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Abstract: Financial activities are closely related to human social life. Data mining plays an important
role in the analysis and prediction of financial markets, especially in the context of the current era of big
data. However, it is not simple to use data mining methods in the process of analyzing financial data,
due to the differences in the background of researchers in different disciplines. This review summarizes
several commonly used data mining methods in financial data analysis. The purpose is to make it easier for
researchers in the financial field to use data mining methods and to expand the application scenarios of it
used by researchers in the computer field. This review introduces the principles and steps of decision trees,
support vector machines, Bayesian, K-nearest neighbors, k-means, Expectation-maximization algorithm, and
ensemble learning, and points out their advantages, disadvantages and applicable scenarios. After introducing
the algorithms, it summarizes the use of the algorithm in the process of financial data analysis, hoping that
readers can get specific examples of using the algorithm. In this review, the difficulties and countermeasures
of using data mining methods are summarized, and the development trend of using data mining methods to
analyze financial data is predicted.
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1. Introduction

With the rapid development of information technologies, such as the mobile Internet and the
Internet of Things, the total amount of data in human society has been exploding at an alarming rate.
IDC is expected 175 Zettabytes of data worldwide by 2025 Patrizio. The huge amount of data and
its rapid growth pose huge challenges to traditional database analysis techniques and methods. The
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traditional data analysis methods that rely heavily on manpower can no longer effectively process and
analyze large amounts of data Jagadish et al. (2014); Oussous et al. (2018). The amount of data in
various industries is increasing rapidly, which may greatly affect scientific research, industry, commerce,
social management and other fields in the future. At present, both academia and industry have extremely
high expectations for the value of data Howe et al. (2008); Kum et al. (2011); Shamim et al. (2019).
The development of big data technology has been promoted by the government as a national strategy
Gamage (2016). With the rapid increase in the amount of data, computing technologies represented by
data mining, artificial intelligence, and cloud-edge collaborative computing are gradually becoming
the main methods in the field of data processing and analysis Lee (2017); Liu et al. (2021b). In order
to improve the discovery of the value of data, researchers have been paying attention greatly on data
mining methods. As a new interdisciplinary field, data science is developing rapidly Provost and Fawcett
(2013); Iqbal et al. (2020).

The economic operation and social organization of modern society are increasingly inseparable
from the financial market, which plays a very important role in the historical process of human
development Fields (2017); Daugaard (2019). Financial activities have a profound impact on the current
economic development of many countries around the world, which promotes the development of the
world economy Lin et al. (2012). There are many factors that affect the financial market Braun (2018).
With the development of information technology, more and more financial data can be collected. In the
financial market, the success of investors largely depends on the quality of the collected data and the
value discovery of these data Nassirtoussi et al. (2014); Goyal and Kumar (2020). Due to its importance
to investors and social development, data analysis and research on financial markets have received high
attention in the fields of finance, information, and mathematics respectively in the past few decades Yoo
et al. (2005). With the rapid increase in the amount of data, traditional methods are becoming more
and more inadequate. Therefore, some data mining algorithms have been proposed to provide decision
support for investors in different financial markets Carta et al. (2021).

Most of the data in the financial market can be classified as time series data. Due to its inherent
dynamic, highly noisy, non-linear and complex chaotic nature, it has always been regarded as a major
challenge in the fields of finance, data mining and artificial intelligence Si and Yin (2013); Yang et al.
(2020). In the past few decades, decision support systems have been proposed to predict financial time
series. These methods can be divided into statistical models and machine learning methods Goyal and
Kumar (2020); Wang et al. (2011b). Traditional statistical methods usually assume that the time series
studied are generated from a linear process, and try to model the potential time series generation process
in order to predict the future value of the series Kumar and Murugan (2013). It is becoming more
and more powerless to deal with huge and complex financial data. Therefore, the current data mining
methods represented by machine learning are more and more popular among researchers Roychowdhury
et al. (2019).

This survey focuses on the application of data mining technology in data analysis in the financial
market, and reviews data mining methods that solve the problem of data value discovery in this field.
Although a large number of scientific research papers on data mining methods in financial markets have
been proposed to solve related problems, there have been few review articles on related content in recent
years. The only few review articles often focus on specific financial market applications or each specific
data mining algorithm.
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The rest of this article is organized as follows. Section 2 discusses some other surveys related
to this work. Section 3 describes some basic concepts that represent the background of this research,
respectively summarizes the data mining methods to be investigated, and selects the main studies to be
reviewed. These main studies are grouped according to the data mining methods. Section 4 discusses
the challenges and promising issues in this research area. Section 5 provides a summary of this article.

2. Related work

Data mining with searchable chapters was first proposed in the 1980s and was produced along with
knowledge discovery. But the predecessor of data mining can be traced back to earlier stages such as data
collection. The term “Knowledge Discovery in Databases” (KDD) first appeared in the Symposium of the
11th International Joint Conference on Artificial Intelligence held in Detroit, USA in 1989, followed by KDD
in 1991, 1993 and 1994. Symposium. In 1995, the first International Conference on Knowledge Discovery and
Data Mining was held in Canada. Since 1997, KDD has owned a special magazine “Knowledge Discovery
and Data Mining”. Many foreign research results and papers have been published in this area, and a large
number of data mining software has been developed and a large number of related websites have been
established. The research of KDD and data mining has become a hot topic in the computer field. In short,
need is the mother of invention, because the actual data and information explosion put forward requirements
for data mining, so data mining came into being Olson (2006).

The 1960s was the stage of data collection. At this stage, it is limited by data storage capacity,
especially when it was still in the stage of disk storage. Therefore, the main solution was the problem of
data collection, and more focused on the collection and display of static data. The commercial problems
solved were also Based on statistical data based on historical results. The 1980s was the data access
stage. The emergence of relational databases and structured query languages has made dynamic data
query and presentation possible. People can use data to solve some more focused business problems. At
this stage, with the emergence of KDD, data mining has entered Historical stage. The 1990s was the
stage of decision-making and support for data warehouses. The rapid development of OLAP and data
warehouse technology has made multi-level data backtracking and dynamic processing a phenomenon.
People can use data to obtain knowledge and make business decisions. Now is the data mining stage.
The great development of computer hardware and the emergence of some advanced data warehouses
and data algorithms have made it possible to process and analyze massive amounts of data. Data mining
can help solve some predictive problems Han et al. (2007); Liao et al. (2012).

We start our investigation by examining review articles on the application of data mining methods
to financial market issues, and there are not many review articles covering this topic. Most of them were
concentrated in the stock market, but some of them described other financial issues such as exchange
rate forecasts, financial crisis analysis, credit scoring, and interest rate forecasts. Most of the published
surveys found in the literature were dedicated to the application of certain data mining methods in the
financial market, such as decision trees, ensemble learning, artificial neural networks, support vector
machines, text mining, and bionic computing.

Some review works compared most relevant forecasting techniques. Atsalakis and Valavanis
Atsalakis and Valavanis (2009) reviewed more than 100 scientific literature on data mining methods to
solve stock market forecasting problems from the four characteristics of predictor variables, modeling
techniques, benchmarks, and performance metrics. They summarized neural networks and fuzzy
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networks by describing the types of transfer functions, types of membership functions, network
architecture and training methods. Soni Soni (2011) investigated the application of artificial neural
networks (ANN) in stock market forecasting. Before enumerating some major researches that use ANN
methods to solve stock market forecasting problems, this paper provides a brief history of ANN and the
basic concepts of the stock market. Nassirtoussi et al. Nassirtoussi et al. (2014) reviewed text mining
for market forecasting, they classify and summarize the articles according to the nature of the text,
market category, pre-processing procedures, and type of modeling technology. Nardo et al. Nardo et al.
(2015) searched the literature for works linking changes in stock returns. They demonstrated the
limitations of these works and proposed some modeling techniques for future research. Cavalcante et al.
Cavalcante et al. (2016) not only analyzed forecasting algorithms, but also summarized various
algorithms related to other problems in the financial market. They proposed feature selection, clustering,
segmentation and outlier detection to deal with these problems, and also proposed an architecture for
autonomous transactions in the real market. This article reviews the most important research published
from 2009 to 2015, which involves the application of several data mining and computational
intelligence methods in a variety of financial applications, including the preprocessing and clustering of
financial data, and predicting the future market Trends, mining financial text information and other
technologies. Xing et al. Xing et al. (2017) selected the most important documents related to financial
forecasting based on natural language. They listed the types of financial text used as predictive input
and their processing methods, and described the algorithms involved in modeling and implementation
details. Bustos and QuimbayaBustos and Pomares-Quimbaya (2020) aimed to update and summarize
the forecasting techniques used in the stock market, including classification, characterization and
comparison. The focus of this review is the study of the forecast of stock market trends from 2014 to
2018. In addition, it analyzes surveys and other reviews of recent studies published in the same time
frame and in the same database. Although these reviews have intersections with our research period and
topics, their scope is limited because they tend to focus on only one family of data mining algorithms.
Our review is broader. Our review also covers the application of major data mining algorithms in the
financial market, and describes and introduces data mining algorithms. Compared to these comments,
this review provides an up-to-date discussion on the topic. Given the large number of new works
published every year, these surveys will quickly become obsolete.

3. Data mining method review in financial markets

A large amount of data is generated in the financial market every day, and these data contain
valuable information. If the value of these data can be discovered through data mining methods, it is
of great significance to the healthy operation of the financial market and guiding investors to make
investment choices. In this part, we summarize the principles and steps of eight commonly used data
mining methods (decision trees, support vector machines, Bayesian method, K-nearest neighbors,
K-means, Expectation-maximization algorithm, ensemble learning) Wu et al. (2007); Han et al. (2000),
and respectively comprehensively summarize the application of these methods in financial market data
analysis. These data mining algorithms are all proposed to deal with data analysis problems. They have
their own advantages and disadvantages and are suitable for different scenarios. They are summarized
in Table 1.
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Table 1. Summary of advantages and disadvantages of the algorithm and applicable scenarios.
Algorithms Advantages Disadvantages Applicable

scenarios

C4.5 The computational complexity is not high, the output
result is easy to understand, and it is not sensitive to the

lack of intermediate values;

may cause over-matching problems; Numerical and
nominal

SVM Low generalization error rate, low computational
overhead, and easy interpretation of the results;

Sensitive to parameter adjustment and selection of
kernel function;

Numerical and
nominal

Bayesian It is still valid when there is less data, and it can handle
multi-category problems;

More sensitive to the preparation of input data; Nominal

KNN High accuracy, insensitive to outliers, no data input
assumptions;

High computational complexity and high space
complexity;

Numerical

K-means Easy to implement; May converge to a local minimum, slower convergence
on large-scale data sets;

Numerical

EM No need to optimize the step length, fast training speed; The structure of the model cannot be faulted, and the
global optimum cannot be found;

Numerical

AdaBoost Low generalization error rate, easy to code, can be
applied to most classifiers, no parameter adjustment;

Sensitive to outliers; Numerical and
nominal

3.1. Decision trees

3.1.1. Introduction to decision trees

Decision trees have always been very popular in the field of data mining due to their simplicity,
ease of use and powerful functions. They can be used for classification or regression problems. The
decision tree is essentially abstracted as a series of if-then statements, the output of which is a series
of simple and practical rules. The decision tree model classifies data instances based on attributes.
Each non-leaf node represents a test on a feature attribute, and each branch represents the output of
this feature attribute in a certain value range, and each leaf node stores one category. The process of
using a decision tree to make a decision is to start from the root node, test the corresponding feature
attributes in the items to be classified, and select the output branch according to its value until the leaf
node is reached, and the category stored in the leaf node is used as the decision result Quinlan (1986);
Kotsiantis (2011).

The construction process of decision tree is generally divided into three parts, namely feature selection,
decision tree production and decision tree tailoring. The goal of building a decision tree is to learn a decision
tree model based on a given training data set. When constructing a decision tree, the regularized maximum
likelihood function is usually used as the loss function for model training, and the learning goal is to minimize
the loss function. The algorithm for constructing a decision tree usually selects the optimal feature through
recursion, and partitions the training data according to the feature. Decision tree models often have better
classification capabilities for training data, but in practice we are more concerned about the classification
capabilities for unknown data. Therefore, after the decision tree is built, it usually needs to be pruned, so that
the decision tree has better generalization ability HSSINA et al. (2014).

Feature selection is to select features with strong classification ability. The classification ability
is generally characterized by information gain, information gain ratio or Gini index. The criterion for
selecting features is to find the locally optimal feature as a judgment for segmentation, which depends
on the degree of order of the categories in the node data set after segmentation. The more ordered
the classified data after the division, the more appropriate the division rules. Feature selection means
to select a feature from a number of features as the criterion for splitting the current node. There are
different quantitative evaluation methods for the selected features, thereby deriving different decision
trees. The goal of attribute selection is that after the data set is divided using a certain attribute, the order
of each data subset is higher than the order of the data set before the division Garcı́a et al. (2009).
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According to the selected feature evaluation criteria, child nodes are generated recursively from top
to bottom, and the decision tree stops growing until the data set is indivisible. This process is actually
continuously dividing the data set into subsets with a higher degree of order and less uncertainty using
features that meet the partitioning criteria. For each division of the current data set, it is hoped that the
order of each subset after division according to a certain feature will be higher and the uncertainty will
be smaller.

The model generated by the decision tree is very accurate in predicting the training data, but it
is very poor in classifying unknown data. In fact, the condition for stopping the construction of the
decision tree is until there are no features to choose from or the information gain is less than a preset
small threshold, which leads to the construction of the decision tree model is too complicated. The
model is too dependent on the training data, which makes it perform poorly on the test data set, resulting
in over-fitting. Over-fitting is often because the decision tree is too complicated. The solution is to
control the complexity of the model and simplify the model, which is called pruning technology. The
purpose of decision tree pruning is to improve generalization ability through pruning. The idea is to find
a balance between the prediction error of the decision tree on the training data and the model complexity,
thereby alleviating over-fitting.

The most typical models in the decision tree algorithm include ID3 (selecting features through
information gain), C4.5 (through information gain ratio feature selection), CART (feature selection
through Gini index) Chen et al. (2014a); Salzberg (1994); Jaworski et al. (2014). Below we take C4.5 as
a representative to introduce the algorithm process of the decision tree. The C4.5 algorithm is described
as follows Algorithm AlgC4.5.

Algorithm 1 C4.5 Algorithm
Input:

Training set: D;
Attribute set: A;
Threshold of attribute information gain ratio: ε > 0.

Output:
Decision tree: T
Steps:

1: If all samples in D belong to the same class ck , then T is a single-node tree, and ck is used as the class label of the node, and T is returned.
2: If A = φ, then T is a single-node tree, take the class ck with the largest number of samples in D as the class label of the node, and return T.
3: Otherwise, gR(D, Ai) is calculated, where Ai ∈ A is each attribute in the attribute set, and the feature Ag with the largest information gain ratio is selected.
4: Judging the information gain ratio of Ag is as follows:

If gR(D, Ai) < ε, it is a single-node tree, take the class ck with the largest number of samples in D as the class label of the node, and return T ;
If gR(D, Ai) >= ε, for each possible value of the Ag attribute, D is divided into several non-empty subsets Di according to Ag = ai, and the class with the

largest number of samples in Di is used as the label class, and the child node is constructed. The child node and its The child nodes form a tree T , and T is
returned.

5: For the ith child node, take Di as the training set and A − {Ag} as the attribute set, call the previous steps recursively, get the subtree Ti, and return Ti.

3.1.2. Application of decision tree in financial market

Decision trees have been widely used in financial markets for their simplicity and ease of use. The
author used decision trees obtained through the application of artificial intelligence strategies to classify
the converted data, analyzes and evaluates different decision trees, shows accuracy and emphasizes the
relevance of capital gains Mir-Juli et al. (2010). Based on the financial statement detection information
and detection rules extracted from the C4.5 decision tree algorithm, Tang et al. developed a knowledge-
based financial statement fraud detection system to detect fraudulent activities in financial statements
and discover hidden knowledge Tang et al. (2018b). Chen et al. used the decision tree classification
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method and logistic regression technology to implement the financial distress prediction model, and
concluded that the closer to the actual occurrence of financial distress, the higher the accuracy of the
decision tree classification method, and the correct rate of the two quarters before the occurrence of
financial distress Reached 97.01% Chen (2011). By combining text mining technology, feature selection
and decision tree algorithms, Nasseri et al. proposed a new intelligent transaction support system
based on sentiment prediction to analyze and extract semantic terms expressing specific emotions, and
built assumptions based on predetermined investment on this basis. The trading strategy was used to
evaluate the profitability of the term trading decision extracted from the decision tree model Nasseri
et al. (2015). Zhao et al. used decision tree algorithms to mine and explore the financial business
related data of sports industry enterprises, and conduct risk assessment through related indicators. And
by using the model to calculate the probability of risk occurrence and analyze the degree of damage
Zhao (2021). Malliaris et al. used the decision tree method to study the behavior of gold prices using
traditional financial variables such as stock volatility, oil prices, and the euro Malliaris and Malliaris
(2015). Based on the core of financial indicators and combined with decision tree technology, Cheng et
al. established a hybrid classification model and predictable rules that affect the rise and fall of stock
prices Cheng (2014). For the situation when decision makers with heterogeneous preferences facing
costly information acquisition and analysis, Luo et al. used decision trees to model the formation of
herd behavior in the P2P lending market Luo and Lin (2011). Incorporating heterogeneous information
from various sources such as social media, world market performance, financial news, and historical
data, Agrawal et al. proposed a new technique to increase the mixing degree of a single decision tree
that exists in the forest Agrawal and Adane (2021). Deng et al. proposed a combination of Gradient
Boosting Decision Tree and Differential Evolution, using relevant indicator data to identify insider
trading activities Deng et al. (2019).

Jan et al. constructed four types of decision trees to establish a rigorous and effective corporate
financial statement fraud detection model for the sustainable development of enterprises and financial
markets long Jan (2018). Rosati et al. proposed a closed-loop data mining method based on a decision
tree model to analyze the results of financial transaction data Rosati et al. (2020). Yeo et al. proposed a
decision tree analysis model composed of technology, organization, and environmental frameworks.
They found that financial factors are more predictive of service industry performance than information
and communication technologies Yeo and Grant (2018). Tsai et al. used the decision tree model to
generate useful decision rules to allow investors and creditors to make effective earnings management
forecasts Tsai and Chiou (2009). Ohana et al. used the gradient boosting decision tree method to predict
a substantial price drop in the Standard Poor’s 500 index from a set of 150 technical, fundamental
and macroeconomic characteristics Ohana et al. (2021). Kim et al. used majority voting integration
methods and decision trees, as well as experimental data from American restaurants from 1980 to 2017,
to develop a more accurate and stable business failure prediction model Kim and Upneja (2021). Sun et
al. proposed a new decision tree ensemble model based on a small number of oversampling techniques
and bagging ensemble learning algorithm with differential sampling rate, which is used for unbalanced
enterprise credit evaluation Sun et al. (2018a). Farid et al. tried to use the decision tree model to predict
stock prices in emerging markets through analysis using WEKA software Farid et al. (2021). He et al.
introduced the basic methods of decision trees and boosted trees, and showed how these classification
methods can be applied to the detection of abnormal transactions He et al. (2020). Chen et al. used two
decision tree algorithms, CART and C5.0, to construct an effective and innovative two-stage continuous
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operation prediction model to predict the continuous operation of the enterprise and the development of
the capital market Chen (2019). Based on the organization’s commitment to logistics financial services
and public social media sharing a lot of sentiment related to sales prices and products, Awan et al.
used MLlib models such as random forests and decision trees to study the stocks of 10 top companies,
and their data includes historical stock prices Awan et al. (2021). It is recommended to analyze the
decision tree created by genetic programming, the goal of which is to extract and collect different rules
for classifying positive cases to predict future opportunities in the financial stock market Garciaalmanza
and Tsang (2006).

3.2. Support vector machines

Support vector machine (SVM) is a new and very potential classification technology proposed by the
AT&T Bell laboratory research group led by Vapnik in 1995. At the beginning, it was mainly proposed
for the binary classification problem, and successfully applied the sub-solution function regression and
the first-class classification problem, and extended it to the actual multi-value classification problem in a
large number of applications. SVM is a supervised learning model related to related learning algorithms.
Since its birth, SVM has swept the field of machine learning due to its good classification performance,
and has been highly valued by researchers Cortes and Vapnik (1995).

3.2.1. Introduction to support vector machines

SVM is a two-classification model. Its basic model is a linear classifier with the largest interval
defined in the feature space; the improved SVM also includes kernel techniques, which enable it
to handle nonlinearities. The learning strategy of SVM is to maximize the interval, which can be
formalized as a problem of solving convex quadratic programming, which is also equivalent to the
problem of minimizing the regularized hinge loss function. The learning algorithm of SVM is essentially
an optimization algorithm for solving convex quadratic programming Raudys (2000).

The SVM method is based on the VC dimension theory of statistical learning theory and the
principle of structural risk minimization. According to the limited sample information, it seeks the best
compromise between the complexity of the model and the learning ability in order to obtain the best
promotion ability. SVM can be used for classification or regression. Given a set of training samples
with marked as belonging to two categories, the SVM training algorithm builds a model and assigns new
instances to one category or other categories to make it a non-probabilistic binary linear classification.

In addition to linear classification, support vector machines can also use kernel techniques, whose
input is implicitly mapped into a high-dimensional feature space to effectively perform nonlinear
classification. When SVM deals with nonlinear problems, it essentially establishes a hyperplane with
maximum separation in a high-dimensional space. Two hyperplanes parallel to each other are built on
both sides of the hyperplane that separates the data. Establishing a separating hyperplane with a proper
direction maximizes the distance between two hyperplanes parallel to it. The assumption is that the
greater the distance or gap between parallel hyperplanes, the smaller the total error of the classifier
Smola and Schölkopf (2004). The classification diagram of the SVM hyperplane is as follows Figure 1:

SVM is essentially a non-linear method. In the case of a small sample size, it is easy to learn the
non-linear relationship between data and features. Therefore, its advantage is that it can solve non-linear
problems and avoid the problem of selecting local minimums. It can solve high-dimensional problems
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Figure 1. The classification diagram of the large margin and the SVM hyperplane.

and improve generalization performance. At the same time, SVM is very sensitive to lack of data, and
depends on the choice of kernel function for non-linear problems. There is no general solution and the
computational complexity is high Burges (1998). The SVM is described as follows Algorithm Algsvm :

3.2.2. Application of support vector machines in financial market

Ahn et al. extended the classification method used to construct early warning systems for potential
financial crises to traditional crises, which proved that SVM is an effective classifier Ahn et al. (2011).
Loukeris et al. designed an SVM hybrid evaluation model based on the combination of support vector
machines and genetic algorithms. The accounting statements obtained by them provide investors with
excellent portfolio choices Loukeris et al. (2013). Kewat et al. applied SVM to predict stock price
indices. They tested the feasibility of applying SVM to financial forecasting by comparing SVM with
back-propagation neural networks and case-based reasoning Kewat et al. (2017). Liu et al. used the
latest intelligent search algorithm Grey Wolf optimizer, combined with a support vector regression
machine to design a predictive model, which can obtain the best investment portfolio well Liu et al.
(2021a). Based on nuclear regression and support vector machine training, Chen et al. empirically tested
the use of machine learning models to hedge the price risk associated with holding energy financial
products Chen et al. (2019). Wang et al. proposed a two-step kernel learning method based on support
vector regression for financial time series forecasting Wang and Zhu (2008). Guo et al. constructed a
predictive model to predict stock market behavior with the help of local preserving projection, particle
swarm optimization and support vector machines Zhiqiang et al. (2012). By comparing SVM with
multi-layer back propagation neural network and regularized radial basis function neural network to
test the feasibility of applying SVM in financial forecasting, Cao et al. discussed the use of SVM in
financial time series forecasting Cao and Tay (2003).
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Algorithm 2 SVM Algorithm
Input:

Training set: T = {(x1, y1), (x2, y2), ..., (xm, ym)},
Penalty function: C > 0.

Output:
Classification decision function: f (x)
Steps:

1: Choose an appropriate kernel function K(x, z) to solve the constrained optimization problem:

min
α

1
2

m∑
i=1

m∑
j=1

αiα jyiy jK(xi, x j) −
m∑

i=1

αi

s.t.
m∑

i=1

αiyi = 0

C >= αi >= 0, i = 1, 2, ...,m

(1)

Find the optimal solution α∗= (α∗1, α
∗
2, ..., α

∗
m)T .

2: Calculate:

w∗ =
m∑

i=1

α∗i yi xi (2)

At the same time, select a suitable component C > α∗j > 0 of α∗ , and calculate:

b∗ = y j −

m∑
i=1

α∗i yiK(xi, x j) (3)

3: Construct the classification decision function f (x):

f (x) = sign(
m∑

i=1

α∗i yiK(xi, x) + b∗) (4)

Through logistic regression, support vector machines and random forests, network indicators are
used as input for determining strategies to check the effectiveness and usefulness of network indicators,
Lee et al. proposed financial network indicators that can be applied to global stock market investment
strategies Lee et al. (2019). Schumaker et al. used SVM tailored specifically for discrete numerical
forecasts and models containing different stock-specific variables to estimate discrete stock prices
20 minutes after the news article was published Schumaker and Chen (2009). In order to improve
the accuracy of short-term financial time series prediction of Markov switched multifractal model
(MSM), Wang et al. proposed a SVM-based MSM, which uses the MSM model to predict volatility
and uses SVM to innovation for modeling Wang et al. (2011a). By modeling the jumping fluctuations
of high-frequency data, Yang et al. designed a prediction model based on SVM to predict short-term
fluctuations of high-frequency data Yang et al. (2020). The key to the research of Barboza et al. is to
use machine learning technology including SVM to significantly improve the accuracy of prediction,
and apply it to the data of North American companies from 1985 to 2013, integrate information from
the Solomon Center database and Compustat, and analyze annual observations of more than 10,000
companies Barboza et al. (2017). Taking into account the imbalance between financial distressed
enterprises and normal enterprises, Huang et al. further proposed a feature-weighted SVM based on
biorthogonal wavelet hybrid kernel for financial distress prediction Huang et al. (2014). Carpinteiro et
al. introduced the research of three predictive models-multilayer perceptron, support vector machine
and hierarchical model, and trained and evaluated them based on the time series of Brazilian stock
market funds Carpinteiro et al. (2011). Kercheval et al. proposed a machine learning framework based
on SVM to capture the dynamics of high-frequency limit order books in the financial stock market and
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automatically predict indicators in real time Kercheval and Zhang (2015). By constructing an integrated
model of SVM, Sun et al. focused on how to effectively construct a dynamic financial distress prediction
model based on category imbalanced data streams Sun et al. (2020).

3.3. Bayesian method

The Bayesian method is a general term for classification algorithms, which is a classification
algorithm developed based on Bayes’ theorem. The classification principle of the Bayesian method
is generally to analyze the prior probability of a single data, use the Bayesian formula to calculate its
posterior probability, and select the category with the largest posterior probability as the category of the
data Bishop (2006); Friedman et al. (1997). Approximate solution to Bayes’ theorem can provide an
effective way for data mining algorithm design. In order to avoid the problem of sample sparseness and
combinatorial explosion in solving Bayes’ theorem, the naive Bayes classification algorithm introduces
the assumption of feature condition independence. Although this assumption is difficult to hold in real
applications, Naive Bayes can achieve quite good performance in many situations Ng and Jordan (2002).

3.3.1. Introduction to Bayesian method

The most common Bayesian method is the naive Bayes classifier. In order to avoid the difficulty of
directly estimating the joint probability of all attributes from a limited training sample, the naive Bayes
classifier adopts the attribute independence hypothesis, that is, each attribute is independent of each
other Li et al. (2018). The algorithm is described as follows Algorithm Algbys :

Algorithm 3 Naive Bayes Algorithm
Input:

Training set: T = {(x1, y1), (x2, y2), ..., (xm, ym)}, xi = (x1
i , x

2
i , ..., x

n
i )T , x j

i is the jth attribute of the ith sample, where x j
i ∈ {a j1, a j2, ..., a js j }, a jl is the lth value

that the jth attribute may take, j = 1, 2, ..., n, l = 1, 2, ..., s j, yi ∈ {c1, c2, ..., ck}.
Output:

Classification of sample x
Steps:

1: Calculate the estimated value of the prior probability and the estimated value of the conditional probability:

P(Y = ck) =

∑N
i=1 I(yi = ck)

N
, k = 1, 2, ...,K (5)

P(X j = a jl/Y = ck) =

∑N
i=1 I(x j

i = a jl, yi = ck)∑N
i=1 I(yi = ck)

(6)

2: For a given sample x = (x1, x2, ..., xn)T , calculate:

P(Y = ck)
n∏

j=1

P(X j = x j/Y = ck) (7)

3: Calculate and return the classification y of sample x:

y = arg max
ck

P(Y = ck)
n∏

j=1

P(X j = x j/Y = ck) (8)

Compared with other classifiers, Bayesian classifier has stable classification efficiency, that is, it
can adapt to discrete attributes and can also be used for continuous attributes. When the attributes are
independent of each other, the classification effect is very good, and it also has the characteristics of
being less sensitive to missing and noisy data Bielza and Larrañaga (2014).
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3.3.2. Application of Bayesian method in financial market

Luintel et al. used a new data set covering 69 countries from 1989 to 2011 in the Bayesian
framework to re-examine the issue of whether the financial structure is related to economic growth
Luintel et al. (2016). Yan et al. used financial research reports training an LDA model based on
the Bayesian framework to predict the most relevant financial news among the 24 primary industries
in the Chinese market Yan and Bai (2016). Based on Lending Club’s real-world P2P lending data
set, which contains a large amount of data collected from 2007 to 2016, Fields et al. used Bayesian
learning schemes to analyze how to supervised classification models dealing with category imbalances
and to affect credit prediction rates Ferreira et al. (2017). Zhang et al. proposed a new non-linear
classification method based on the Bayesian ”sum of trees” model, this method extends the Bayesian
additive regression tree method to the classification context and is applied to predict whether the
company will be insolvent Zhang and Härdle (2010). Based on the financial data of 20 publishing and
media companies in 2011, Zhao et al. conducted a cluster analysis of profitability, solvency, growth
and capital expansion capabilities, and used Bayesian discriminant analysis to quantitatively test the
classification to expect the public investment in stocks become more rational and scientific Zhao et al.
(2014). Talebi et al. proposed a new classification method based on the Bayesian method to identify the
upward, downward, and sideways trends of exchange rates in the foreign exchange market Talebi et al.
(2014). Kanhere et al. applied Bayesian classification technology to abnormal activity risk classification
for the purpose of automating the abnormal activity detection and report generation process Kanhere
and Khanuja (2015). Zhuang et al. used Bayesian Networks (BN) to deal with the problem of uncertain
experience attributes in customer relationships to evaluate customer information scores Zhuang et al.
(2015). Pan et al. proposed a new method of learning from data using a rule-based fuzzy inference
system, in which Bayesian inference and Markov chain Monte Carlo techniques were used to estimate
model parameters. It also shows the applicability of this method in the financial services industry using
synthetic data sets for regression and classification tasks Pan and Bester (2018).

Kirkos et al. investigated the usefulness of Bayesian Belief Network in identifying false financial
statements, and used it to explore the effectiveness of data mining classification techniques in detecting
companies with fraudulent financial statements KIRKOS et al. (2007). Ma et al. used the Naive Bayes
algorithm to evaluate data and classify the degree of confidence in the real estate market by this metric to
study new trends in finance and economy Ma et al. (2017). Peng et al. constructed a performance score
to measure the performance of the classification algorithm, and introduced a Bayesian network-based
multi-criteria decision-making method to provide the final ranking of the classifier, the purpose of
which is to evaluate financial risks Peng et al. (2011). Ryans et al. used Naive Bayesian classification
to identify comment letters related to future restatements and write-downs to examine the impact of
comment letters on future financial report results and earnings credibility Ryans (2020). Vaghela et al.
proposed the MR-MNBC method based on MaxRel feature selection as the preprocessing task of the
multi-relational naive Bayes classifier, and analyzed the modified algorithm on the PKDD financial
data set Vaghela et al. (2014). Kim et al. developed the Bayesian network as a predictive tool for
detecting and classifying misstatements based on whether there is fraudulent intent, and evaluated the
research characteristics of detecting fraudulent intent and major misstatement Kim et al. (2016). Guo et
al. proposed a new multi-level adaptive classifier ensemble model based on statistical techniques and
Bayesian methods to improve the accuracy of credit ratings and improve risk control and profitability
Guo et al. (2019).
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3.4. K-nearest neighbors

The KNN classification algorithm is a theoretically mature method, and it is also one of the
simplest and best-understood algorithms of all data mining algorithms. KNN is a basic classification and
regression method. Its input is the attribute vector of the instance, and the K nearest data is selected for
classification and discrimination by calculating the distance between the instance and the attribute value
of the training data. KNN does not have an explicit learning process but directly makes predictions,
so it is also called a lazy learning classifier. It actually uses the training data set to divide the attribute
vector space and classify it Gou et al. (2019).

3.4.1. Introduction to K-nearest neighbors

The KNN algorithm includes K value selection, distance measurement and classification decision rules.
The K value market value selects the nearest K neighboring data for distinguishing categories. The choice
of k value will have a significant impact on the results of the algorithm. A small k value means that only
training examples close to the input instance will have an effect on the prediction result, but overfitting is
prone to occur; if the k value is large, the advantage is that it can reduce the estimation error of learning, but
the disadvantage is that learning the approximation error increases. At this time, the training instance farther
from the input instance will also have an effect on the prediction, making the prediction wrong. In application,
the k value generally selects a smaller value, and the cross-validation method is usually used to select the
optimal k value. In essence, it is to compare the average cross-validation error rate of different k values, and
select the k value with the smallest error rate.

The KNN algorithm requires that all feature attributes of the data can be quantified comparatively.
If there are non-numerical attributes in the data features, methods must be used to quantify them as
numerical types. Data has multiple attributes, and each attribute has its own domain. Different spans of
attribute values will have different effects on distance calculation. A large domain will have a greater
impact than an attribute with a small domain, so the attributes must be unified and normalized processing.
The distance between two data points in the feature space actually reflects the similarity of the two data.
The feature space of KNN is generally an n-dimensional real number vector space Rn. When using the
KNN method, Euclidean distance is generally used to measure the similarity of two data, of course, the
general Lp distance can also be used Muja and Lowe (2014).

The choice of classification decision usually adopts majority voting, or weighted voting based on
the distance. The closer the distance, the greater the weight of the sample. The description of the KNN
classification algorithm is as follows Algorithm 4:

The characteristic of the KNN classification algorithm is that there is no explicit training process.
It only saves the training data during the training phase, and the training time overhead is zero, until the
test data is received before processing Samworth (2012).

3.4.2. Application of K-nearest neighbors in financial market

Zemke et al. merged the improved KNN method into a simple stock exchange trading system to
achieve returns higher than exponential growth Zemke (1999). Zhang et al. used the False Nearest
Neighbors method to obtain the embedding dimension m in the KNN algorithm, and applied the modified
method to the daily adjustment opening value of Tsingtao Brewery Co., Ltd Zhang and Li (2010). Sun
et al. developed a new prediction model based on four KNN classifiers, which enhanced the accuracy of
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Algorithm 4 K-nearest neighbors Algorithm
Input:

Training set: T = {(x1, y1), (x2, y2), ..., (xm, ym)}, xi = (x1
i , x

2
i , ..., x

n
i )T , x j

i is the jth attribute of the ith sample, where x j
i ∈ {a j1, a j2, ..., a js j }, a jl is the lth value

that the jth attribute may take, j = 1, 2, ..., n, l = 1, 2, ..., s j, yi ∈ {c1, c2, ..., ck}.
Output:

Classification of sample x
Steps:

1: According to the given distance metric, find the k nearest neighbors to x in T . Define the neighborhood of x that covers these k points and denote it as Nk(x).
2: From Nk(x), determine the category y of x according to the classification decision rule:

y = arg max
c j

∑
xi∈Nk (x)

I(yi = c j), i = 1, 2, ...,m; j = 1, 2, ..., k (9)

3: Among them, I is the indicator function: I(ture) = 1, I( f alse) = 0. In the above formula, only the sample points in xi ∈ Nk(x) are considered for yi, i =

1, 2, ...,m.

the denoising process to predict stock market trends Sun et al. (2017). Lin et al. proposed an improved
modeling program to improve the function of the KNN method in financial time series forecasting to
help investors obtain a reasonable investment portfolio Lin et al. (2021). Nie et al. researched and
applied the KNN network based on Frobenius distance to analyze the time-varying characteristics of
the correlation matrix, especially during periods of drastic changes, and applied it to the analysis of
US stock market data Nie (2020). Taking into account the recent trends and the limitations of previous
studies, Aijing et al. proposed a new method called empirical mode decomposition combined with
KNN to predict stock indexes LIN et al. (2012). Chen et al. proposed a basic hybrid framework of
feature-weighted support vector machines and feature-weighted KNN to effectively predict stock market
indexes and obtain more profits and returns with a lower risk rate through effective trading strategies
Chen and Hao (2017). In financial distress research, in order to obtain better classification accuracy and
maintain data integrity, Cheng et al. proposed a purity-based k-nearest neighbor algorithm to improve
the performance of missing value interpolation Cheng et al. (2019). Yu et al. built a violations detection
model based on the KNN method to detect violations of listed companies to avoid investment risks Yu
et al. (2013).

Chen et al. proposed an effective non-parametric classifier for bankruptcy prediction using an
adaptive fuzzy KNN method Chen et al. (2011). Li et al. introduced the KNN principle on each feature
and established a new feature-based similarity measurement mechanism to study financial distress
prediction including bankruptcy prediction Li et al. (2009). Zhang et al. proposed a new method that
combines integrated empirical mode decomposition and multi-dimensional KNN model to predict the
closing price and high price of stocks at the same time, which has high prediction accuracy for short-term
forecasts Zhang et al. (2017). Based on the fact that the parameters used to generate training patterns are
heuristically determined by automatic mutual information and false nearest neighbor methods, Qian et al.
proposed an inductive machine learning classifier based on KNN to predict the stock market Qian and
Rasheed (2006). Huang et al. proposed the use of bi-clustering mining to discover effective technical
transaction patterns for improving the KNN method applied to the classification of trading days during
the test period Huang et al. (2015). Tang et al. proposed a new computational intelligent model for
predicting time series based on KNN, and a complex prediction model for stock market indexes that
integrates all industry index predictions with it as the core Tang et al. (2018a). Li et al. proposed a hybrid
decision model that uses case-based reasoning to enhance genetic algorithms and fuzzy KNN methods
to predict financial activity rates Li and Ho (2009). Based on the newly designed fuzzy prediction
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trading system and the non-parametric system of KNN technology, Naranjo et al. proposed a novel
fuzzy recommendation system for stock market investors, which has the same all-or-nothing investment
strategy and risk control Naranjo and Santos (2019).

3.5. k-means

The K-Means algorithm is an unsupervised clustering algorithm. It is relatively simple to implement
and has a good clustering effect, so it is widely used.

3.5.1. Introduction to k-means

The K-Means algorithm is an unsupervised algorithm that focuses on similarity. It uses distance
as a measure of the similarity between data objects. That is, the smaller the distance between data
objects, the higher their similarity, and the more likely they are in the same cluster. It can find k different
clusters, and the center of each cluster is calculated by using the mean of the values contained in the
clustersCelebi et al. (2013). The algorithm flow is as follows algorithm 5: The principle of the

Algorithm 5 k-means Algorithm
Input:

Training set: T = {(x1, y1), (x2, y2), ..., (xm, ym)},
Number of clusters: K.

Output:
Cluster division: C = C1,C2, ...,Ck

Steps:
1: Repeat the iteration as follows until the algorithm converges:
2: Initialization stage: take Ck = φ, k = 1, 2, ...,K
3: Divide the stage: make i = 1, 2, ...,m
4: The cluster class label for calculating xi is as follows:

λi = arg min
k
‖ xi − µk ‖2, k ∈ {1, 2, ...,K} (10)

5: Then divide the sample xi into the corresponding cluster:

Cλi = Cλi

⋃
{xi} (11)

6: Recalculation stage: calculate µk
∗

µk
∗ =

1
|Ck |

∑
xi∈Ck

xi (12)

7: Termination condition:
8: If there is µk

∗ = µk for all k ∈ 1, 2, ...,K, the algorithm converges and the iteration is terminated.
9: Otherwise, reassign µk = µk

∗

K-means algorithm is relatively simple, the implementation is also very easy, and the convergence speed
is fast. The clustering effect is better, and the interpretability of the algorithm is relatively strong. In
addition, the main parameter that needs to be adjusted is only the number of clusters k. In addition to
the advantages, the disadvantages of K-means are also obvious. The selection of the k value is not easy
to grasp. If the data of each hidden category is unbalanced, or the variance of each hidden category is
different, the clustering effect will be not good. The final result depends on the choice of the initial
point, which is easy to fall into the local optimum. In addition, it is relatively sensitive to noise and
abnormal pointsSinaga and Yang (2020).
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3.5.2. Application of k-means in financial market

In the stock market, Shin et al. used fuzzy K-means cluster analysis to segment customers in two
trading modes Shin and Sohn (2004). Based on the similarity measurement and item clustering, Zhu et
al. proposed a financial risk indicator system based on the K-means clustering algorithm, performed
indicator selection and data processing, and constructed a financial risk early warning model based on
the K-means clustering algorithm to classify and optimize financial risks Zhu and Liu (2021). Brusco et
al. proposed a variable selection heuristic method based on non-hierarchical K-means clustering analysis
with adjusted Rand index, which is used to measure cluster recovery and applied to cluster analysis of
real-world financial service data Brusco and Cradit (2001). Rokade et al. applied the K-means clustering
algorithm, which uses unsupervised learning to cluster data sets, to analyze the stock market of listed
companies in India, trying to isolate companies that exhibit abnormally high growth Rokade et al.
(2016). Roshan et al. proposed a prediction model that combines K-means clustering, wavelet transform
and support vector machines to predict financial markets to support decision-making in real-world
transactions Roshan et al. (2016). Based on the sliding window truncating the stock price sequence into
a chart, Yung et al. used the K-means algorithm to cluster the chart to form a chart form to construct a
model for predicting stock trends Yung-Piao et al. (2014). Desokey et al. combined genetic algorithm
and k-means to develop a clustering algorithm to try to enhance the previous intelligent framework that
uses mixed social media and market data for stock forecast analysis Desokey et al. (2017). Based on the
idea of clustering outlier detection, Zhu et al. proposed an improved K-MEANS clustering algorithm to
detect outliers in financial time series Zhu and Che (2014). Based on the existing two-stage fusion model
in the literature, Xu et al. proposed a new prediction model that uses the k-means clustering method to
cluster commonly used technical indicators to predict the closing price of the stock market Xu et al.
(2020). After investigating the quality of voluntary disclosure of environmental policies by financial
intermediaries, and analyzing data from the Global Reporting Initiative, Alberici et al. identified four
parts of financial intermediaries through k-means cluster analysis Alberici and Querci (2015). Li et al.
analyzed the investment efficiency of smart investment based on K-means clustering analysis and data
mining technology to conduct research on CMB Capricorn Intelligence Li et al. (2020). Took the above
17-year high-frequency data of the Stock Composite Index as an example. Huang et al. combined the
multifractal algorithm with k-mean clustering to propose a new multifractal clustering model Huang
and Tang (2021). Dai et al. used the traditional K-means algorithm to select the initial clustering center,
and built a data mining system based on the improved algorithm to manage and supervise financial
industry projects Dai (2021). Based on the information of news articles, Seong et al. proposed a method
to reflect the heterogeneity and search for a group of homogeneous companies with high correlation,
using K-means clustering and multi-core learning techniques to predict stock price trends Seong and
Nam (2021).

3.6. Expectation-maximization algorithm

The EM algorithm is an iterative optimization strategy, because each iteration in its calculation
method is divided into two steps, one of which is the desired step and the other is the maximum step.
The EM algorithm is affected by the lack of thought. It is originally to solve the problem of parameter
estimation in the case of missing data. The algorithm foundation and the effectiveness of convergence
are explained in detail Dempster et al. (1977).
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3.6.1. Introduction to Expectation-maximization algorithm

The EM algorithm has developed rapidly in recent decades. Its basic idea is relatively simple. First,
estimate the value of the model parameters based on the observation data that has been given; then
estimate the missing data based on the parameter values estimated in the previous step. According to
the estimated missing data plus the previously observed data, re-estimate the parameter value, and then
iterate repeatedly until it finally converges, and the iteration ends. With the development of theory, the
EM algorithm has not only been used to deal with the problem of missing data, but with this kind of
thinking, it can deal with a wider range of problems. Sometimes the missing data is not really missing,
but a strategy adopted to simplify the problem. At this time, the EM algorithm is called a data addition
technology, and the added data is usually called “potential data”. Complex problems are introduced by
introducing appropriate potential data can effectively solve our problems Abdalmageed et al. (2003).
The EM algorithm is described as follows AlgorithmAlgem :

3.6.2. Application of Expectation-maximization algorithm in financial market

By using modified Zigzag technical indicators to segment data and discover topics, use expectation
maximization to cluster, and use support vector machines to classify topics and predict accurate
transaction parameters for identified, Ozorhan et al. proposed a method to predict the short-term
trend of financial time series data in the foreign exchange market Özorhan et al. (2018). By using
a random version of the expectation maximization algorithm to infer the parameters, Centanni et al.
proposed a calculation simulation method applied to hedging strategies and derivative prices Centanni
and Minozzo (2006). Chen et al. used the study of expectation maximization to detect suspicious
transactions to prevent money laundering activities Chen et al. (2014b). Mazzarisi et al. proposed
an expectation maximization algorithm for model estimation and latent variable inference, which
can be used to predict the existence of future links and be applied to the e-MID inter-bank network
Mazzarisi et al. (2020). Saidane et al. used dynamic switching in the hidden Markov model of mixed
conditional heteroscedasticity factor analysis, and discussed the Viterbi algorithm in combination
with the expectation maximization algorithm to iterative estimate the model parameters in the sense
of maximum likelihood Saidane and Lavergne (2009). By constructing a joint maximum likelihood
estimation of all model parameters through the expectation-maximization algorithm, Naf et al. proposed
a mean-square-difference-mass-tail mixed distribution to model financial asset returns Nf et al. (2019).
In response to financial disasters, Bernardi et al. developed a new type of flexible copula model, which
relies on the expectation maximization algorithm and Markov switching generalized auto-regressive
scores Dynamic changes Bernardi and Catania (2018). NG et al. proposed a stock analysis framework
StockProF for quickly constructing stock investment portfolios, which used local anomaly factors
and expectation maximization methods Ng and Khor (2016). Philip et al. proposed a clustering
algorithm based on an improved hidden Markov model to predict the repayment behavior of customers
of financial institutions that provide loans, which uses an expectation maximization algorithm to impose
constraints Philip et al. (2018). Pei et al. proposed a 3D enhanced convolutional network based on
the expectation maximization algorithm to extract time series information and solve the serious data
imbalance problem Pei et al. (2020). Paolella et al. used a new two-stage expectation maximization
algorithm to uniformly estimate all model parameters, which avoided most of the losses during the
financial crisis and greatly improved the risk-adjusted return Paolella et al. (2019). Zoghi et al. used the

Data Science in Finance and Economics Volume 1, Issue 4, 362–392.



379

expectation maximization algorithm to estimate the parameters of this distribution to optimize the use
of value-at-risk and conditions as risk metrics Zoghi et al. (2021).

3.7. Ensemble learning

In data mining classification algorithms, the general goal is to learn a stable model that performs
well in all aspects, but the actual situation is often not so ideal, and sometimes only multiple weak
classification models with preferences can be obtained. Ensemble learning is to combine multiple weak
classification models here in order to obtain a better and more comprehensive strong classification
model. The underlying idea of ensemble learning is that even if a certain weak classifier gets a wrong
prediction, other weak classifiers can also correct the error Webb and Zheng (2004); Dong et al. (2019).

3.7.1. Introduction to ensemble learning

Boosting is a commonly used method in the ensemble,, which is a machine learning algorithm that
can be used to reduce the bias in supervised learning. The Boosting method learns a series of weak
classifiers and combines them into a strong classifier. The representative of Boosting is the AdaBoost
algorithm. The basic idea is to assign equal weight to each training example at the beginning of training,
and then use the algorithm to train the training set for t rounds. After each training, the training examples
that fail to train will be given a larger weight, that is, let the learning algorithm pays more attention to
the wrong samples after each learning, to obtain multiple prediction functions Rudin et al. (2004). The
AdaBoost algorithm is described as follows Algorithm Algel :

3.7.2. Application of ensemble learning in financial market

Combining swarm intelligence and technical analysis, Wang et al. proposed a machine learning
technology that combines deep learning algorithms and ensemble learning methods for financial market
prediction Wang et al. (2018). Sun et al. proposed a hybrid ensemble learning method combining the
AdaBoost algorithm and long-term short-term memory network to predict financial time series Sun
et al. (2018b). Ferreira et al. considered five single classifiers, three ensemble classifiers using decision
trees as weak classifiers, and four ensemble classifiers that combined other eight classifiers to predict
the future trend of financial asset prices Ferreira et al. (2020). Sreedharan et al. introduced the use
of ensemble techniques (including majority voting (MV), random forest, and AdaBoost ensemble) to
build more accurate predictive models to predict financial distress by combining the outputs of various
classifiers Sreedharan et al. (2020). Combining the decision tree stump with the Adaboost algorithm,
Zhang et al. proposed the DS Adaboost algorithm to provide early warning of financial problems Zhang
and Jiang (2017). Liu et al. proposed a model that combines the advantages of ensemble learning and
deep learning to predict changes in stock prices Liu et al. (2019). Gonzalez et al. proposed the design of
an integrated system based on genetic algorithms to predict the weekly price trend of the Sao Paulo Stock
Exchange index Gonzalez et al. (2015). Ekinci et al. used attribute-based integrated learning methods
and two instance-based integrated learning methods to improve the prediction accuracy of traditional
machine learning models for bank failure prediction Ekinci and Erdal (2016). Li et al. proposed a
SVM ensemble based on Choquet points for financial distress prediction, in which a new training
set was generated using the Bagging algorithm Li et al. (2015). Julia et al. proposed and evaluated
some algorithmic algotrading strategies based on artificial neural network integration to support the
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decision-making of stock market investors Julia et al. (2018). In order to understand which models
should be combined and how to effectively deal with features related to different aspects in different
models, Cagliero et al. studied the use of ensemble methods to combine faceted classification models to
support stock trading Cagliero et al. (2020).

Carta et al. proposed an ensemble learning model to minimize these problems without using
annotations to learn reinforcement learning strategies, but to learn how to maximize the reward function
in the training phase Carta et al. (2021). Zhu, etc. applied bagging, boosting and random subspace
three integrated machine learning methods, and RS-boosting and multiboosting two ensemble machine
learning methods integrated machine learning methods to predict the credit risk of small and medium-
sized enterprises in supply chain finance Zhu et al. (2016). Liang et al. introduced a classifier ensemble
method that aims to reduce the cost of misclassification. It uses a consensus voting method to combine
the outputs generated by multiple classifiers to find the final prediction results to study financial distress
Liang et al. (2017). Hsu et al. proposed a hybrid ensemble learning prediction mechanism, which comes
from the extreme learning machine algorithm of different ensemble strategies such as data diversity,
parameter diversity, nuclear diversity and preprocessing diversity, to evaluate the company’s governance
status Hsu and Lin (2014). Kilimci et al. used a variety of learning algorithm integration to improve
the performance of the classification system, and proposed to estimate the direction of the Bist100
index through financial sentiment analysis Kilimci (2019). Based on the development and adoption
of a new method of re-sampling financial sequences, Borges et al. proposed an ensemble learning
system based on machine learning, aiming to create an investment strategy that can be traded in the
cryptocurrency trading market Borges and Neves (2020). Based on neural network regression integration,
support vector regression integration, enhanced regression tree, and random forest regression, Weng
et al. developed an AI financial expert system to predict short-term stock prices Weng et al. (2018).
Aljawazneh et al. compared the performance of three deep learning methods (long and short-term
memory, deep belief network and 6-layer multi-layer perceptron model) with three bagging ensemble
classifiers (random forest, support vector machine and K-Nearest Neighbor) and two boosting integrated
classifiers (Adaptive Boosting and Extreme Gradient Boosting) for the prediction of the company’s
financial failure Aljawazneh et al. (2021). Tsai et al. developed a new hybrid financial distress model
based on the combination of clustering technology and classifier integration by using two clustering
technologies of self-organizing mapping and K-means, as well as three classification technologies of
logistic regression, multilayer perceptron neural network and decision tree Tsai (2014). Based on the
deep learning classifier, He et al. proposed a new hybrid ensemble model to improve the performance of
predicting default in emerging financial markets He and Fan (2021).

4. Discussion

In the past few decades, people have become more and more interested in using data mining
algorithms to analyze and predict multiple financial markets, especially in some areas of financial
market segmentation, such as stock prices, exchange rates, financial distress, commodity price forecasts,
etc. Although data mining technology has been widely used in financial data analysis, due to the high
complexity, rapid growth and large amount of financial market data, effective analysis of financial data
still poses greater challenges. In this section, we have formulated some problems that have not been
well solved by current work and need to be further studied in the future.
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Although there is a large amount of literature on time series analysis, most existing methods do not
consider that financial time series are a special data stream. As a special case of data flow, financial time
series often have conceptual drifts. Concept drift is a very big challenge to current commonly used data
mining models, and it is also one of the future research directions.

There are many factors that affect the financial market. Any political, real economy, medical
emergencies, etc. will have a huge impact on the financial market. Even some small events that people
rarely pay attention to may have an impact on financial markets. Current data mining algorithms mainly
focus on a single data source. How to integrate multiple data sources to conduct data mining and
analysis from different angles is one of the challenges and research directions in the future.

5. Conclusions

This work reviews data mining algorithms used to solve financial market problems. The survey
focuses on the application of data mining algorithms in the financial market. Therefore, in this review,
different data mining algorithms are classified, and more than 100 documents dealing with financial data
preprocessing, classification and clustering, future trend prediction and financial information mining are
investigated and discussed respectively.

One of the important contributions of this work is to discuss the basic concepts of all reviewed data
mining algorithms. The basic principles of these data mining algorithms are elaborated and discussed,
and the basic main steps of the algorithms are described. This method can be used to guide students,
investors and practitioners to construct intelligent financial forecasting methods based on data mining
algorithms. Another important contribution of this work is to review the latest literature on the subject
according to the classification of data mining algorithms. Although other comments have been published
recently, they differ from this work in terms of scope or the main research investigated. In addition, we
also discuss the main challenges and future directions in this research field.

It is worth mentioning that this review has some limitations. It may be missing related articles that
are not indexed in the selected database. In addition, some data mining methods are not included in
this work, especially deep learning, which is very popular recently. One of our work in the future is to
summarize the application of deep learning in the financial market.
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