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Abstract: Banks and financial institutions all over the world manage portfolios containing tens of 

thousands of customers. Not all customers are high credit-worthy, and many possess varying degrees 

of risk to the Bank or financial institutions that lend money to these customers. Hence assessment of 

default risk that is calibrated and reflective of actual credit risk is paramount in the field of credit risk 

management. This paper provides a detailed mathematical framework using the concepts of Binomial 

distribution and stochastic optimisation, in order to estimate the Probability of Default for credit ratings. 

The empirical results obtained from the study have been illustrated to have potential application value 

and perform better compared to other estimation models currently in practise. 
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1. Introduction 

Probability of default (PD) is a financial risk management term describing the likelihood of a 

default over a particular time horizon. It provides an estimate of the likelihood that a borrower will be 

unable to meet its debt obligations. Under Basel II guidelines, formulated by the Basel Committee on 

Banking Supervision or BCBS (2001), PD is a key parameter used in the calculation of economic 

capital or regulatory capital for a banking institution. Banks that comply with the new Basel II internal 

ratings-based approach are obliged to assign a PD value (usually a 1-year PD) to their clients, which 

are used as the basis for regulatory capital requirements.  

A popular method of quantifying Probability of default is through credit ratings, where each entity 

in a bank’s portfolio is assigned a rating grade depending on its past, current and future behaviour. 

https://en.wikipedia.org/wiki/Default_(finance)
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Entities with same rating grade represents similar credit risk. Some banks have internal score card and 

rating models that assign ratings based on internal methodologies. On occasions, banks may use ratings 

supplied by external credit rating agencies such as Moody’s and Standard & Poor’s (S&P) instead of 

internal ratings. For example, S&P Global ratings provide a rating system with 22 rating classes and 

Moody’s, which is another popular rating agency classifies entities to 21 rating classes based on their 

credit worthiness. This is permissible because Basel II accord allows banks to base their capital 

requirements on internal as well as external rating systems and risk profile. 

Large banks employ various mathematical techniques using the historical data of customer or 

account level ratings assigned by its internal ratings system (or external rating system) to forecast the 

default probability of each entity. The number of grades used by the bank depends on the bank’s 

individual preference. The “upper” grades represent lower default risk and hence lower probability 

values are assigned to them while “lower” grades represent higher default risk and consequently, 

higher probability values are assigned to them.  

One of the important concerns in the financial industry is regarding the estimation of true 

Probability of Default that captures the true default risk associated with a portfolio, to the best extend. 

Empirically estimated PD values based on sample data often deviate from expectations in that the 

observed PD values of rating classes are non-monotonic in nature (Pluto and Tasche, 2005). That is, 

𝑅′ > 𝑅 (𝑅′ is “lower” grade) need not imply 𝜃𝑅′ > 𝜃𝑅 ,where 𝜃𝑅 is the estimated default rate for rating 

grade R. Tasche (2013) discussed this issue which he termed it as the “Inversion of default rates”. Non 

monotonicity is an issue because the observed default rates do not reflect the true default risk associated 

with the rating class. Krahnen and Weber (2001) mentions monotonicity as one of the most important 

requirements for a rating system. It is easy to see that without monotonicity, the situation can lead to 

issues like misclassification of some customers into wrong risk buckets with under-estimation or 

over-estimation of default probability. It also affects the discriminatory power of a rating system 

thereby hindering meaningful risk differentiation between less risk and high-risk rating classes.  

One reason for this deviation between expected values and observed estimates could be that the 

portfolio often has an uneven distribution of accounts in the rating classes (Tasche, 2013). It is 

commonly observed in many empirical data that are analysed, that there is insufficient information in 

some rating groups, thereby making it impossible to obtain an accurate estimate of its default risk from 

the observed default rate itself. For example, Table 1 shows the observed default rates based on 

historical rating assignments (Long-Term Foreign-Currency) of corporate assets by Standard & Poor’s 

Ratings Services for the years 2017 and 2016. Note that out of the two years, there is a break in 

monotonicity in the empirically obtained default rates for the year 2016, while 2017 maintains an 

expected trend in default rate. From this observation we can conclude that the default rates in 2016 

does not give a true picture of the default risk in 2016, at least for two rating classes. Such inversions 

need not be a problem stemming from the rank-ordering capacity of the rating methodology, but a result 

of randomness in the default rate of customers. The issuer weighted long-run average grade-level default 

rates reported by S&P report (2021) suggests that the observation of default rate inversions as in 

Table 1 might be an exception. 

 

 



255 

Data Science in Finance and Economics Volume 1, Issue 3, 253–271. 

Table 1. S&P default frequencies and default rates (%) for corporate entities in 2016 and 

2017 based on Long Term Foreign-Currency issuer rating. 

Rating 

2016 2017 

Default Frequency Default Rate Default Frequency Default Rate 

AAA 0 0.0% 0 0.0% 

AA 0 0.0% 0 0.0% 

A 0 0.0% 0 0.0% 

BBB 0 0.0% 0 0.0% 

BB 60 4.1% 2 0.1% 

B 25 2.0% 14 0.5% 

CCC 38 11.6% 31 8.3% 

CC 1 3.4% 4 14.3% 

C/D Default Bucket 

In such cases, it is safe to assume that the observed default rate is different from the true default 

rate. A lack of sufficient data might lead to a difficulty in calculating the true probability of default 

value for such rating grades. It is not just in simple non-parametric models, that the issue may come 

up but also in classification models like logistic regression or decision tree models. Such models give 

us the probability of a customer or entity defaulting, given a set of customer level or entity level factors 

that influence the default risk (credit rating might be one of the factors here). But once the model is 

built, there is no guarantee that the aggregate risk of customers when grouped at a rating class level 

follows a monotonic trend. Hence there is a need to calibrate the estimated default probabilities such 

that, 𝑅′ >  𝑅 →  𝜃𝑅′ > 𝜃𝑅 . 

One of the early and most popular techniques used in the industry was developed by Pluto and 

Tasche (2005), who suggested a low-default portfolio calibration approach, termed as the most prudent 

estimation, using upper confidence bound with confidence level (1 − α), while guaranteeing an 

ordering of PDs that respects the differences in credit quality as indicated by the rating grades. This 

method involves optimising an objective function (a cumulative binomial likelihood) by assuming a 

binomial distribution of defaults and a suitable value for significance level α. Later, some alternatives 

to the method by Pluto and Tasche was proposed in the form of rating systems or score functions for 

low default portfolios, see Erlenmaier (2011); Fernandes and Rocha (2011). 

Dwyer (2006), introduced a Bayesian adjustment to Pluto and Tasche’s model with the use of a 

Uniform prior distribution. His approach was later explored in greater detail in Kiefer (2009), Kiefer 

(2010) where using prior distributions (like Beta distribution) determined by expert judgement was 

considered. Other authors that considered the application of the Bayesian approach are Tasche (2013), 

Clifford et al. (2013), Chang and Yu (2014) and Kruger (2015). But most of these methods cannot be 

implemented on a rated system to ensure monotonic PD trend estimate. 

Van der Burgt (2007) suggested a method for estimating low-default portfolio PD curves by using 

the cumulative accuracy profile (CAP), also known as the power curve or Lorenz curve, and a 

mathematical function for modelling the CAP, that ensures calibrated monotonic PD curves. This is 

also called CAP Curve Calibration or VDB Calibration technique. Tasche Dirk (2009) proposed a 

two-parameter approach called Quasi Moment Matching (QMM) based on Accuracy Ratio and 

distribution of good accounts. Here, the PD or default probability for each rating is modelled as a 
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mathematical function of the distribution of non-defaulted population in the portfolio and solved by 

optimising an objective function of the two user-defined parameters.  

A recent work in the field was by Surzhko Denis (2017) who proposed a Bayesian method where 

the portfolio default rate itself rather than rating level is calibrated to the default rate of another 

portfolio called the closest available portfolio by adjusting the Bayesian prior density of the default 

rate parameter. Although the method can be adopted for a rating level system, it involves identifying 

a closely related rated portfolio with reliable and monotonic default statistics and a suitable prior 

distribution weight. 

Almost all the methods which are presently, widely used involve either some level of subjectivity 

or assumptions in the theoretical framework (discussed briefly in section 3.3). In many cases, these 

methods are observed to under-predict or over-predict the estimates. Moreover, in some scenarios they 

have been observed to perform poorly and produce results which are non-intuitive and illogical such 

as uncalibrated default rates (estimated PDs decrease with decrease in credit quality) in certain types 

of portfolios. For example, Pluto and Tasche (2005) mentions that the disadvantage of the most prudent 

approach is that it may lead to non-monotone PD estimates when there are many defaults in high rating 

grades and less in lower grades. 

The main motivation for this study was the gaps in the estimation frameworks of current methods 

in practise (discussed in brief in section 3.3) and possibility of overcoming the same while improving 

the performance. In short, the main objective of this study is to; 

A. Introduce an alternative PD estimation technique that; 

a. Offers better results with minimum under-estimation or over-estimation. 

b. Performs well under a wide variety of scenarios and different types of portfolios. 

c. Reduces the subjectivity in the model and hence the sensitivity of estimates due to subjective influences. 

B. Evaluate and compare the performance of the PD technique considered in this study using real data. 

C. Indicate open questions for further research. 

This paper proposes an estimation method called stochastic optimisation for achieving the default rate 

curve estimation and calibration. Using stochastic optimisation principles, we attempt to estimate the 

default parameter 𝜃𝑅(𝑡) for each rating class R and period t given the data. The estimated default rate 

parameter acts as a best-case estimate of Probability of Default (PD) satisfying all the underlying conditions. 

Stochastic optimization refers to a collection of methods for minimizing or maximizing an 

objective function when randomness is present. They are widely used in the fields of science, business, 

engineering etc… A stochastic method is chosen assuming that the likelihood function of default 

distribution of rating classes 𝜃𝑅 subject to a set of given restrictions, is an expression without any 

closed form solution. Although the idea of stochastic optimisations is not new in general (Kirkpatrick 

et al., 1983), the method has seen limited application in the field of credit risk. Thus, the idea presented 

in this paper is novel with promising avenues of further research. The reason for choosing stochastic 

optimisation is that unlike other techniques which are widely used (like GRG linear) which gives local 

maxima/minima, stochastic methods give global maxima/minima. 

The proposed estimation framework can be divided into two parts; 

A. Defining a mathematical objective function of the default rate parameter 𝜃𝑅 that needs to be optimised. 

B. Optimising the objective function using a suitable technique that gives the best-case estimates for PD. 

The theoretical framework for the entire process has been discussed in detail in section 2. The 

proposed methodology was implemented and tested using two different data sets, which are explained 

briefly in section 3.1. The results of the study are presented in section 3.2. The results are then 
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compared to the outputs from other well-known approaches, which is discussed in Section 3.3, where 

it is explained how the proposed method is better than other methods. Few limitations have been 

discussed in section 4 and we conclude the article in section 5. 

2. Methodology 

2.1. Optimisation function and constraints 

Binomial distribution is the distribution of the number of successes that occur in N independent trials 

with the probability of success in each trial is 𝜃. If we consider N to be the number of performing entities 

at the beginning and k denotes the number of entities at the end who defaulted, then the distribution of 

number of defaults can be considered as a binomial distributed random variable with likelihood 

𝑝(𝜃, 𝑁, 𝑘) = (
𝑁
𝑘

) 𝜃𝑘(1 − 𝜃)𝑁−𝑘, (1) 

where 𝜃 is the true probability of occurrence of a default event of a single entity. 

Given a set of rating grades 1,2,3..m with initial distribution of performing entities {𝑁, 𝑁2, … , 𝑁𝑚} 

and distribution of defaulted entities {𝑥1, 𝑥2 … . 𝑥𝑚}, we need to estimate the default rate parameter 

{𝜃1, 𝜃2, … , 𝜃𝑚} the true value of which follows the condition g given by 

𝒈: 0 ≤ 𝜃1 ≤ 𝜃2 ≤ 𝜃3 ≤ ⋯ ≤ 𝜃𝑚 ≤ 1. (2) 

Under the assumption that number of defaults is binomially distributed, 𝑥𝑖~𝐵𝑖𝑛𝑜𝑚(𝜃𝑖 , 𝑁𝑖) and 

default events are independent, i.e. default in one rating grade does not influence another rating grade, 

the Maximum likelihood Estimate of 𝜃𝑖
0
 for each rating grade is just the ratio of 𝑥𝑖 and 𝑛𝑖. 

𝜃𝑖
0 =

𝑥𝑖

𝑁𝑖
 . (3) 

It is taken as assumption that the reason that the Maximum Likelihood parameter breaks the order 

is due to limitations discussed earlier. The solution presented through this paper to this problem is to 

optimise the joint likelihood function of observing the given default data {𝑥1, 𝑥2 … 𝑥𝑚} for rating 

grades 1,2,3…m, by varying the corresponding default rate parameters {𝜃1, 𝜃2, … , 𝜃𝑚}. 

𝜃𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑥𝑖|0 ≤ 𝜃1 ≤ 𝜃2 … ≤ 𝜃𝑚 ≤ 1)). (4) 

Before we find a way to achieve such a solution, we need to implement an additional constraint 

on the parameters. If we solve our problem with only constraint g, it can occasionally lead to results 

which optimise the likelihood function but fails to quantify the true default risk. That is, the optimising 

algorithm may give unrealistically high or insignificantly low values of PD estimates as the optimal 

solutions to the objective function, but still satisfying condition g. For example, during trials with one 

of the data sets under study, it was observed that the solution converged to high PD values even for 

investment grade ratings (high quality ratings where PD is expected to be < 1%). Figure 1 displays 

such a case where the estimated PD values begin at around 30% (grade 1) and ends at around 80% 

(grade 5) while the observed default rate is significantly below these values. 
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Figure 1. Estimated PD vs Observed Default rate (illustrative). 

Remember that we already established an assumption that the observed value of the parameters 

may be different from the true value, and the variation is caused due to randomness in the default 

events. It is prudent approach to extend that assumption to further include a condition that, for each 

rating, the likelihood of data given default parameter 𝜃𝑖 is within 1 − α% confidence interval of the 

likelihood of data given the maximum likelihood estimate 𝜃𝑖
0
 of the parameter 𝜃𝑖. The idea of this 

constraint is to prevent estimates of default rates which maximises our objective function and follows rank 

order at the same time prevents results which are far off from the expected range of results. Figure 2 shows 

an illustrative example, where the estimated value of the parameter 𝜃𝑖 is outside the 1 − α% bounds of the 

MLE of the parameter. 

 

Figure 2. Spread of PD parameter θ showing a 1 − α% confidence interval (illustrative). 

Black line shows the Maximum Likelihood estimate of θ. Red line shows the estimated 

PD value for θ. 
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This new constraint can be implemented using the likelihood ratio test, as shown below, 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑟𝑎𝑡𝑖𝑜 = 𝜆 =
𝐿(𝑥|𝜃𝑖

0)

𝐿(𝑥|𝜃𝑖
∗)

 . (5) 

where 𝜃𝑖
∗ is the candidate 𝜃𝑖 and 𝜃𝑖

0
 is the MLE of 𝜃𝑖. The test statistic −2 log λ approximates a 

chi-squared random variable with degree of freedom equal to 1. 

−2 𝑙𝑜𝑔 𝜆 ~ 𝜒1
2(𝛼). (6) 

So, the estimate should be such that the likelihood ratio should be within pre-defined thresholds 

given by the condition h given by 

𝒉: −2 𝑙𝑜𝑔 𝜆 ≥ 𝑐 ~ 𝜒1
2(𝛼). (7) 

So, the problem is redefined as to optimise the joint likelihood function subject to the constraints 

g and h. 

𝜃𝒊 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑥𝑖|𝑔, ℎ)). (8) 

Likelihood of m binomial distributed random variables is just the product of their binomial probability 

densities (this follows since the random variables are iid) 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑥|𝜃) = ∏ (
𝑁𝑖

𝑥𝑖
) 𝜃𝑖

𝑥𝑖(1 − 𝜃𝑖)𝑁𝑖−𝑥𝑖

𝑚

𝑖=1

. (9) 

For mathematical convenience, the product can be converted into addition by using a logarithmic 

function. So instead of maximising the likelihood function, we may maximise the log of the likelihood. 

𝐿𝐿(𝑥|𝜃) = 𝐿𝑜𝑔 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑥|𝜃) = ∑ {𝑙𝑜𝑔 (
𝑁𝑖

𝑥𝑖
) + 𝑥𝑖 𝑙𝑜𝑔(𝜃𝑖) + (𝑁𝑖 − 𝑥𝑖) 𝑙𝑜𝑔(1 − 𝜃𝑖)}

𝑚

𝑖=1

. (10) 

Since we have a constraint in the form of conditions g and h 𝑔: (0 ≤ 𝜃1 ≤ 𝜃2 … ≤ 𝜃𝑚 ≤ 1), and 

ℎ: −2 log λ ≥ 𝑐 ~ 𝜒1
2(𝛼) we need to handle them in the objective function. A variety of constraint 

handling methods have been suggested by many researchers. Each method has its own advantages and 

disadvantages. The most popular constraint handling method among users is penalty function method. 

The penalty function assigns as static exterior penalty value (Homaifar et al. 1994) to the likelihood 

function in such a way that the likelihood is decreased for each instance of breach in constraint. Hence 

for a number of constrains, our optimisation function may be rewritten as 

𝑓(𝑥) = 𝐿𝐿(𝑥|𝜃) + 𝜈𝑘 ∑ 𝐼𝑔𝑘

𝑐1

𝑘=1

+ 𝜂𝑗 ∑ 𝐼ℎ𝑗

𝑐2

𝑗=1

, (11) 

where 𝜈𝑘< 0 is the exterior penalty value for condition g and 𝐼𝑔𝑘
 is the indicator that kth constraint in 

condition g is breached. 𝜂𝑗 < 0 is the exterior penalty value for condition h and 𝐼ℎ𝑗
 is the indicator that 

jth constraint in condition h is breached. So, each violation in constraint would lead to a penalty being 

applied to the likelihood, thereby decreasing the function f(x). Applying the negative penalties would 

allow the algorithm to optimise values in the region where no violation occurs or where violations are 

as minimum as possible. 

https://www.statisticshowto.com/probability-and-statistics/chi-square/
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Therefore, the optimisation problem is formulated as  

𝜽̂𝒊 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐿𝐿(𝑥|𝜃) + 𝜈𝑘 ∑ 𝐼𝑔𝑘

𝑐1

𝑘=1

+ 𝜂𝑗 ∑ 𝐼ℎ𝑗

𝑐2

𝑗=1

). (12) 

This expression has no bounded solution and normal optimisation techniques may not converge 

to a proper solution that satisfies all constraints. Hence, one can use simulation-based optimisation 

techniques, also called stochastic optimisation, to estimate the calibrated parameters that maximise our 

objective function. 

2.2. Optimisation using Simulated Annealing 

Stochastic optimization refers to a collection of methods for minimizing or maximizing an 

objective function when randomness is present. Unlike deterministic optimisation techniques like 

gradient descent, which give local maximum or minimum, stochastic methods can give global 

maximum or minimum. It is suitable for problems where finding an approximate global optimum is 

more important than finding a precise local optimum in a fixed amount of time. There are multiple 

models for stochastic optimisation, each of which may be suitable for specific problem. The solution 

discussed in this paper has been achieved through a method called Simulated Annealing. 

Simulated annealing is a general probabilistic local search algorithm, proposed 20 years ago by 

Kirkpatrick et al. (1983) to solve difficult optimization problems. The algorithm is based upon 

Annealing process used in material science field. Annealing is the process of heating up a material 

(mostly metals) until it reaches a fixed temperature and then it will be cooled down slowly in order to 

change the material to a desired structure. When the material is hot, the molecular structure is weaker 

and is more susceptible to change. When the material cools down, the molecular structure is harder 

and is less susceptible to change.  

Simulated Annealing (SA) mimics the Annealing process but is used for optimizing parameters 

in a model. This process is very useful for situations where there are a lot of local minima such that 

algorithms like Gradient Descent would be stuck at. Simulated Annealing is similar to an MCMC 

process in that the next value in the iteration depends on the current sample generated. A neighbouring 

solution is found as a new candidate solution by applying a random perturbation to the current solution 

using a candidate generator function π( ). This randomness helps in preventing from getting stuck in 

“local minima”. If the selected move improves the solution, then it is always accepted. Otherwise, the 

algorithm makes the move with some probability less than 1. The probability decreases exponentially 

with the “badness” of the move, given by the following Equation. 

𝑃 =  𝑒−
𝐿(𝜃𝑛𝑒𝑤)−𝐿(𝜃𝑜𝑙𝑑)

𝑇  (13) 

where, 𝐿(𝜃) is the objective function to minimise. The parameter T used in the Equation is analogous 

to temperature in an actual annealing process. At higher values of T, uphill moves are more likely to 

occur. As T tends to zero, they become more and more unlikely, until the algorithm behaves more or 

less like an optimisation near local minima. The steps have been described in section 2.3. 

The main advantages of choosing Simulated Annealing are the following; 

• It ensures a “good” global optimal solution with decent computation time. 
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• It is easy to implement using a software language such as R. 

• It can deal with complex cost functions. 

The R code used for the process has been provided in Appendix B. 

2.3. Sampling algorithm 

The optimisation process is performed in an iterative and step by step manner. Note that instead 

of trying to maximise the objective function (Equation 12), we are trying to minimise the negative 

value of the same. 

A. For each rating we first start with an initial solution 𝜃𝑖 = 𝜃𝑖,𝑗=0 . We also start with an initial 

temperature t = t₀. 

B. For j = 1 to N, propose new 𝜃𝑖
∗ from 𝜋(𝜃𝑖,𝑗−1) where 𝜋 is a candidate distribution. 

C. Check if constraint h is satisfied. Replace 𝜃𝑖
∗ with 𝜃𝑖,𝑗−1 for ratings where likelihood ratio test fails. 

D. Calculate the negative of the objective function given by Equation 12 for the new and old parameters 

𝜃𝑖
∗ and 𝜃𝑖,𝑗−1 respectively. 

E. Calculate the acceptance probability function 𝑃 =  𝑒−
𝐿(𝜃𝑖

∗)−𝐿(𝜃𝑖,𝑗−1)

𝑇 . 

F. Generate u from 𝑈(0, 1).  

G. Accept 𝜃𝑖
∗ as 𝜃𝑖,𝑗 if 𝑃 > 𝑢, or if the objective function value at 𝜃𝑖

∗ < objective function value at 𝜃𝑖
∗. 

Else reject. 

H. Decrease t by a factor given by (
𝑇𝑓

𝑇0
)

𝑖−1

𝑁
 and repeat from step ii. 

Because the algorithm is sensitive to initial conditions, it can have an impact on the results as the 

algorithm may not converge to an optimal solution. So, these steps were performed multiple times to 

gather the optimal results from each run, which were then compared to obtain the final results. This 

would help in maintaining the objectivity of the output to a huge extend. 

3. Implementation 

3.1. Data 

“Standard & Poor’s Ratings Services” issues credit ratings for the debt of public and private 

companies, and other public borrowers such as governments and governmental entities. It rates 

customers into 22 ratings based on their performance, with AAA being the best rating and minimal 

chance of default and D being the worst performance rating which stands for Default. Intermediate 

ratings are offered at each level between AA and CCC (such as BBB+, BBB, and BBB−). For the 

purpose of the modelling, Long-Term issuer ratings (Foreign-Currency) data of corporate customers 

rated by S&P was obtained1. The data consisted of ratings for the years 2016 & 2017. 

 
1Under SEC Regulation 17g-7, Nationally Recognized Statistical Rating Organizations (NRSRSOs) are required to report 

their historical rating assignments, upgrades, downgrades and withdrawals since 2010. Rating data are generally reported 

on a one year delay. CSV format of this data was sourced from the website www.ratingshistory.info. 
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For the purpose of simplicity and overcoming data challenges like lack of enough defaults in some 

rating grades, a binning process2 was carried out where in adjacent ratings were clubbed together to form 

a new rating group with 9 ratings. For example, ratings BBB+, BBB and BBB− were merged to form a 

new group BBB. Also, Ratings C and D were considered to be the default bucket with rating order 9.  

December snapshots for the years 2011 to 2017 were analysed and the year 2016 was chosen for 

the modelling. A 12-month window was considered as an ideal observation window because banks 

and financial institutions are usually interested in measuring probability of default over a 1-year time 

horizon. For each snapshot period, the number of performing entities in the beginning and the number 

of default cases (from the performing entities) at the end of the 12 month window was measured for 

each rating class separately. See Table 2 for details of obligor and default counts. 

Table 2. S&P corporate credit rating (Long-Term Foreign-Currency) and corresponding 

numerical order. 

Rating Rating Order 

Year = 2016 

Defaults at End Performing at Start 

AAA 1 0 14 

AA 2 0 153 

A 3 0 934 

BBB 4 0 1814 

BB 5 60 1470 

B 6 25 1225 

CCC 7 38 329 

CC 8 1 29 

S&P data had rich default rates in many rating grades. The overall number of defaults was 124 

for all the 8 rating grades combined, so a low default sample data was created by simulation (assuming 

a portfolio of only 8 ratings), for the purpose of testing the algorithm on a low default portfolio. The 

manually generated data has been shown in Table 3 given below. 

Table 3. Sample data created by simulation. 

Rating Defaults at End Performing at Start 

1 0 1 

2 0 6 

3 1 20 

4 0 21 

5 2 16 

6 1 11 

7 0 20 

8 0 2 

 
2Note that this step is irrelevant from the point of view of actual modelling process and was chosen only for the purpose of 

convenience. 
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Note that there are only 4 default instances in this portfolio and ratings 7 and 8 with highest 

default risk has no default instances. Such scenarios may seem far-fetched but are plausible in 

extremely low default portfolios such as sovereign portfolios. 

The method discussed in section 2 was successfully implemented using R programming language 

and the two data sets, and the results are discussed in the following section. 

3.2. Experimental results 

Using the method of simulated annealing with constrained parameters, our objective function is 

maximised for the two data considered for the experiment. Significance level α for testing condition h 

was taken as 2.5%. Candidate distribution π( ) for determining the next sample was chosen as 

Normal(mean = θ, variance = σ2 ). The variance of the candidate distribution was chosen as the one 

that gave optimal results, based on trial and error. It was observed during trial runs that high variance 

would often lead to failure in convergence to an optimal solution, as the range of search space was 

quite narrow (θ in (0,1)) and on top of that additional constraints have been applied. The calibrated 

results for the two scenarios are as shown in the Table 4 below. 

Table 4. S&P data—estimated PD values for 50,000 simulations. 

N = 5 × 105, α = 2.5%, ν = −1000, η = −900, σ2 = 0.0005, T0 = 100 

Rating Default Rate PD 

Estimate  

α = 5% 

Upper Bound Confidence Intervals PD 

Estimate  

α = 2.5% 

Upper Bound Confidence Intervals 

50% 75% 90% 50% 75% 90% 

1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

2 0.00% 0.00% 0.00% 0.01% 0.03% 0.00% 0.00% 0.01% 0.03% 

3 0.00% 0.01% 0.02% 0.04% 0.06% 0.00% 0.02% 0.04% 0.07% 

4 0.00% 0.02% 0.06% 0.07% 0.11% 0.01% 0.05% 0.09% 0.11% 

5 4.08% 3.07% 3.04% 3.05% 3.06% 3.06% 3.04% 3.06% 3.07% 

6 2.04% 3.07% 3.06% 3.07% 3.08% 3.07% 3.06% 3.07% 3.08% 

7 11.55% 10.87% 10.82% 11.12% 11.61% 11.00% 10.87% 11.22% 11.80% 

8 3.45% 11.07% 11.16% 12.05% 14.21% 11.04% 11.17% 12.59% 14.03% 

We can see from the table that the estimates from the code gives monotonic PD values from the 

default rates for α = 2.5% and 5%. For α = 5%, the algorithm did not converge to an optimal solution 

and resulted in rejections for majority of the samples. There appears to be significant variation in the 

estimated PD values in the case of the 8th rating grade. For the rest of the ratings, the algorithm seems 

to give relatively close estimates. The results can further be visualised from Figure 3. 
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Figure 3. Calibrated PDs vs observed default rates for S&P data. 

The estimates of PD for the 2nd data set for α = 2.5% and 5% are shown in Table 5. The trend 

can be visualised from Figure 4. 

Table 5. Simulated portfolio—data estimated PD values for 50,000 simulations. 

N = 5 × 105, ν = −1000, η = −900, σ2 = 0.00005, T0 = 100 

Rating Default Rate PD 

Estimate  

α = 5% 

Upper Bound Confidence 

Intervals 

PD 

Estimate  

α = 

2.5% 

Upper Bound Confidence Intervals 

50% 75% 90% 50% 75% 90% 

1 0.00% 0.00% 0.00% 0.05% 0.36% 0.00% 0.00% 0.00% 0.32% 

2 0.00% 0.17% 0.28% 0.58% 1.05% 0.74% 0.32% 0.65% 0.93% 

3 5.00% 2.51% 2.58% 2.79% 3.02% 2.74% 2.48% 2.67% 2.84% 

4 0.00% 2.51% 2.69% 2.87% 3.19% 2.74% 2.55% 2.76% 2.96% 

5 12.50% 6.06% 6.20% 6.50% 6.83% 6.09% 6.34% 6.77% 7.04% 

6 9.09% 6.28% 6.29% 6.65% 6.96% 6.13% 6.42% 6.82% 7.18% 

7 0.00% 6.28% 6.38% 6.76% 7.06% 6.17% 6.52% 6.91% 7.31% 

8 0.00% 6.84% 13.55% 22.60% 31.64% 6.18% 16.57% 24.77% 32.10% 
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Figure 4. Calibrated PDs vs observed default rates for simulated data. 

3.3. Comparison with other methods 

The results obtained from the method were compared with other popular calibration techniques 

in the industry to get a comparison of estimates. The following are the three major popular methods 

used currently for estimation and calibration of default rates. 

A. The most prudent estimation PDs suggested by Pluto and Tasche (2005). 

This technique uses a cumulative binomial distribution function to estimate the probability of 

default for each rating class, as shown below: 

1 − 𝛼 ≤ 𝐹𝐵𝑖𝑛(𝑁𝑖≥𝑅 , 𝐷𝑖≥𝑅 , 𝜃𝑅). (14) 

where 𝐹𝐵𝑖𝑛 is the cumulative binomial distribution function, 𝑁𝑖≥𝑅 is the cumulative number of customers 

in rating class R and 𝐷𝑖≥𝑅  is the cumulative number of defaults in rating class R. 𝛼  is the level of 

significance which is subjectively chosen. 𝜃𝑅 is the PD value which solves the Equation for given 𝛼. 

One major drawback is that while estimation, this binomial probability is solved using cumulative 

distribution of customers and defaults in each bucket rather than actual number of customers and 

defaults. The results also depend on the value of 𝛼 and there is no formal rule for an appropriate value 

that can give an optimum result and this is of large impact on the PD estimates. Also, this method has 

been observed to produce non-intuitive results such as trend reversal, in many cases. 

Generally, this method is used for estimating PDs for low default portfolios only.  

B. CAP Curve Calibration or VDB Calibration suggested by Van der Burgt (2008). 

This method assumes an arbitrary functional form assigned to the cumulative PD curve given by 

Θ𝑅 =
1 − 𝑒−𝑘𝑅

1 − 𝑒−𝑘
 . (15) 

where, 𝑘 is a factor which depends on the AUC value of the cumulative accuracy profile. Θ𝑅 is the 

cumulative theoretical default rate at rating R. The objective function in this method is given by the 

sum of squared error between cumulative PD estimates and cumulative actual default rates. Note that 
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Equation 15 is just arbitrarily selected based on the general trend of a cumulative accuracy profile, 

unlike the objective function defined in Equation 11. 

∑(𝑦𝑅 − Θ𝑅)2

𝑚

𝑅=1

 . (16) 

Where, 𝑦𝑅 is the cumulative actual default rate, m is the number of ratings. 

Using this objective function, the method tries to fit a best possible cumulative accuracy profile 

by minimising the objective function, thereby calibrating the PD estimates. The drawback of this 

method is that it gives poor estimates if the accuracy profile of the actual portfolio itself is poor. 

C. Quasi Moment Matching (QMM) proposed by Tasche Dirk (2009). 

Similar to CAP Curve Calibration, this method uses cumulative distribution of non-defaults and 

defines the PD as a mathematical function of it. But unlike the former, it does not assign a functional 

form to the cumulative distribution. It rather gives a functional form to the PD value for each rating. 

𝜃𝑅 =
1

1 + 𝑒𝛼+𝛽𝜙−1(𝐺𝑅)
 . (17) 

where, 𝐺𝑅 is the cumulative actual non-default rate and 𝜃𝑅 is the PD value at rating R. 𝛽 and 𝛼 are 

parameters of the functional form which needs to be optimised. The optimisation function also differs 

in that the sum of squared error between PD estimates and actual default rates are used in this method. 

∑(𝑦𝑅 − 𝜃𝑅)2

𝑚

𝑅=1

 . (18) 

Where, 𝑦𝑅 is the actual default rate, m is the number of ratings. 

Similar to previous method, there is a drawback that it gives poor estimates if the accuracy profile 

of the actual portfolio itself is poor. 

3.3.1 S&P default data 

The values of the PD estimates from each estimation technique, have been displayed in the Table 6. 

From the table, we can observe a significant variation among the different methods, especially in the worst 

rating grades. A visual comparison of PD estimate trend can be observed from Figure 5.  

Table 6. Comparison of PD results for S&P data. 

Rating Pluto Tasche (α=75%) CAP Calibration QMM SA (α = 5%) SA (α = 2.5%) 

1 2.22% 0.17% 0.03% 0.00% 0.00% 

2 2.22% 0.19% 0.09% 0.00% 0.00% 

3 2.28% 0.32% 0.27% 0.01% 0.00% 

4 2.72% 0.76% 0.71% 0.02% 0.01% 

5 4.33% 2.23% 1.63% 3.07% 3.06% 

6 4.43% 5.47% 3.68% 3.07% 3.07% 

7 12.22% 7.79% 9.82% 10.87% 11.00% 

8 9.02% 8.23% 24.89% 11.07% 11.04% 
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For S&P data, the comparison exercise performed using Pluto-Tasche Calibration, QMM and 

CAP calibration method suggests that simulation-based approach provides reasonable results in line 

other industry-best practise techniques. The values are neither under-predicting nor over-predicting in 

comparison to the other models. Both α = 5% and α = 2.5% gave close estimates. 

 

Figure 5. Comparison of results with estimates obtained from other methods for S&P Data. 

We can quantitatively analyse the performance of PDs generated from Simulated Annealing 

framework using few statistical tests. Two tests have been conducted to determine if the observed 

default rate estimate is statistically different from the estimated PD value.  

• The Binomial Test is a hypothesis test for measuring if the theoretically expected parameter is 

significantly different from the observed value of the parameter. It assumes the Null hypothesis that 

the estimated value of the parameter is the true value. If the Null hypothesis is supported by the 

observed data, then the observed parameter should fall within a 1-α% confidence interval of the 

estimated parameter. This test has no test statistic. 

• The Likelihood Ratio Test is a simple hypothesis test based on the ratio of likelihood between Null 

distribution and Alternate distribution. The Null Hypothesis is that the observed default rate is the 

true parameter and the Alternate Hypothesis is that the estimated value is the true parameter. If the 

null hypothesis is supported by the observed data, the two likelihoods should not differ by more 

than sampling error and the test statistic would be small. The test statistic −2 log λ approximates 

a chi-squared random variable with degree of freedom equal to 1. 

The number of ratings which failed both the tests are as shown in Table 7. 

Table 7. Number of Ratings which failed performance tests. 

Method Binom Test (95% CI) Binom Test (90% CI) Lik Ratio Test (α = 2.5%) Lik Ratio Test (α = 5%) 

Pluto Tasche 3 4 4 4 

CAP Calibration 4 4 5 5 

QMM 4 4 4 5 

SA (α = 2.5%) 2 2 0 2 

SA (α = 5%) 2 2 0 2 
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It can be inferred that the proposed method passes the performance criteria, better than other 

competing techniques. Note that even though CAP calibration and QMM produced estimates in line 

with expected trend, the results does not pass the success criteria for 4–5 number of rating groups. The 

results of Binomial test and Likelihood Ratio test have been provided in the Appendix A. 

It is not entirely surprising that the proposed method performed this way, as we had already 

defined through one of the constraints of the objective function, that the estimate should be within a 

boundary of the MLE of the default rate parameter. 

3.3.2 Simulated portfolio data 

The values of the PD estimates from each estimation technique, have been displayed in the Table 8. 

From the table, we can observe a significant variation among the different methods. A visual comparison 

of PD estimate trend can be observed from Figure 6. 

Table 8. Comparison of PD results for simulated portfolio. 

Rating Pluto Tasche (α=75%) CAP Calibration (AR = 50%) QMM SA (α = 5%) SA (α = 2.5%) 

1 3.17% 0.36% 5.23% 0.00% 0.00% 

2 3.20% 0.40% 4.84% 0.10% 0.74% 

3 3.41% 0.62% 4.49% 2.67% 2.74% 

4 3.56% 1.33% 4.22% 2.68% 2.74% 

5 5.06% 3.38% 4.03% 6.16% 6.09% 

6 3.94% 7.37% 3.89% 6.25% 6.13% 

7 3.03% 10.03% 3.68% 6.27% 6.17% 

8 24.80% 10.52% 3.29% 6.28% 6.18% 

 

Figure 6. Comparison of results with estimates obtained from other methods for the 

simulated imaginary portfolio 

For the simulated data with low default cases, it can be observed that both Pluto Tasche and QMM 

provided estimates with reversal of trend (decreasing default rates with increasing risk). In this 
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scenario, the proposed method using stochastic optimisation gave proper results with monotonic 

trend. Results for both α = 5% and α = 2.5% gave close estimates. CAP calibration method delivered 

expected trend, assuming an accuracy ratio of 50%. This was subjectively chosen given the low 

default nature of the portfolio. 

The number of ratings which failed both the tests are as shown in Table 9. 

Table 9. Number of Ratings which failed performance tests. 

Method Binom Test (95% CI) Binom Test (90% CI) Lik Ratio Test (α = 2.5%) Lik Ratio Test (α = 5%) 

Pluto Tasche 0 0 0 0 

CAP Calibration 0 0 0 1 

QMM 0 0 0 0 

SA (α = 2.5%) 0 0 0 0 

SA (α = 5%) 0 0 0 0 

Comparison of methods using hypothesis tests yielded no significant breaches in any of the rating 

grades. This is not unexpected as the data only has small sample size and consequently leads to wider 

confidence intervals. 

From the comparison, it is evident that the proposed method is more suitable or at par when 

compared with the other methods currently used in the industry. It has the added advantage of 

providing proper results without unintuitive trend in case of extremely low default instances.  

4. Limitations 

Although this approach was simple and straightforward to implement, one drawback that plagued the 

research was the accuracy of results. Rarely, the algorithm threw results which did not converge to the 

maximum likelihood. It was also observed to show some moderate sensitivity (significant 

increase/decrease in negative log-likelihood) near the neighbourhood of some points. It was suspected that 

the initial values at the beginning had a significant effect on the solution seeking capability of the algorithm. 

Also, as already widely known, the performance of the algorithm strongly depends on the choice of 

the cooling schedule and the neighbourhood structure of the objective function. To alleviate the problem 

to an extent, multiple independent iterations were performed from and the results from each independent 

run were combined and compared to arrive at the results. Although it does not solve the problem 

completely, it does provide reasonably solid framework for further development to be carried out. 

Values of starting temperature, the penalties of each constraint, variance of the candidate 

distribution etc all can have significant impact on the output. Optimal values of all these variables were 

identified through trial and error and kept fixed for the purpose of achieving results. There might be a 

different combination from the one that has been presented here, that might provide a better optimisation.  

5. Conclusions 

In this paper, we have discussed in length how the observed default rates are sometimes, not an 

accurate representation of the actual risk that is present. In case of rating systems, this can lead to 

issues like non-monotonous trend in the estimate of Probability of Default, where, a rating which is 
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supposed to represent a higher risk has a lower PD estimate than ratings with lower risk (or vice-versa). 

This severely affect the institution’s risk management capabilities by hindering its ability to identify 

high risk and low risk customers. We have presented an alternate method for estimation of Probability 

of Default for rating systems, which solves the issue of non-monotonicity which creeps in when default 

rates are empirically determined. The method introduced in the document is implemented by assuming 

that the default rate parameter is a random variable and that the defaults follow and Binomial 

Distribution. A simulation algorithm is designed using the concepts of stochastic optimisation to obtain 

the maximum value of likelihood function which is our objective function. In this paper, the method 

is demonstrated for two cases. One, for a portfolio of corporate entities rated by Standard and Poor’s 

credit rating agency and, two for an imaginary portfolio with simulated defaults. 

One advantage of this method is that it is conceptually simple and straight forward and has 

minimum number of assumptions. The assumptions are also logical and easy to justify. The results 

obtained have also been observed to be comparable or better to that of other popular calibration 

methods, especially in situations of data scarcity or low default cases. 

Although this approach is simple and straightforward, for higher precision and for large number 

of ratings, more simulations may be required which may be limited by the computational power of the 

user’s computer system. Reasonably good amount of measures have been adopted to tackle problems 

like sensitivity to initial conditions which in turn affect the accuracy of the estimates. But presence of 

large number of model parameters and constraints makes the problem solving a step more difficult. 

These are general issues plaguing any simulation-based technique and further research needs to be 

conducted on how to improve the framework by using faster sampling with improved accuracy of the 

estimates. Using heuristic algorithms which are more problem – specific and making best use of extra 

information about the system, but taking advantage of the model framework as laid out in section 2.1 

may lead to improved results. 
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