
(length) Vector Trials(G) Trials(I)

Iris 9600x1 - 354 27376 Hamming 1.9762
9600x1 235x1 354 27376 Manhattan 4.5186
9600x1 235x1 354 27376 Euclidean 5.6509
9600x1 235x1 354 27376 Cosine 6.4984

Similarity
Fingerprint 640x1 - 354 27376 Hamming 2.7287

640x1 235x1 354 27376 Manhattan 2.3853
640x1 235x1 354 27376 Euclidean 3.8574
640x1 235x1 354 27376 Cosine 5.5121

Similarity

[1] Training Images: No. of Class (N)= 59 and Images per Class (t)= 4
[2] G = N ∗ t ∗ (t − 1)/2 and I = N ∗ (N − 1) ∗ t ∗ t/2

The experimental findings for feature level fusion on the Right Iris and Right thumb Fingerprint using
a PCA, CCA and PCA+CCA approach is shown in Table 3. Experimental results demonstrate that the
PCA+CCA approach benefits from its encouraging properties and achieves competitive recognition
performance with low computational complexity. Three distinct matchers are used to assess the
performance of the proposed feature level fusion. The performance, in terms of EER of 0.5698%
for Manhattan Distance, 0.2813% for Euclidian Distance, and 0.2812% for Cosine Similarity. Thus,
the proposed PCA+CCA feature level fusion approach outperforms both PCA feature fusion and CCA
feature fusion for Iris and fingerprint modalities, as shown by achieved performance in terms of EERs.
Therefore, except Table 3, in the entire paper, the proposed PCA+CCA approach is referred as CCA
based feature fusion.
For a clear comparison, Figure 6 shows match score distribution for unimodal and multimodal
system. It can be seen from Figure 7(b) ROC curves that PCA+CCA approach with cosine similarity
measure consistently outperforms than other matchers. This clearly indicates that PCA+CCA approach
(referred as CCA based feature fusion) not only brings the effect of dimension reduction while fusing
correlated features of two modality but also achieves higher recognition accuracy.
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Table 3. Feature level fusion on Right Iris and Right Fingerprint.

Fusion Type Feature PCA Feature Fusion Feature Fusion Genuine Imposter Matcher EER%
(length)Vector using PCA using CCA Trials(G) Trials(I)

PCA approach IrisCode Iris Fused - 354 27376 Manhattan 3.1086
9600x1 235x1 Vector - Euclidean 3.9560
FingerCode Fingerprint 235x236 - Cosine 6.2610
640x1 235x1 (∀n) - Similarity

CCA approach IrisCode - - Fused 354 27376 Manhattan 8.0326
9600x1 - - Vector Euclidean 17.6505
FingerCode - - 235x236 Cosine 15.0387
640x1 - - (∀n) Similarity

PCA+CCA IrisCode Iris - Fused 354 27376 Manhattan 0.5698
approach 9600x1 235x236 - Vector Euclidean 0.2813
(Proposed) FingerCode Fingerprint - 235x236 Cosine 0.2812

640x1 235x236 - (∀n) Similarity
(∀n)

[1] Training Images: No. of Class (N)= 59 and Images per Class (t)= 4, n=59 ∗ 4
[2] G = N ∗ t ∗ (t − 1)/2 and I = N ∗ (N − 1) ∗ t ∗ t/2

[3] Except Table 3, in entire paper the proposed PCA+CCA approach referred as CCA based feature fusion

(a) (b)

(c)

Figure 6. Results (a) shows inter and intra class Hamming distance distributions for Iriscode
(Right Iris Image), (b) shows inter and intra class Hamming distance distributions for
Fingercode (Right Fringerprint Image), and (c) shows inter and intra class Cosine Similarity
distributions for CCA based feature fusion (proposed approach).
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Figure 7. Results (a) ROC Curve for Individual Iris system and Individual Fingerprint system
using PCA and Feature level fusion based on PCA. (b) shows ROC Curve for comparison of
PCA, CCA, and PCA+CCA approach for feature level fusion.
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We also note that, in practice, both Euclidean and Manhattan metrics which depends on the
magnitude of the vectors, are incapable of capturing the intrinsic similarities between images while
cosine similarity offers the advantage of stability to noise and is insensitive to the global scaling of
the vector magnitude. The cosine similarity metric enhances the robustness of the fused feature by
implying a good generalization ability which is one possible reason for the superior performance.

In this work, we also compare the performance of the proposed feature level fusion with score level
fusion. Here again, the fusion of matching scores obtained from Hamming distance matcher for Right
Iris and Right Fingerprint images is implemented using classic rules such as Sum rule and Weighted
Sum rule [45]. The sum rule is an extensively used and efficient fusion scheme [45, 46], capable of
combining the scores provided by multiple matchers effectively using a weighted sum. In this work,
the fusion score S f use is computed for the simple weighted fusion using Eq (4.1) for N matcher or
classifier is given as follows:

S f use =

N∑
i=1

si ∗Wi (4.1)

For two modalities, N = 2, Eq (4.1), score becomes S 1 and S 2, W1 and W2 be their weights. Here,
S 1 and S 2 are Iris and Fingerprint matched scores respectively; weights W1 and W2 are varied over the
range [0, 1], such that the constraint W1 + W2 = 1 to be satisfied [45]. However, the scores of different
biometric can be weighted differently, for example, the error rate of Iris is lower than Fingerprint, so the
Iris score may be assigned greater weight than that of the Fingerprint. Finally, this fused matching score
is used to recognize an individual as a genuine or an imposter. The experimental result is presented
in Table 4. We empirically selected the weights for match score level fusion using the weighted sum
method by attempting to get the maximum recognition accuracy rate with each matcher. The least
equal error rate is used to define the set of weights to be used. After experimenting with different
weight values, the weights for each individual matcher are fixed to the same value: 0.5 for W1 and 0.5
for W2. Normally, each matcher’s weight is determined by its recognition performance on a training
set.

Table 4. Score level fusion on Right Iris and Right Fingerprint images.
Modality Feature Vector Genuine Trials Imposter Trials Matcher (Distance) Score Fusion EER%

(length) (G) (I) Method
Iris 9600x1 354 27376 Hamming - 1.9762
Fingerprint 640x1 354 27376 Hamming - 2.7287
Score Level Iris Code Sum Rule 0.8474
Fusion: 9600x1
Iris and Finger Code Weighted 0.8474
Fingerprint 640x1 Sum Rule

[1] Training Images: No. of Class (N)= 59 and Images per Class (t)= 4
[2] G = N ∗ t ∗ (t − 1)/2 and I= N ∗ (N − 1) ∗ t ∗ t/2

In this work, for both modalities, the Hamming distance matcher is proposed so that output
scores from both of the systems are in the same format and helps to eliminate the use of additional
normalization techniques and complex fusion matcher techniques. Figure 8(b) shows the comparative
EER performances of score level fusion with feature level fusion. The ROC curve shows that CCA
based feature level fusion significantly outperforms than the match score level fusion approach.
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Figure 8. Results (a) ROC curve for CCA based feature level fusion. (b) shows performance
comparison of score level with feature level fusion.

5. Cross match experimentation and analysis

In this paper, we have performed an experiment to evaluate the effect of cross matching biometrics
feature fusion using Iris and Fingerprint biometric modalities, that are strictly captured from the same
person (subjects). In order to study the performance effect due to cross matching in the true sense, we
have selected Iris and Fingerprint images of the same person who is present in both earlier left and
right experimentation. The images selection protocol remains same as stated earlier - selection based
on the quality result and the added constraints of correct segmentation of Iris and correct detection of
the central point of Fingerprint. There are a total of 45 subjects and a total of 59 subjects that satisfied
images selection protocol in Left Iris and Left Fingerprint experimentation, and, Right Iris and Right
Fingerprint experimentation respectively. Among 45 and 59 subjects, only 35 common subjects are
selected having both modalities in both the experiments. In this work, for both modalities, we use the
first 4 images per subject in the training set (total 35 Classes and 4 impressions per Class) and the
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remaining for testing. For training, total images of 2 ∗ 35 ∗ 4 = 280 for both modalities are used. There
are a total of 210 intra-class comparisons, and 9520 inter-class comparisons. We have performed the
following two cross matching experiments and the evaluation performance is summarised in Table 5.

Table 5. Cross match CCA based feature level fusion.

Modality Feature Vector(length) PCA Feature Fusion(CCA) Matcher EER%
Using Left Iris and Right Fingerprint

Iris 9600x1 - - Hamming 0.9559
Fingerprint 640x1 - - Hamming 3.1513

Feature Fusion: Iris Code Iris Fused Manhattan 0.3466
Iris and 9600x1 139x140 Vector Euclidean 0.1471
Fingerprint Finger Code Fingerprint 139x140 Cosine 1.4286

640x1 139x140 Similarity
Using Right Iris and Left Fingerprint

Iris 9600x1 - - Hamming 0.4727
Fingerprint 640x1 - - Hamming 3.0042

Feature Fusion: Iris Code Iris Fused Manhattan 0.4307
Iris and 9600x1 139x140 Vector Euclidean 0.1786
Fingerprint Finger Code Fingerprint 139x140 Cosine 0.1050

640x1 139x140 Similarity

[1] Training Images: No. of Class (N)= 35 and Images per Class (t)= 4
[2] Genuine Trials (G)= N ∗ t ∗ (t − 1)/2 = 210, [3] Imposter Trials (I)= N ∗ (N − 1) ∗ t ∗ t/2= 9520

5.1. Performance evaluation for Left Iris and Right Fingerprint

In this experiment, the Left Iris and the Right Fingerprint of 35 subjects are used to perform
cross matching feature fusion. For unimodal Left Iris recognition and unimodal Right Fingerprint
with Hamming distance matcher, the performance in terms of EERs is of 0.9559% and 3.1513%
respectively. But for CCA based feature fusion, using Left Iris and Right Fingerprint, we observed
EER of 1.4286% for Cosine Similarity, 0.1471% Euclidean and 0.3466% Manhattan distance. Figure
9 shows ROC curves with different matchers. For feature fusion approach with cosine similarity
measure, a significant drop in EER as compared to other matchers. In this cross matching experiment,
multimodal features have different discriminating power which could further limit the discriminability
of a fused result. This implies that performance-wise if strong Left Iris modality is fused with weak
Right Fingerprint modality at feature level then it does not guarantee that obtained result is encouraging
as obtained in the earlier experiments. This clearly indicates that even if Iris and Fingerprint modalities
are of the same person, there is a certain close relationship, maybe genetics based relationship that
directly affects and dominates the performance [47]. This intimates that one should take into account
the feature dependency while designing the multimodal system as it affects the system performance.

5.2. Performance evaluation for Right Iris and Left Fingerprint

In this experiment, the Right Iris and Left Fingerprint of 35 subjects are used to perform
cross matching feature fusion. For unimodal Right Iris recognition and unimodal Left Fingerprint
with Hamming distance matcher, the performance in terms of EERs is of 0.4727% and 3.0042%
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Figure 9. Results (a) shows ROC curves for Left Iris and Right Fingerprint images (b) shows
ROC curves for Right Iris and Left Fingerprint images.

respectively. But for CCA based feature fusion, using Right Iris and Left Fingerprint, we observed
EER of 0.1050% for Cosine Similarity, 0.1786% Euclidean and 0.4307% Manhattan distance. Figure
9(b) shows ROC curves with different matchers. For the feature fusion approach with cosine similarity
measure, EER is significantly better as compared to other matchers. This experiment shows that
performance wise if strong Right Iris modality is fused with moderate Left Fingerprint modality at
the feature level then there is a possibility to obtain the consistent result as obtained in the earlier
experiments. It suggests that the concepts of laterality should be considered while implementing the
matching algorithm to improve the verification performance of the multimodal system [47]. Again
here, this clearly indicates that feature dependency should be taken into account while designing the
multimodal system as it directly affects the performance of the multimodal system.
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5.3. Comparison with existing methods

Comparing with earlier work based on feature fusion and matcher score fusion, our algorithm shows
an encouraging performance among typical algorithms. As there are limited previous studies found
that utilized the SDUMLA-HMT database, we compare our approach with real multimodal different
datasets for the same biometric modalities. For example, an efficient fusion scheme at the feature and
match score level to combine face and palmprint modalities is [46] presented. They have performed
feature selection and fusion using binary particle swarm optimization (PSO) technique and achieved the
best GAR (Genuine Acceptance Rate) of 97.25% at FAR (False Acceptance Rate) of 0.01% for hybrid
fusion. The author claims that the use of PSO benefits to reduce the number of feature dimensions
and complexity of the multimodal system. A multimodal sparse representation at feature level fusion
algorithm for Fingerprint and Iris modalities is explored in [10]. This approach utilizes a sparse linear
combination of training data to represent the test data. A quality measure for fusion based on the joint
sparse representation and kernel technique has been presented to achieve recognition robustness. The
experimental evaluation demonstrates the rank-1 recognition rate of 98.7%, indicating a significant
improvement in the performance of a multimodal system. Another work [24], considers a feature level
fusion strategy for multimodal recognition based on Discriminant Correlation Analysis (DCA). This
fusion method takes into account the feature sets’ class relationships, removing correlations between
classes while concurrently restricting correlations within classes. Using DCA-based feature fusion
algorithms and a minimum distance classifier, a rank-1 recognition rate of 99.60% is attained for the
multimodal system. The Group Sparse Representation based Classifier (GSRC) approach is studied
by [14], which integrates multi feature representation seamlessly into classification. This approach
utilizes the feature vectors extracted from different modalities to perform accurate identification with
feature level fusion and classification. The author reported the efficacy of the proposed approach at the
rank-1 recognition rate. This approach has the benefit of efficiently handling multimodal biometrics
and multiple types of features in a single framework. We found a previous work [17] that used
SDUMLA-HMT database to investigate the multimodal system using the Iris, Face, and Finger Vein
modalities. So, this work is considered for comparison. A feature level fusion strategy is used in this
paper, which uses convolutional neural networks (CNNs) to extract features and classify images using
the softmax classifier. A pertained model VGG-16 was used to develop a CNN model and got a 99.39%
accuracy.

The experimental findings of our proposed approach show that feature level fusion based on CCA
is useful in identifying the most correlated features between two feature sets of Iris and Fingerprint.
Furthermore, our method is equally powerful in representing the fused feature vector referred as
canonical correlation discriminant vector and reducing the probability of false match rate. Thus, the
proposed multimodal biometrics system can surely improve the universality, accuracy, and security of
a verification system with due consideration of cross match modalities. Using the SDUMLA-HMT
database to examine the performance of a multimodal system in cross match modalities is unique to
our research because no other study had done so before us. Our prototype model ran on PC with 3.10
GHz processor and 8GB RAM. For Right Iris and Right Fingerprint, training time is 0.145945 seconds
while testing time is of 0.012539 seconds per person. The comparative result analysis of our proposed
approach with existing approaches is shown in Table 6.
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Table 6. Comparison with existing methods.
Authors Modalities Level of Fusion Database Fusion Methodology Performance Result

Raghavendra
et al. [46]

Face,
Palmprint

Feature + Match
Score

FRGC face, PolyU
palmprint version II

Feature, Concatenation
and PSO

GAR% at FAR=0.01%
Feature: 94.72%, Score: 86.50%,
Hybrid: 97.25%

Shekhar et al.
[10]

Iris,
Fingerprint

Feature WVU Multimodal
Joint sparse
representation

Rank-1 Recognition Rates
4 Fingers: 97.9%, 2 Iris: 76.5%,
All modalities : 98.7%

Haghighat et al.
[24]

Iris,
Fingerprint

Feature
Multimodal Dataset at
WUV: BIOMDATA

DCA/MDCA with
Miminum
Distance Classifier

Rank-1 Recognition Rate
99.60%

Goswami et al.
[14]

Iris,
Fingerprint,
Face

Feature fusion
and
classification

WVU multimodal and
Law Enforcement Agency
(LEA) Dataset

Group Sparse
Representation based
Classifier (GSRC)

Rank-1 Identification Accuracy
99.1% for WVU
62.3% for LEA

Nada A et al.
[17]

Iris,
Face, and
Finger Vein

Feature
SDUMULA-HMT
multimodal
Dataset

CNN model
Classification Accuracy
99.39 %

Proposed
Method

Iris,
Fingerprint Feature SDUMULA-HMT

multimodal Dataset

Canonical
Correctional
Analysis (CCA)

Right Images: EER%:
Iris- 1.9762, Fingerprint- 2.7287,
Feature- 0.2812

Cross Match(Left Iris & Right Fingerprint):EER%:
Iris- 0.9559, Fingerprint- 3.1513,
Feature- 1.4286
Cross Match(Right Iris & Left Fingerprint):EER%:
Iris- 0.4727, Fingerprint- 3.0042,
Feature- 0.1050

Match Score EER%: using Right Images - 0.8474

6. Conclusions

In this paper, an optimal feature level fusion model based on CCA is presented to extract and
represent discriminative features by exploring significant relationships between the Iris and Fingerprint
feature sets of the same person. The performance is evaluated for different distance and cosine
similarity measures on the SDUMLA-HMT multimodal database in a verification scenario. From
experimental results of CCA based feature level fusion with Cosine Similarity matcher, we found
significantly improved recognition performance compared to unimodal systems, in terms of equal
error rate (EER)using a) Right Iris and Right Fingerprint images (EER of 0.2812%) and b) Right Iris
and Left Fingerprint images (EER of 0.1050%), while significantly poorer recognition performance
using c) Left Iris and Right Fingerprint images (EER of 1.4286%). It suggests that the concepts of
laterality should be considered while implementing the matching algorithm to improve the verification
performance of the multimodal system. Further, one should take into account the feature dependency
while designing the multimodal system as it affects the system performance. Cross matching is a novel
area of profound investigation in multimodal systems. We have obtained interesting initial results,
but further exploration should be done with a larger database. This paper offers new perspectives for
designing the feature level fusion model for multimodal systems for Iris and Fingerprint modalities
which are efficiently represented in canonical space. But, in order to take advantage of feature level
fusion and find the deep rooted relation of cross matching modalities features, further exploration needs
to be addressed by designing an intelligent matcher framework at the matching level as well. To further
enhance the robustness of the proposed approach, we intend to investigate geometric consistency for
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feature matching as stated in [48] and also exploit superior CNN architecture-based models in Iris
segmentation for higher recognition accuracy [49].
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