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Abstract: This work simulates and examines the circuit’s operation for a single-electron 

nanostructure which is composed of slanted coupled two-dimensional arrays of tunnel junctions. The 

structure under study is modeled by combined computational simulation methods, both the Master 

Equation and the Monte-Carlo techniques. Throughout this process, the distribution of the time 

between successive random events could be computed at a reference junction. From these time 

distribution values, further calculations have been carried out to obtain the power spectral density 

trends, which reflect the corresponding properties on the frequency domain. For these homogeneous 

structures, the biasing conditions have been inspected for a combination of the two array’s legs. It is 

found that, for some shorter lengths 3, 5, and up to 7 tunnel junctions could be triggered from any 

same or opposite side ends having different voltage polarities. For relatively longer structures of 

sizes 10, 15, 20, and 30 tunnel junctions, the circuit initial parameters are readjusted for obtaining 

remarkable results for their oscillations study. By increasing the value of the slanted coupling 

capacitance, the steady-state currents are in terms increased, and in this way, it is possible to realize 

the tunnel events correlations. It is shown that tuning the stray capacitances by slightly increasing 

their values will lead to a good clearer effect, especially for those longer array sets. 

Keywords: master equation; tunneling; coulomb blockade; Monte-Carlo modeling; power spectral 

density 

 



56 

AIMS Electronics and Electrical Engineering  Volume 5, Issue 1, 55–67. 

Abbreviations: NT: Nanotechnology; SED: single-electron device; SE: single-electron; SET: 

singe-electron tunneling; PDF: probability density function; 2D: two-dimensional; 1D: 

one-dimensional; Diff.: Different; Simi.: Similar; L1: left1; L2: left2; R1: right1; R2: right2 

1. Introduction  

Nanotechnologies (NT) are nowadays up-and-coming generic technologies encompassing 

several industrial sectors. Today, they are already contributing to many industrial successes. It is 

predicted that they will have a significant positive impact on technological progress and financial 

profits and health, the environment and social well-being. In the semiconductor field, where the 

integrated circuits are composed of transistors, which are nowadays as small as a few tens of 

nanometers in scale, the electronic circuits have still functioned with many electrons. The ultimate 

goal, in this respect, is the realization of integrated circuits at the single-electron level. Applied 

researches to date have taken an actual effort in the field of low-dimensional electronic conductors 

towards single-electron (SE) nanoelectronic to gain full control over single electron to be applicable 

and suitable for applications in the low dimensional semiconductor areas.  

At present, it is possible to confine and manipulate single electrons in a very controlled way in 

semiconductor nanostructures such as nanowires or quantum dots composed of numerous nanoscale 

elements [1]. However, for the single electron circuits of the future to lead to useful applications, one 

requires a mechanism to transport and interconnect a single electron from one functional part of the 

course to another and manipulate it in a controlled way. Besides, coherent transport of quantum 

information has been demonstrated in many previous types of research in various stable state systems 

like transporting single electrons in multiple quantum dot networks, the coupling of superconducting 

qubits to microwave photons [2], or in both the 1D (one-dimensional) arrays [3,4] and the 2D 

(two-dimensional) arrays [5,6] of tunnel junctions. The essential structural feature that all these 

SEDs have in common is the small island composed of semiconductor or metal, in which electrons 

may be confined. This island of a nanoelectronic device assumes a role analogous to that of the FET 

transistor channel.  

For these devices, the current passing a tunnel junction is governed by the Coulomb blockade 

phenomena. At low bias voltages and a given room temperature, operational SED at a nearly low 

temperature, T, satisfies the condition kBT << e
2
/2C, where C is the total capacitance and kB is the 

Boltzmann constant. These SEDs could enter the Coulomb blockade region, and the tunneling of 

electrons in such a case is blocked, giving them essential unique properties [7]. However, a tunnel 

junction biased by a DC source may generate single-electron tunneling (SET) oscillations that are 

having an average frequency fo proportional to the average current <I> estimated in that circuit, 

fo = <I>/e, where e is the elementary electron charge [8]. This happens due to the gradual 

accumulation of the continuous charge on the junction capacitance. A sudden passage of one electron 

occurs through the junction, causing the charge profile to reach a certain critical charge threshold 

level (Qc = ±e/2) [9]. The discreteness of charge transfer is one of the crucial issues that is facing the 

emerging nanoelectronic field. For all of that, there is a need to formulate the conditions under which 

the transport of charge through a conductor is considered as quasi-continuous charge transport. One 

example of those capable of quasi-continuous charge transfer is the 1D array of small tunnel 

junctions [10]. The 1D arrays have a key property that each additional electron jumping into one of 

its islands forms a series of gradually decreasing polarization charges. Hence, it is considered as a 
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"single-electron soliton" with a characteristic that may be much larger than that of one single 

island [11]. In this study, the quality of oscillations has been investigated through the dynamic 

charging processes coupled with the possible instantaneous tunnel processes and then compared to 

previous research studies of similar structures. 

The simulation tool uses algorithms based on the Monti-Carlo concept, a type of simulation that 

relies on repeated random sampling and statistical analysis to compute the results and trace the 

individual random tunneling events as well as collecting the data required to assess the quality of the 

resulting oscillations by adding the distribution of time between these events and then, calculating 

the finite frequency power spectral density of the resulting oscillations for the signal generated by 

those events. The modeling routine has been applied to characterize the operation of many sizes of 

homogeneous capacitive slanted two-dimensional arrays of small tunnel junctions. The rare event 

tunneling cases or the co-tunneling and the induced electrostatic background charges were excluded 

from this analytical work.  

2. Theory and model 

The equivalent nanostructure under study is shown in Figure 1 for the capacitive slanted 

two-dimensional arrays of tunnel junctions. Each collection set consists of a series of tunnel 

junctions 1, 2…, i,…, N, and they have tunnel capacitances Ct1 and Ct2, respectively, with assumed 

tunnel resistances Rt1 and Rt2, satisfying the condition Rt >> h/e
2
, where h is the Plank’s constant, for 

the purpose of minimizing the quantum mechanical effects. Both of them are connected by electrodes 

1, 2…, i,…, N, at potential фi, and also, both are coupled to the ground plane via the stray 

capacitances C01 and C02, respectively. The two sets are linked together in the capacitive slanted 

manner by the capacitances Cc, before and after each junction of the lower and upper array, except 

their last junction connection, which is linked only before its junction. The circuit is capable of 

having voltage bias at its two left and two right voltage terminals. 

The circuit architecture is different from that of the straight coupling using capacitances Cc of 

the 2D arrays as presented previously, as in [6], in how it has an extra capacitive element for each 

tunnel junction of the upper and lower array legs. The analysis is performed in a deficient voltage 

regime. For an excess single electron located at a given node inside any of the two arrays, the 

potential profile created will block further electrons from entering that part of the array. Under such 

conditions, the charges transport through the two sides of the array will be dominated by a single 

charge tunneling in each of the two arrays, from left to right or vice versa, until it finally exits at the 

other end. At higher bias conditions, the situation might change. More than one electron could be 

found inside the structure, and the time between events will be a combination of different sequences. 

The properties of the array resulting from such sequential tunneling mode could be studied in the 

time domain and its reflection in the frequency domain. Experimentally, it is most likely that 

successive tunneling events may take place across non-neighboring junctions. This would require the 

analysis of the various states transition multiple paths contributing to the transport processes. For the 

array nanostructure of Figure 1, when it is biased slightly near its bias Vth, the transport process is 

well defined by a single path for conduction, or the travel of the electron entering from one end. It 

moves to another one until it exits from the other end in only one direction, as considered in this 

study [12]. 
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Figure 1. Equivalent circuit diagram for a capacitive slanted coupled 2D homogeneous 

arrays each of N small tunnel junctions with equal junction capacitances Ct, equal stray 

capacitances C0, and coupling capacitances Cc. 

 

2.1. Monte-Carlo computation method 

The Monte-Carlo (MC) simulator tool starts with the Master Equation formalism to get the 

steady-state current I0 passing in the tunnel junction network, and then computes the average time 

between the successive events. This is achieved by using several successive algorithms for 

identifying the list for the active states that hold the system in its steady-state. It is depicted that the 

steady-state and transport characteristics of single-electron circuits are strongly affected by the 

possible states in the system and the relationships between these states [13]. The simulator iterates 

"events" by repeatedly characterizing the circuit for a given set of input voltages and the clocked 

charge positions, and guesses the tunneling event that will occur next and updating the dependent 

and the independent circuit parameters accordingly by using the charge conservation law and the 

circuit matrix equations. The single-electron tunneling rate Γ through a tunnel junction depends on 

the change of the electrostatic free energy ∆E after and before a tunneling event, based on the Fermi 

golden role and the orthodox theory. The tunneling rate through the i
th

 tunnel junction is given as [8]: 
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where RT is the tunnel resistance. Given the tunnel rate Γ for a tunneling event, the probability that 

the tunnel will occur in τ is given as [14]: 

                            ρ(τ) = 1 – exp(-Γτ)                  (2) 

For small values of τ, that is for ∆τ, the tunnel interval ∆τ between two successive tunneling 

events is evaluated for all tunnel junctions by using a random number r uniformly distributed over 

the interval 0 ≤ r <1, expressed as: 
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The tunneling event with the shortest ∆τ of all is chosen as the one that actually occurs. Then, 

the state of the circuit is updated. This simulation procedure is tracked repeatedly. Never the less, this 

MC method is precise; it is computationally expensive, especially for the larger extended systems of 

coupled devices. The model divides a total time of kT0 (k ~5, and T0 is the average time between 

successive events) into W slots (W ~1000). The Monte-Carlo simulation runs so that a total of M 

events crosses the junction under study (M ~10
7
). The time between successive events is recorded in 

their corresponding time slots. The frequency components of the train of delta functions formed by 

the electrons crossing the reference tunnel junction are subsequently given by the Fourier relation: 

                           

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where gi(t) is the probability density function (PDF) for the time between successive events, 

considered as the percentage of the number of tunneling events counted in slot i to the number of 

events calculated within the time size of the slot and divided by the total M events crossing the 

junction under study. The probability density function is, therefore, estimated by the following 

relation: 

                            gi(t) =  
𝑛𝑖

M.∆t
                               (5) 

where ni is the number of tunneling events added up in slot i, ∆t is the slot’s time frame size, and M 

represents the total events crossing the junction under study. 

2.2. Frequency spectrum analysis 

The finite frequency spectrum of the current pulses detected at the measurement point is 

dependent on the pattern of tunneling events and the distribution of the time between these events (gi), 

as stated above. The values obtained for gi(t) is further used to get the power spectral density S(ω) 

expressed by the relation [15]: 
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where I0 = <I> is the average tunneling current, G(ω) is the Fourier transform of the distribution of the 

time between events expressed in angular frequency (ω), and e is the electron charge. For a Poisson 

process, the power spectral density has a constant value, known as Scotty value, S(ω) = 2eI0, 

independent of the frequency. It is considered a uniform noise power spectral density [15,16], as a 

result of the discreteness nature of the random tunneling for the events. The distribution of time 

between these events deviates from the Poisson behavior; in this case, the spectral density could be 

higher or lower than that of the Scotty value, and the curves for their probability density function 

shifts from the trend of the negative exponential distribution, depending on the distribution of the 

random tunneling events during a specific time of measurements, as reported previously for arrays of 

small tunnel junctions [6,17]. The tunnelling process in single electronic circuits is assumed to behave 

as Poisson point process. This Poisson point process is an arrival process described by a negative 

exponential distribution, f(t) = λe
-λt

, where λ is the arrival rate of electrons. The time spent at any 

random state depends on the state's transition rates to any other states linked to this state by only one 

tunnel event. The PDF of the dwelling time at that state is obtained as [10,12]: 

                                fj(t) = Γj.exp (-Γjt)                       (7) 
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where Γj represents the tunnel rates for that state j. The time between two successive tunnel 

observations across the reference junction will correspond to the sum of all dwell times at all nodes in 

the array [12]. Let a variable T defines the time between successive events, which estimates the 

dwelling time at each node. The mean µ (= <T>) and the standard deviation σ for the time between 

successive events gi(t) for the structure of the 2D array could be evaluated as follows: 

                             <T> =  ∫ t .gi(t)dt                                 (8) 

Using Eq (8) above, we have: 

                              µ = <T> = ∆t.∑ ti.gi(t)                            (9) 

                              σ  = √ ∆t.∑ (ti - <T>)
2
gi(t)                         (10) 

where ti represents the time measurement for the tunneling events across the junction under 

observation, i = 0, 1, 2, …, and ∆t is the time size of the slot. The charge passing through the junction 

could be subsequently found as: 

  
i

ittq)t(Q                (11) 

The coefficient of variation β or the oscillation quality factor is defined as the ratio of the 

standard deviation divided by the mean. Using Eqs (9) and (10) above, it is equal to: 

 β = 𝜎/µ                (12) 

This quality factor β is a good measure for comparing different data sets to show their variability 

with their mean and standard deviation statistical analysis methods. 

3. Results and discussion 

The present analysis aims to further investigate the characteristics of the electron transport 

through a homogeneous set of arrays built from small tunnel junctions. Few published studies for the 

structures are composed of two-dimensional arrays of tunnel junctions, as in [5,6]. One of them 

described the correlation behavior for the randomly generated tunneling events when applying a 

selected threshold bias condition to trigger the current passage across a targeted junction, as in [6]. As 

a result, there is a propagation of electrons throughout both arrays, until finally, they exit at either end 

of the two arrays. The SET's schematic circuit in this report differs from the earlier one in the coupling 

mechanism joining the two arrays. There is a direct straight coupling using one capacitive element 

joining the intersection points between the arrays set in the former circuit. In this latter one, the 

structure has additional capacitive components (capacitances Cc's) placed before each tunnel junction 

of them, except at their ends. This is done for better investigating the option of having an extra 

capacitive effect in the circuit operating conditions. Accordingly, it reflects the coherence of the 

random formed tunneling events. The circuit parameters entered as initial values for the simulation 

algorithms are the same as those figures assumed in modeling the previous study’s equivalent circuit, 

as in [6]. Afterwards, these parameters have been adjusted for further tuning the outcome results as the 

new requirement needs i.e. the tunnel junction’s capacitance Ct = 1.0e-17F, the ground plane (stray) 

capacitances C0 = 1.0e-18F, the tunnel resistance Rt = 100kΩ, the coupling capacitances Cc = 1.0e-18F, 

and the nominal operation room temperature T = 1.0e-07K. These parameters are taken equal to each 

other and the corresponding ones in the different twin array. The arrays are attached to ideal voltage 
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sources in both their left and right terminals. The bias voltage applied in any terminal is slightly above 

the threshold voltage. The analysis is conducted in a deficient voltage regime, i.e. the applied bias 

threshold voltage Vth is in terms of a few mille volts at either the left and the 2D arrays structure's 

right ends.  

In this case study, the initial constant coupling relation estimated from the coupling capacitance 

Cc ratio and the tunneling capacitance Ct is assumed as Cc/Ct = 0.1. Moreover, the shorter arrays are 

referred to structures of lengths N = 3, 5, and 7 tunnel junctions, and that the relatively long arrays 

types are for those having N = 10, 15, 20, and 30 junctions, or more. For all these models, the bias 

conditions have been inspected for most possible combinations terminals from the upper and lower 

array leg's left and right sides. Also, the option of having a positive or a negative voltage injection is 

included. The case for operating only one array at a time is excluded. These bias different choices are 

used to select the proper potential arrangements in order to achieve the best modeling output results. 

Far ahead, it assists in plotting the distribution gi(t)’s and the corresponding PDF charts having a close 

look at the optimum trends for these capacitive coupled nanostructures. As stated above, the 

simulator’s hybrid part’s initial stage uses the Master Equation (ME) approach for getting the 

steady-state current passing in the structure using the initial substituted parameters. In the ME stage, it 

is possible to address the best suitable bias from the profile of these single-electronic structures 

potential. Using these estimated bias voltages, the circuit would have an injected number of electrons 

that could transport in either array’s legs. 

Furthermore, it is ready to collect the rest of the results in the next step of the Monte-Carlo stage. 

The MC technique is very closely related to random experiments for which the specific outcome is 

not known in advance. One crucial characteristic is exploring the state's transition that is showing at 

any operation stage the electron transport patterns throughout these arrays for the three possible 

situations: the single electron, the electron-hole pair, and the combined single electron and 

electron-hole case. These state transitions are dependent primarily on Vth’s setting, which are 

suitable for injection of a charge into these slanted coupled 2D arrays nanostructures [6]. 

A summary sheet is reported for the suitable threshold ranges for biasing to all the several length 

sizes of the nanostructures under study. Table 1, Table 2 and Table 3 below are three examples of the 

structure set of length N = 10 of small tunnel junctions. They list the possible triggering threshold 

voltage ranges, accompanied with the identified active states and followed by their observed random 

tunneling events, as well as their formed steady-state current measured at the reference junction. 

These tables were obtained from the simulated circuit for some chosen bias voltage ranges, before 

and after the initial parameter value of the coupling capacitance (Cc = 1.0E-18F), as the case for both 

options (A) and (B) in Tables 1 & 2. Then Cc is significantly changed (Cc = 0.50E-18F), as in option 

(C) in Table 3. 

Table 1. Option (A): 2D array (N = 10) acceptable Vth ranges for Cc = 1.0E-18F. 

Bias range= 0.01 to 0.015V, Steady-State Current = 

3. 342e-12A 

VL1=VR2 (In Volts with same polarities) 

& (VR1=VL2 = 0) 

States & Events 

a. 1.243e-002V to 1.282e-002V States =29 & Events =40 

b. 1.282e-002V to 1.292e-002V States =39 & Events =60 
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Table 2. Option (B): 2D array (N = 10) acceptable Vth ranges for Cc = 1.0E-18F. 

Bias range = 0.00 to 0.020V, Steady-State Current = 

6.365 e-13A 

VL1=VL2 (In Volts with opposite  

polarities) & (VR1=VR2 = 0) 

States & Events 

a. ≥ 8.792e-003V States=2083/ Events=7876 

 

Table 3. Option (C): 2D array (N = 10) acceptable Vth ranges for Cc = 0.50E-18F. 

Bias range = 0.010 to 0.015V, Steady-State Current 

= 3.041e-13A 

VL1=VR2 (In Volts with same polarities) 

& (VR1=VL2 = 0) 

States & Events 

a. 1.531e-002 to 1.572e-002 States=52/ Events=100 

b. 1.572e-002 to 1.581e-002 States=356/Events=1076 

c. 1.581e-002 to 1.582e-002 States=438/Events=1346 

 

It is realized that any significant capacitive increase in Cc, is leading to a dramatic effect in the 

circuit's operation conditions, as it is demonstrated when comparing both options (A) & (B) to option 

(C) figures. In option (A), the circuit is injected from only its VL1 and VR2 terminals. It seemed that it 

has the better bias selection choice than option (B), which uses the left side terminals or VL1 and VL2. 

This, in terns, has a negative impact of increasing the total simulation time during the second 

important stage or the MC part, especially when considering larger values for the total number of 

events M for crossing the tested sample junction. When looking again to option (B), there is a larger 

counted number of states and events obtained in option (B) than that in (A), as the range of Vth has 

increased. Also, the steady-state currents have minimal values (< 1.0E-15), and this is considered a 

numerical coding limitation in simulating this circuit; for that reason, option (A) is preferable to 

option (B). In Table 3 or option (C), and after substituting the new value for Cc, it appears that the 

Vth ranges are higher than the previously recorded ones in both Tables 1 & 2, but the corresponding 

states and events are considered as adequate and they could lead to good MC modeling tests. In this 

scenario logic steps, the best bias selection options have been assessed and made for all the other 

selected 2D structure lengths.  

For observing the dynamics of the single-electron transport in these quantum dots structures, as 

well as the capacitive inter-array coupling touches for these nanoscale arrays, besides comparing 

their electronic oscillation characteristics against the previous remarks available for straight coupling 

style, as in [6], or these study findings with that reported to a similar structure circuit of an older 

one [5]. The array's initial parameter values are assumed constant ideal values with zero error 

tolerances. Besides, they are chosen equal to the previous ones, for having the same working 

conditions. Again here, the arrays were attached to an ideal voltage source. The output voltages, 

whether they are applied at any choice from the left and right terminals, are taken slightly above the 

selected threshold voltage. The analysis is carried out into a deficient voltage regime of a few 

voltages. At the same time, most probably, there is only one triggering terminal for either one of the 

two coupled arrays, and the remaining two ends were grounded. The development of a stable and 

reliable single-electronic system requires a setup of a precise schematic circuit design, besides the 

use of optimum parameter selections from within a suitable tested range for all its nominated 

elements, like the tunnel junction's capacitances and resistances, the stray capacitances, the arrays 

coupling capacitances and also, the nominal operation room temperature, to avoid the effect of other 
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noise sources into the simulation study scope. What is left is only the shot noise, which in this case 

represents the signal itself or the created current fluctuations which are stochastics in nature, due to 

the generated random events. This applies to these long array structures as reported previously [15]. 

For example, an undesired small change in such ultra-small capacitances might significantly affect 

the numerical simulation outcomes and disturb the circuit operation’s stability.  

Figure 2 below illustrates the curves of the PDF for three shorter capacitive slanted linked 2D 

arrays of lengths (a) N = 3, (b) N = 5, and (c) N = 7 of small tunnel junctions. In each array size, all 

the possible MC simulated triggering choices for getting its gi(t) density functions were plotted. This 

is in line with the earlier mentioned summary sheet that was obtained from the modeling beginning 

stage of the ME formalism, in which preliminary tests were done for exploring the arrays terminals 

selection from among the available four ends (VL1, VL2, VR1, and VR2) to bias the 2D array structure 

with a suitable threshold voltage. Here, these curves show the diversity found for the possible 

selection of the bias ends for a nanostructure specific length when comparing the oscillation 

characteristics or the distribution of time between events plots, in this case, for each choice. 

 

 

Figure 2. Slanted coupled 2D shorter arrays gi(t) density functions for all possible two 

ends array Vth bias options with either equal similar or equal different polarities voltages, 

for arrays of lengths (a) N = 3, (b) N = 5, and (c) N = 7 , when using the initial given 

parameters values. 

It is observed in Figure 3 below, under the same previous experimental operation conditions, the 

density function gi(t)’s curves or the distribution for the time between successive events leaving the 

array increases, while the structure length N is enlarged, as an expected result due to the rise in the 

number of the accumulated tunneling events that are needed to traverse the electrons in much longer 

arrays sizes. The reduction of the top trends for these probability density functions for the increase in 

N indicates that the time fluctuations between the events do increase in terms. This figure includes 

the gi(t) curves for the arrays of lengths N = 3, 5, 7, 10, and 15. They have been drawn using the 

mentioned given above initial values. They also include two more extra plots for the arrays N = 10 & 

15 for their gi(t)’s after changing the coupling capacitances Cc to another larger value 

(Cc = 0.05E-18F). The correlation of these structures’ generated tunneling events is noticed in a 

representation of a linear scale plot. For the shorter arrays of lengths N = 3, 5, and 7, all of them are 

having sharp peaks for their plotted PDF curves, and there is also an indicator for a presence of 

another peak within the same curve lines, as it is observed for arrays N = 5 and 7. For the arrays 

N = 10 and 15, the indication of their second peak are found in their extra added curves, named 

N = 10 (After) and 15 (After), as a reflection for the case of a new trends due to the increase in Cc 

capacitive value. Figure 4 represents the spectral densities S(f)’s curves for nanostructures of Figure 3 
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above. It shows, the tunneling events oscillations for the corresponding frequency contents again, 

and one more time, the bends of the peaks are visible in the frequency domain. These peaks are near 

the value of 0.5 of the normalized average oscillations frequency fo and tend to reach its absolute 

value of 1.0; and the second peak or their second harmonic peak is closing to double this frequency 

value, as it is clearly noticed for N = 10 and 15, before increasing Cc. The oscillation characteristics 

seen here are in contrast and even look better in terms of its events correlation behavior than those 

reported previously for the straight coupling scenario, when comparing the trends for the same 

shorter sizes, as in [6]. Accordingly, it could be figured out that it is not possible to get some results 

in this work initially before increasing both Cc and the stray capacitances for their gi(t)’s and S(f)’s 

for the longer arrays lengths N = 20 or 30, and even more. This remark is demonstrated in Figure 3, 

by showing the findings for arrays N = 10, before and after the addition of the capacitive effect, and 

it assists in the start for the appearance of another peak in their gi(t)’s, or another second harmonic 

peak in their S(f)’s. 

 

 

 

 

 

 

 

 

Figure 3. The time distribution gi(t) for the 2D arrays N = 3, 5, 7, 10 and 15, using the 

initial values: coupling capacitances Cc = 1.0e-18 F, stray capacitances C0=1.0e-18 F and 

tunnel capacitances Ct=1.0e-18F. Both arrays biased near-threshold voltage at only one end. 

 

 

Figure 4. The power spectral densities S(f) for the same arrays N= 3, 5, 7, 10, and 15, 

and extra two plots for N = 10 and 15, for the same circuit parameters of Figure 3 above. 
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The oscillations trends for the relatively longer arrays N = 10, 15, 20, and 30 for the two slanted 

coupled one-dimensional arrays are shown in Figures 5 and 6, respectively. Results for arrays 20 and 

30 were obtained only when all the stray capacitances for the two structure array legs values were 

changed to C01 = 0.50E-18 & C02 = 0.50E-18, respectively. This confirms that the stray capacitances 

or grounding capacitance are having an essential role in the functionality of operating these types of 

nanostructures in terms of controlling the suitable Vth ranges for biasing them using two terminals, as 

explained earlier in this study. The findings here in this work match those highlighted previously in 

an earlier report as in [5]. The values of the selected nanoscale elements used in this study simulation 

tool for either the capacitances Cc or C0, are chosen such that the coupling factor is equal to 0.1 as 

mentioned earlier in this study, and thus C0 is in its small limit. It is reported previously that Vth is 

proportional to 1/Ct (see Eq (24), in [5]). As Ct in this analysis work is fixed, it is evident that the 

suitable Vth ranges are proportional to the array lengths as remarked above in this work. 

 

Figure 5. The densities functions gi(t)’s for the arrays N = 10, 15, 20 and 30, using new 

values for both coupling capacitances Cc = 05.0e-18 F and stray capacitances C0 = 

0.5.0e-18 F. 

 

Figure 6. The power spectral densities S(f)’s for the same arrays N = 10, 15, 20, and 30, 

for the same circuit parameters as in Figure 5 above. 
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4. Conclusion 

In this work a comprehensive analysis is presented of single-electronic generated oscillations in 

scalable capacitive coupled two-dimensional arrays of nanoscale tunnel junctions, which operate 

similarly to nanostructures forming two series of quantum dots that are having surrounding Femi sea 

for injecting electron charges in them. It is concluded that the choice of adding a capacitive element 

enhances the performance of these nanoelectronic circuit operations, when compared to the straight 

coupling style, besides the importance of the special consideration of deciding on the other two 

important factors: the stray capacitances and the array lengths, as also both of them are having a role 

in determining the suitable threshold voltage ranges for triggering these 2D arrays nanostructures. It 

is expected that the overall indicators for the oscillation quality factor (β) will be enhanced better 

than that for the straight coupled 2D arrays, by choosing the best selection for the bias ends, as well 

as the precise values to be nominated for these three important nanoscale elements: the coupling 

capacitances, stray capacitances, and the array lengths. The capabilities of the scheme illustrated in 

this simulation for these coupled two-dimensional arrays are open for further extensions after more 

adjustments are done for the simulation algorithm's initial setup values for the two arrays. 
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