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Abstract: In this paper, a financial risk model, which is formulated from the risk management process 

of financial markets, is studied. By considering the presence of Gaussian white noise, the financial risk 

model is reformulated as a stochastic optimal control problem. On this basis, two efficient 

computational approaches for state estimation, which are the extended Kalman filter (EKF) and 

unscented Kalman filter (UKF) approaches, are applied. Later, based on the state estimate given by the 

EKF and UKF approaches, a linear feedback control policy is designed from the stationary condition. 

For illustration, some parameter values and the initial conditions of the financial risk model are used 

for the simulation of the stochastic optimal control problem. From the results, it is noticed that the 

UKF algorithm provides a better state estimate with a smaller value of the sum of squared errors (SSE) 

as compared to the SSE given by the EKF algorithm. Thus, the estimated output trajectory has a high 

accuracy that is close to the real output. Moreover, the control effort assists in estimating the state 

dynamics at the minimum cost. In conclusion, the efficiency of the computational approaches for 

optimal control of the financial risk model has been well presented. 
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1. Introduction 

Chaotic economics is a physical economics theory that can reveal ordered structures in random 

economic phenomena (Zhang et al., 2013). Recently, chaotic economics has gained extensive attention 

from the control communities and has been raised as an alternative scientific approach to 

understanding the complex dynamics of the real financial market (Sukono et al., 2020). Chaos is a 

special complex dynamic phenomenon that supports an endogenous explanation of the complexity 

observed in an economic time series. The existence of a chaotic phenomenon in any financial 

investment leads to the suffering of certain financial risks, as the primary function of financial markets 

is to transfer risk (Gao et al., 2018). Hence, understanding and handling the chaotic economics are 

crucial for the financial investment, as well as financial risk control. 

In fact, financial risk is the possibility of suffering losses caused by uncertain changes in 

endogenous factors in financial or investment activities that have unpredictable fluctuations (Sukono 

et al., 2020). Thus, the high frequency of the up-and-down trends increases the loss incidence in the 

stock market. On the other hand, the financial crisis, which has the expression of chaos characteristics, 

can be caused by the occurrence of financial risk (Pfaff, 2016; Gao et al., 2018; Li et al., 2021). Since 

the rise in the occurrence of financial crises, the modeling and measurement of financial market risk 

have become necessary to devise and employ techniques that are better able to cope with the 

empirically observed extreme fluctuations in the financial markets.  

From the review of literature, Burlando (1994) introduced the structure and terminology of chaos 

theory to risk management. The ultimate consequence of emerging chaos and risk is indeterminable, 

so a new perspective on how chaos and risk can persist in disrupting each other shall be further 

examined. Guillen et al. (2005) manipulated the financial risk associated with a given supply chain 

configuration under demand uncertainty. Zhang et al. (2013) investigated the stability and chaos of the 

improved financial risk system and described the change in financial market risk by using the complex 

dynamics of the system. In addition, the positive feedback gain matrix method has been applied to 

construct and prove the stability of the control system (Gao et al., 2018). This method shows that 

financial market risk can be controlled effectively under certain conditions, such as optimality and 

stability conditions, although chaotic systems are difficult to control.  

Therefore, it is important to design and improve the dynamic chaotic control system because 

chaos disappearance is able to guard against financial system risks (Zhang et al., 2013). The rapid 

expansion of technology has provided the possibility for in-depth research on risk control, and many 

control systems have been developed to control the chaotic behavior of financial risk systems. 

Although financial risk cannot be eliminated totally, it can be managed (Kim et al., 2012). Hence, 

computational approaches such as extended Kalman filter (EKF) and unscented Kalman filter (UKF) 

techniques could be applied to solve the chaotic dynamics that are exhibited in the financial risk system. 

Some studies of using a Kalman filter in financial risk systems include financial crisis dynamics (Fatma 

and Sami, 2011), corporate financial distress (Zhuang and Chen, 2014), derivative portfolios (Haugh 

and Lacedelli, 2020), nonperforming loans (Ahmadi et al., 2022) and intellectual property pledge 

financing (Yin et al., 2022).  

The main contribution of this paper is to demonstrate the effectiveness of the UKF technique in 

estimating the state while achieving optimal control of the financial risk system, and to compare the 

results of the UKF technique with the results from the EKF technique. In our work, the financial risk 

system, which consists of occurrence risk, analysis value risk and control value risk, is assumed to be 
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disturbed by Gaussian random noise. Thus, the use of these filtering techniques is more appropriate 

than using the particle filter for non-Gaussian random noise. Unlike the EKF, the UKF does not require 

any Jacobian matrix calculations because it does not approximate the nonlinear functions of the process 

and the observation. By applying the unscented transformation, the UKF uses nonlinear models to 

approximate the distribution of the state variables and the observed variables with a normal distribution. 

For estimation accuracy, the sum of squared errors (SSE) and mean squared error (MSE) are calculated 

for both the EKF and UKF techniques. With these state estimates, the linear optimal control law is 

designed such that the performance index of the system, which measures the efficiency of the controller 

design, is minimized. 

The rest of this paper is organized as follows. In Section 2, the stochastic optimal control problem 

of the financial risk model is described. In Section 3, the EKF and UKF computational approaches for 

solving the problem are discussed. Accordingly, the calculation procedures are summarized into two 

algorithms, which are the EKF for state control (EKFSC) algorithm and the UKF for state control 

(UKFSC) algorithm. In Section 4, an illustrative example that shows chaotic behavior is presented. 

Then, significant results on state estimation and feedback control of the system are presented and 

discussed. Finally, some concluding remarks are made. 

2. Problem description 

Consider a mathematical model of the financial risk system (Sukono et al., 2020) that is described as 

1 2 1 2 3

2 1 2 1 3

3 1 2 3

( ) ( ( ) ( )) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

x t a x t x t x t x t

x t bx t x t x t x t

x t x t x t cx t

= − +

= − −

= −

                                 (1) 

where 𝑥1(𝑡) is the occurrence value risk, 𝑥2(𝑡) is the analysis value risk and 𝑥3(𝑡) is the control value 

risk in the current market. These variables (𝑥1, 𝑥2, 𝑥3) are state variables and must be positive because 

risk in financial markets always exists in the market. In addition, a is the analysis risk efficiency, b is 

the transmission rate of the previous risk and c is the distortion coefficient for risk control. These 

scalars, i.e., a, b and c, are positive constant parameters with a, b, c  0.  

By imposing the admissible control input 𝑢(𝑡) ∈ ℜ3, k = 0, 1, , N–1, to the dynamic model (1), 

the state equation becomes 

 

1 2 1 2 3 1

2 1 2 1 3 2

3 1 2 3 3

( ) ( ( ) ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( )

x t a x t x t x t x t u t

x t bx t x t x t x t u t

x t x t x t cx t u t

− +     
     

= − − +     
     −     

                                    (2) 

and its equivalent discrete-time model is given by 

   ( 1) ( ( )) ( ),x k f x k Bu k+ = +                                                      (3) 

where 𝑥 = is the state vector, the function 𝑓: ℜ3 → ℜ3 is the plant dynamic given by 
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1 2 1 2 3

2 1 2 1 3

3 1 2 3

( ) ( ( ) ( )) ( ) ( )

( ( )) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( )

x k a x k x k x k x k

f x k x k bx k x k x k x k

x k x k x k cx k



− +   
   

= +  − −   
   −   

                                 (4) 

with the sampling time   for k = 0, 1, , N–1, and B is a 3 × 3 control coefficient matrix. Note that, 

in the presence of the random disturbances 𝜔(𝑘) ∈ ℜ3, k = 0, 1, , N–1, which is the process noise, 

and 𝜂(𝑘) ∈ ℜ, k = 0, 1, , N–1, which is the measurement noise, the state equation (3) is written as 

     ( 1) ( ( )) ( ) ( ),x k f x k Bu k G k+ = + +                                                (5) 

and the output measurement is denoted by 

( ) ( ( )) ( ),y k h x k k= +                                                 (6) 

where G is a 3 × 3 noise coefficient matrix and ℎ: ℜ3 → ℜ is the output channel function defined by  

1( ( )) ( ).h x k x k=                                                                (7) 

Here, the random disturbances 𝜔(𝑘) and 𝜂(𝑘) are Gaussian white noise sequences with a zero 

mean; their covariance matrices are 𝑄𝜔 and 𝑅𝜂, respectively. The initial state 𝑥(0) = 𝑥0 is a random 

vector with an expected value and error covariance that are respectively given by  

T

0 0 0 0 0 0 0[ ]  and [( )( ) ] ,E x x E x x x x M= − − =    

where 𝑀0 ∈ 𝑅3×3 is a positive definite matrix and 𝐸[⋅] is the expectation operator. It is assumed that 

the initial state, process noise and measurement noise are statistically independent.  

Hence, the aim of the study was to find a set of the optimal control sequences 𝑢(𝑘), k = 0, 1, , 

N–1, such that the cost function  

1

0

( ) ( ( )) ( ( ), ( ))
N

k

J u E x N L x k u k
−

=

 
= + 

 


                                             (8) 

is minimized over the dynamical system defined by (5) and (6). Here, 𝜑: ℜ3 → ℜ is the terminal cost 

function and 𝐿: ℜ3 ×  ℜ3 → ℜ is the operating cost function. Therefore, this problem is referred to as 

the discrete time nonlinear stochastic optimal control problem for financial risk system, and it is 

regarded as Problem (P).  

3. State estimation strategies  

In this section, the state estimation using the EKF and UKF approaches is discussed and the 

optimal control law is designed for solving Problem (P). 
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3.1. Extended kalman filtering  

Consider the state mean propagation for the state dynamics described by (5), i.e., 

( 1) ( ( )) ( ),x k f x k Bu k+ = +                                                  (9) 

where 𝑥(𝑘) represents the state mean sequences, and we define the weighted least-squares error as  

                                        𝐽𝑙𝑠𝑒(𝑥) =
1

2
(𝑥(𝑘) − �̄�(𝑘))T𝑀𝑥(𝑘)−1(𝑥(𝑘) − �̄�(𝑘))  

   +
1

2
(𝑦(𝑘) − ℎ(𝑥(𝑘)))T(𝑅𝜂)−1(𝑦(𝑘) − ℎ(𝑥(𝑘))).                               (10) 

By taking the necessary condition ( ) 0lseJ x = , the optimal state estimate is obtained from 

�̂�(𝑘) = �̄�(𝑘) + 𝐾𝑓(𝑘)(𝑦(𝑘) − �̄�(𝑘)),                                           (11) 

�̄�(𝑘 + 1) = 𝑓(�̂�(𝑘)) + 𝐵𝑢(𝑘),                                              (12)  

�̄�(𝑘) = ℎ(𝑥(𝑘)),                                                            (13) 

where ˆ( )x k  is the filtered state estimate, ( )x k  is the predicted state estimate and ( )y k  is the output 

estimate (Lewis et al., 2012).  

Here, the Kalman filter gain is  

𝐾𝑓(𝑘) = 𝑀𝑥(𝑘)𝐶T𝑀𝑦(𝑘)−1,                                                  (14) 

whereas the state error covariance matrices are 

   𝑃(𝑘) = 𝑀𝑥(𝑘) − 𝑀𝑥(𝑘)𝐶T𝑀𝑦(𝑘)−1𝐶𝑀𝑥(𝑘),                                     (15) 

              𝑀𝑥(𝑘 + 1) = 𝐴𝑃(𝑘)𝐴T + 𝐺𝑄𝜔𝐺T,                                       (16) 

and the output error covariance matrix is  

         𝑀𝑦(𝑘) = 𝐶𝑀𝑥(𝑘)𝐶T + 𝑅𝜂,                                         (17) 

with the initial condition 0(0)xM M= . The filtered state error covariance ( )P k , the predicted state 

error covariance ( )xM k  and the output error covariance ( )yM k  are positive definite matrices. The 

linearization of the dynamical system described by (11)–(12) will be done for the following Jacobian matrices: 

𝐴 ≈ 𝛻𝑥𝑓 and 𝐶 ≈ ∇𝑥ℎ.  

Thus, it is noticed that (11) is the measurement update and (12) is the time update. These two 

equations are known as the Kalman filtering equations. This method is commonly known as the EKF 

approach (Bryson and Ho, 1975; Lewis et al., 2012).  

3.2. Unscented kalman filtering  

Assume that the n-dimensional random state vector x has a mean �̄� and covariance 𝑃𝑥𝑥. On this 

basis, a set of sigma points (Julier and Uhlmann, 1997) is denoted by  
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𝜒 = (𝜒0, 𝜒𝑖 , 𝜒𝑖+𝑛),                                                              (18) 

with the components  

𝜒0 = �̄�,                                                                 (19) 

𝜒𝑖 = �̄� + (√(𝑛 + 𝜆)𝑃𝑥𝑥)𝑖,                                                      (20) 

 𝜒𝑖+𝑛 = �̄� − (√(𝑛 + 𝜆)𝑃𝑥𝑥)𝑖+𝑛,                                                 (21) 

for 1, , ,i n=  and the weights 

𝑊0
(𝑚)

=
𝜆

𝑛+𝜆
,                                                                 (22) 

𝑊0
(𝑐)

=
𝜆

𝑛+𝜆
+ (1 − 𝛼2 + 𝛽),                                                    (23) 

𝑊𝑖
(𝑚)

= 𝑊𝑖
(𝑐)

=
1

2(𝑛+𝜆)
,                                                         (24) 

for 𝑖 = 1, ⋯ ,2𝑛. Here, (√(𝑛 + 𝜆)𝑃𝑥𝑥)
𝑖
 is the ith column of the matrix square root ( ) xxn P+ , and iW  

is the weight value, which satisfies the conditions 

∑ 𝑊𝑖
(𝑐)2𝑛

𝑖=0 = 1 and ∑ 𝑊𝑖
(𝑚)

= 1.2𝑛
𝑖=0                                            (25) 

Here, 

𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛                                  (26) 

is a scaling factor, where   determines the spread of the sigma points around x  and it is assigned a 

small positive value (10–3) in the range of 0 1  , and   is a secondary scaling factor, which is in 

the range of 0 3   and is usually set to 0. Moreover,   is used to incorporate prior knowledge of 

the distribution of the state x with 0   and 2 =  is the optimal value for Gaussian distributions 

(Julier and Uhlmann, 2004).  

3.2.1. Unscented transformation 

Referencing (18), the sigma points are propagated through the nonlinear function h given in (13) 

to generate the transformed sigma points from  

ϒ𝑖 = ℎ(𝜒𝑖),                                         (27) 

for 1, ,2 .i n=  By using a weighted sample mean and covariance of the transformed sigma points, the 

mean and covariance for the output variable y are approximated from  

�̄� = ∑ 𝑊𝑖
(𝑚)

ϒ𝑖
2𝑛
𝑖=0 ，                                                    (28)  

𝑃𝑦𝑦 = ∑ 𝑊𝑖
(𝑐)

(ϒ𝑖 − �̄�)(ϒ𝑖 − �̄�)T2𝑛
𝑖=0 + 𝑅𝜂,                             (29) 

where 𝑅𝜂 is the output noise covariance.  

Notice that the unscented transformation described by (28) and (29) are more accurate than the 

linearization method for propagating means and covariances of the nonlinear functions (Wan and van 

der Merwe, 2000; Julier and Uhlmann, 2004). 
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3.2.2. State estimation 

Consider the initial value of the predicted mean and covariance of the state given by 

0 0[ ],x E x=                                         (30)  

T

0 0 0 0 0[( )( ) ];P E x x x x= − −                         (31) 

the sigma points using the a priori mean and covariance of the state are provided by  

( ) ( ) ( ) ( ) ( ) ( ) ,k x k x k P k x k P k   = + −
 

            (32) 

where n = + , as stated in (21) for 0,1, , 1.k N= −  Therefore, in the time-update procedure, the 

state of the transformed sigma points is predicted from     

( 1) ( ( )) ( ),k f k Bu k + = +                                  (33) 

with the estimated state mean for  

2
( )

0

ˆ ( ) ( ),
n

m

i i

i

x k W k−

=

=                                                (34) 

and the estimated state error covariance  

𝑃−(𝑘) = ∑ 𝑊𝑖
(𝑐)

(𝜒𝑖(𝑘) − �̂�− (𝑘))(𝜒𝑖(𝑘) − �̂�− (𝑘))T + 𝑄𝜔
2𝑛
𝑖=0 ，              (35) 

where Q  is the process noise covariance (Wan and van der Merwe, 2000). 

On the other hand, in the measurement update procedure, the output of the transformed sigma 

points is measured by  

( ) ( ( )),k h k =                                          (36) 

with the estimated observation  

2
( )

0

ˆ ( ) ( ),
n

m

i i

i

y k W k−

=

=                                  (37) 

and the observation error covariance 

𝑃𝑦𝑦(𝑘) = ∑ 𝑊𝑖
(𝑐)

(ϒ𝑖(𝑘) − �̂�− (𝑘))(ϒ𝑖(𝑘) − �̂�− (𝑘))T + 𝑅𝜂
2𝑛
𝑖=0 .                    (38) 

The predicted state mean is updated by   

�̂�(𝑘) = �̂�− (𝑘) + 𝐾𝑓(𝑘)(𝑦(𝑘) − �̂�−(𝑘)),                             (39) 

with the updated state error covariance  

T( ) ( ) ( ) ( ) ( ) ,f yy fP k P k K k P k K k−= −                               (40) 

where 

𝐾𝑓(𝑘) = 𝑃𝑥𝑦(𝑘)𝑃𝑦𝑦(𝑘)−1,                                      (41) 
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𝑃𝑥𝑦(𝑘) = ∑ 𝑊𝑖
(𝑐)

(𝜒𝑖(𝑘) − �̂�− (𝑘))(ϒ𝑖(𝑘) − �̂�− (𝑘))T2𝑛
𝑖=0 .                 (42) 

Here, R  is the observation noise covariance, ( )fK k  is the Kalman filter gain and ( )xyP k  is the cross-

correlation matrix. This method is known as the UKF approach (Julier and Uhlmann, 1997; Wan and 

van der Merwe, 2000; Julier and Uhlmann, 2004). 

3.3. Optimality conditions 

For measurement purposes, the cost function given by (8) is written in its expectation form:  

1

0

( ) ( ( )) ( ( ), ( )).
N

k

J u x N L x k u k
−

=

= +                                         (43) 

We define the Hamiltonian function as follows (Bryson and Ho, 1975; Kirk, 2004): 

𝐻(𝑘) = 𝐿(�̄�(𝑘), 𝑢(𝑘)) + 𝑝(𝑘 + 1)T(𝑓(�̂�(𝑘)) + 𝐵𝑢(𝑘)),                            (44) 

where ( )p k  is a 3  1 co-state vector to be determined later. The augmented cost function is written as 

1
T T T

0

( ) ( ( )) (0) (0) ( ) ( ) ( ( ) ( ) ( )).
N

k

J u x N p x p N x N H k p k x k
−

=

 = + − + −                 (45) 

According to the Lagrange multiplier theory, at a constrained minimum, the increment 𝑑𝐽′ should 

be zero (Lewis et al., 2012). Hence, the following necessary conditions are derived: 

Stationary condition  

T( ( ), ( )) ( 1) 0;uL x k u k B p k + + =                                      (46) 

(a) State equation  

ˆ( 1) ( ( )) ( );x k f x k Bu k+ = +                                        (47) 

(b) Co-state equation  

Tˆ( ) ( ( ), ( )) ( ( )) ( 1);x xp k L x k u k f x k p k= + +                                  (48) 

(c) Boundary conditions 

 
0 ( )(0)  and  ( ) ( ( )).x Nx x p N x N= =                                         (49) 

3.4. Optimal control law  

Assume that the cost function (43) can be approximated into its quadratic criterion, that is,  

T1
( ( )) ( ) ( ) ( ),

2
x N x N S N x N                                                      (50) 
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( )T T1
( ( ), ( )) ( ) ( ) ( ) ( ) ,

2
L x k u k x k Qx k u k Ru k +                                      (51) 

where ( ),S N  Q and R are the weighting matrices. Hence, the optimality conditions (46) and (48) are 

simplified (Lewis et al., 2012; Teo et al., 2021) as follows:  

T( ) ( 1) 0,Ru k B p k+ + =                                                        (52) 

T( ) ( ) ( 1);p k Qx k A p k= + +                                                    (53) 

the Jacobian matrix is xA f  and the boundary value of the co-state is  

( ) ( ) ( ).p N S N x N=                                                            (54) 

Suppose the co-state equation has the following solution:  

( ) ( ) ( ),p k S k x k=                                                            (55) 

and consider this solution with the optimality conditions (52) and (53). After doing some algebraic 

manipulations, the linear feedback control law is designed as follows:  

( ) ( ) ( ),u k K k x k= −                                                            (56) 

with  

T 1 T( ) ( ( 1) ) ( 1) ,K k B S k B R B S k A−= + + +                                         (57) 

T( ) ( 1)( ( )),S k Q A S k A BK k= + + −                                        (58) 

where 𝑆(𝑁) = 𝑆𝑁  given. Here, ( )K k  is the Kalman feedback gain and ( )S k  is the solution of the 

Riccati equation (Bryson and Ho, 1975; Kirk, 2004; Lewis et al., 2012; Teo et al., 2021). 

3.5. Computational algorithms 

From the discussion above, the calculation procedure for estimating the state dynamics and 

designing the optimal control law is summarized as the computational algorithm given below. The first 

algorithm is named as the EKFSC algorithm and the second algorithm is known as the UKFSC algorithm.  

3.5.1. EKFSC algorithm 

Data Given ,f  ,h  ,  ,L  ,A  ,B  ,C  ,G  ,N  ,Q  ,R  ( ),S N  0 ,M  ,Q  ,R
 0 ,x  y . 

Step 1 Calculate the state and output error covariance matrices ( ),P k ( )xM k  and ( )yM k  using (15), (16) 

and (17), respectively.   

Step 2 Calculate the filter gain ( ),fK k feedback gain ( )K k  and Riccati solution ( )S k  using (14), (57) 

and (58), respectively.  

Step 3 Compute the state and output estimates ˆ( ),x k ( )x k  and ( )y k  using (11), (12) and (13), 

respectively. 

Step 4 Evaluate the weighted least square error lseJ  using (10). 
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Step 5 Compute the feedback control law ( )u k  using (56). 

Step 6 Update the state equation forward in time by using (47) to obtain the state solution ( )x k ; solve 

the co-state equation backward in time by using (53) to obtain the co-state solution ( ).p k   

Step 7 Evaluate the cost function J using (43). 

Remarks 

(a) In Step 1 and Step 2, the off-line calculations are performed to store the values of matrices. 

(b) In Step 3, the state estimation is performed using the EKF approach. 

(c) In Step 5, the linear feedback control law is designed. 

(d) In Step 6, a two-point boundary-value problem is solved to give the state and co-state solutions. 

3.5.2. The UKFSC algorithm 

Data Given ,f  ,h  ,  ,L  ,A  ,B  ,C  ,G  ,N  ,Q  ,R  ( ),S N  0 ,P  ,Q  ,R
 0 ,x  y . 

Step 1 Calculate the feedback gain ( )K k  and the Riccati solution ( )S k  using (57) and (58), 

respectively.  

Step 2 Prepare the sigma points ( )k  defined in (32) by using the a priori state mean ( )x k  and state 

error covariance ( )P k . After that, calculate the predicted state of the transformed sigma points 

( 1)k +  using (33), as well as its mean ˆ ( )x k−  and covariance ( )P k−  using (34) and (35), 

respectively. 

Step 3 Compute the output measurement ( )k  using (36), as well as its mean observation ˆ ( )y k−  and 

the observation error covariance ( )yyP k  using (37) and (38), respectively. After that, 

calculate the cross-correlation matrix ( )xyP k  using (42) and the Kalman filter gain ( )fK k  

using (41).  

Step 4 Update the state estimate ˆ( )x k  using (39) and the state error covariance ( )P k  using (40).  

Step 5 Update the state mean ( )x k  forward in time using (47); solve the co-state equation backward 

in time by using (53) to obtain the co-state solution ( )p k . 

Step 6  Compute the feedback control law ( )u k  using (56). 

Step 7  Evaluate the cost function J using (43). 

Remarks 

(a) Step 1 is called the off-line calculation step, where the feedback gain ( )K k  and the Riccati 

solution  ( )S k  are stored to design the feedback control law.  

(b) In Steps 2 and 3, the unscented transform is performed to generate a set of sigma points 𝜒(𝑘) and 

ϒ(𝑘). In Step 4, the correction step is performed, where the output estimate is measured and the 

state estimate is updated. These steps comprise the state estimation procedure.  

(c) From Steps 5 to 7, the two-point boundary-value problem is solved in order to obtain the solution 

of the state mean and the co-state, and the feedback control law is designed. These steps comprise 

the system optimization procedure.  

4. Illustrative example 

Consider the following parameters for the dynamic model (1) to be chaotic (Sukono et al., 2020): 

𝑎 = 10, 𝑏 = 28 and 𝑐 = 8/3, where the initial conditions are 𝑥1(0) = 2.5, 𝑥2(0) = 0.5 and 𝑥3(0) =
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4. For the simulation work, we define the following coefficient matrices:  

0.90 0.09 0.00

0.28 0.99 0.00 ,

0.00 0.00 0.97

A

 
 

=  
 
 

 

0.01 0.00 0.00

0.00 0.01 0.00 ,

0.00 0.00 0.01

B

 
 

=  
 
 

 ( )1 0 0C = , 3 3 ,G I =  

and the sampling time is set to 0.01 =  seconds. Also, the weighting matrices in the cost function are 

3 3100 ,NS I = 𝑄 = 𝑑𝑖𝑎𝑔(0.01,1.00,1.00) and (0.01,0.001,0.01)R diag=  for 0,1, ,60,k =  where the 

notation diag represents the diagonal matrix. Assume the Gaussian white noise sequences have the 

respective covariance given by 𝑄𝜔 = 0.001𝐼3×3 and 𝑅𝜂 = 0.01, while the initial state error covariance 

is 𝑀0 = 0.2𝐼3×3. So, the quadratic criterion cost function and the SSE were employed to measure the 

performances of the system and the algorithm proposed, respectively.  

Table 1. Simulation results for the financial risk model. 

Approach Optimal Cost SSE MSE 

EKFSC 82.247101 1.69932610–1 2.83221110–3 

UKFSC 81.517660 1.00271910–3 1.67119910–5 

Table 1 shows the simulation results for Problem (P) that were obtained by using the EKFSC and 

UKFSC algorithms. The optimal cost of 81.5 units, which was provided by using the UKFSC 

algorithm, was 0.88% less than the optimal cost given by the EKFSC algorithm. This optimal cost 

indicates the quadratic criterion performance of the financial risk system under the conditions of 

optimal trajectories of states given by the occurrence value risk, analysis value risk and control value 

risk in the current market. It also shows that the controller in the UKFSC algorithm is efficient. On the 

other hand, the estimation performance of the UKFSC algorithm, which was revealed by the SSE, was 

99% more accurate than the EKFSC algorithm when estimating the real output response. 

  
 

Figure 1. Output trajectory for  

EKFSC algorithm. 

 

Figure 2. Output trajectory for  

UKFSC algorithm. 

Figures 1 and 2 show the output trajectories for the respective algorithms. The red line represents 

the output estimate trajectory, and the blue line with asterisk symbols (*) denotes the real output 
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trajectory. The output reduces to about zero from 2.5 in one unit of time; then, it fluctuates around zero 

for a period of one to six units of time. The output trajectories given by the algorithms proposed were 

well matched to the real output trajectory. Notice that the output trajectory from the UKFSC algorithm 

was more accurate than the output trajectory from the EKFSC algorithm. Thus, the occurrence value 

risk can be estimated when a financial investment decision is needed. 

Figures 3 and 4 show the state trajectories derived from the state estimation process by using the 

algorithms proposed. The red line represents the state estimate trajectories, while the blue line with 

asterisk symbols (*) represents the real state trajectories. Both algorithms provided similar state 

estimate trajectories, which matched the real state trajectories closely. The occurrence value risk 

dropped the value from 2.5 and toward zero after one unit of time, while the analysis value risk reduced 

dramatically to −0.4 and then started to increase slowly to zero. The control value risk in the current 

market also decreased gradually from four units to zero over the period of six units of time. Hence, the 

occurrence value risk, analysis value risk and control value risk were mitigated and under control. 

  

Figure 3. State trajectories for 

EKFSC algorithm. 

Figure 4. State trajectories for  

UKFSC algorithm. 

 

  
 

Figure 5. Control trajectories for 

EKFSC algorithm. 

 

Figure 6. Control trajectories for 

UKFSC algorithm. 
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By applying the algorithms proposed, the control trajectories, which regulate the state trajectories 

efficiently, were obtained as shown in Figures 5 and 6. The control law for the occurrence value risk 

fluctuated slightly and the control effort increased from a negative value to zero, while the control 

effort for the analysis value risk was extremely important to stabilize the risk. In addition, the control 

value risk was smoothly regulated, and the control effort was the lowest in value compared to the 

control efforts for the first and second state variables. This characteristic shows that the controller in 

the algorithms proposed is practical. 

Obviously, the financial risk system must be under control to give the optimal solution. This 

optimal solution satisfied the stationary conditions, as shown in Figures 7 and 8, which were 

respectively obtained by using the EKFSC and UKFSC algorithms. The curve of the stationary 

conditions fluctuated since random noises were introduced to the system. Nonetheless, the gradient 

satisfied the stopping rule within a small tolerance during the computational process. 

  

 

Figure 7. Stationary conditions for 

EKFSC algorithm. 

 

Figure 8. Stationary conditions for 

UKFSC algorithm. 

5. Conclusions 

The application of the EKF and UKF techniques to solve the stochastic optimal control problem 

of the financial risk system has been discussed in this paper. In the presence of random disturbances, 

the financial risk system, which exhibits chaotic behavior, becomes very difficult to control. The 

system was initially linearized by using the EKFSC algorithm, while, through the unscented transform, 

the distributions of state variables and observed variables were approximated with a normal 

distribution by using the UKFSC algorithm. Then, state estimation was carried out by using the EKFSC 

and UKFSC algorithms. With these state estimates, the state feedback control law was designed to 

determine the optimal solution for the system. Given the parameter values that cause the financial risk 

system to be chaotic, the simulation results showed that the system was under control within the 

allotted time interval, where the risks were mitigated. The performance of the UKFSC algorithm was 

proven to be better than the EKFSC algorithm since the SSE of the UKFSC was smaller than the SSE 

of the EKFSC algorithm. In conclusion, the efficiency of both filtering algorithms used to solve the 

nonlinear stochastic optimal control problem of the financial risk system has been validated. Regarding 

the future research direction, efficient computational methods should be applied to handle financial 
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risk problems, either by minimizing the financial risk or predicting the financial risk, when making a 

financial investment decision. 
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