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Abstract: The future of green hydrogen is with the selection of electrolysis technologies that 

harmonize performance, cost, and sustainability. In this study, we evaluated proton exchange 

membrane (PEM) and Alkaline electrolyzers using an integrated multi-criteria decision-making 

framework. Weighting the criteria using the fuzzy best-worst method (FBWM) revealed efficiency 

(0.0899) and capital expenditure (0.0800) as the most prominent, highlighting the significance of cost-

performance trade-offs in stakeholder decisions. Greenhouse gas emissions and water consumption 

scored high on environmental metrics. Moreover, a technique for order preference by similarity to 

ideal solution (TOPSIS) results showed a narrow lead of PEM (CCi = 0.507) over Alkaline (CCi = 

0.493), owing mostly to superior technical parameters like hydrogen purity and current density. 

Weighted aggregated sum product assessment (WASPAS) analysis confirmed this finding, with PEM 

returning a sum score of 0.432 compared to Alkaline’s 0.414. Sensitivity analysis across four weighting 

scenarios determined the test of rankings robustness: PEM did better in all but the cost-dominant 

scenario, in which Alkaline did better due to lower capital spending (CAPEX) and longer stack lifespan. 

These findings support informed technology selection under different stakeholder priorities and can 

assist in future hydrogen infrastructure planning. 

Keywords: electrolysis; PEM; alkaline; FBWM; TOPSIS; WASPAS; multi-criteria decision-making 

(MCDM); hydrogen; techno-economic analysis; sustainability evaluation 
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1. Introduction 

Hydrogen has emerged as the backbone of the global energy transition, offering a zero-carbon 

energy carrier capable of decarbonizing sectors where direct electrification is impractical, such as steel 

production, heavy haulage, and ammonia production [1,2]. Among the potential production pathways, 

water electrolysis and one fueled by renewable electricity are the most promising solutions for 

sustainable hydrogen manufacturing [3,4]. Electrolytic hydrogen not only enables molecule-to-

electricity sector coupling but also grid stabilization through power-to-gas processes and long-duration 

storage [5]. With countries transitioning to accelerate decarbonization programs, there is a growing 

demand for scalable and sustainable hydrogen production systems, which in turn has generated 

significant interest in electrolysis technologies that strike a balance of efficiency, economics, and 

environmental balance [6]. 

Among the systems of electrolysis, alkaline water electrolysis (AWE) and PEM electrolysis have 

garnered the greatest industrial relevance. AWE is the most established and sophisticated commercial 

method, low-cost, and long-lasting but constrained by low current densities and slow response times 

[7–9]. Conversely, PEM electrolyzers are more efficient, less voluminous, and have improved dynamic 

performance but at higher capital cost and material reliance on rare materials like platinum-group 

metals [4,10]. Such divergent properties emphasize the importance of extensive techno-economic 

analysis in advance of informing deployment choices under a range of operating circumstances. 

Selection of a best-fit electrolysis technology is governed by a complex set of trade-offs on 

technical, economic, and environmental bases. Such fundamental differentiators include CAPEX, 

operating costs (OPEX), stack lifespans, and relative criticality of such electrode and membrane 

materials as Pt, Ir, and Ni, with the large distinctions between AWE and PEM systems [11,12]. For 

instance, while PEM systems offer rapid load following that is well suited for intermittent renewable 

sources, high upfront capital and long-term reliability problems at extreme operating conditions are 

their requirements [12]. These kinds of technological distinctions go hand in hand with variable 

performance standards and life-cycle implications, which cause difficulties in decision-making 

between stakeholders such as project developers, policymakers, and grid operators [13,14]. 

Furthermore, the literature has increasingly highlighted the need for structured and transparent decision 

frameworks capable of addressing the multi-dimensionality and uncertainty of hydrogen systems. 

To address such challenges, multi-criteria decision-making (MCDM) approaches, more so when 

combined with fuzzy logic, have become increasingly important in assessing advanced energy 

technologies in uncertain environments [15–17]. However, studies (e.g., 2023–2025) have advanced 

hybrid MCDM modeling for renewable energy planning; yet, applications that jointly incorporate 

fuzzy weighting, multiple ranking algorithms, and scenario-based robustness testing for electrolysis 

technology selection remain limited. Relevant contemporary works include hybrid decision 

frameworks applied to sustainable technology evaluation [18–21], demonstrating the growing 

academic interest in integrated decision-support models. 

The assessment of hydrogen production technologies has increasingly relied on MCDM 

techniques that can cope with the multidimensionality of sustainability trade-offs [12,15]. The analytic 

hierarchy process (AHP), elimination and choice expressing reality (ELECTRE), multi-criteria 

optimization and compromise solution (VIKOR), and their fuzzy extensions—including fuzzy AHP 

and fuzzy TOPSIS—have been widely applied to energy-related decision-making problems [22–24]. 

These investigations demonstrate the versatility of MCDM methods in integrating qualitative and 



58 

Clean Technologies and Recycling  Volume 6, Issue 1, 56-74. 

quantitative variables, enabling stakeholders to model challenging interactions among performance, 

cost, and environmental variables. For instance, assessments have attempted comparative ranking of 

electrolyzer technologies, but often using limited criteria or without robust verification of ranking 

stability. The researchers in [4,12] also conducted an exhaustive review of hydrogen technologies but 

did not provide a consolidated evaluation framework aligned with stakeholder-specific priorities and 

uncertainty in expert judgment. 

Despite such advancements, most studies are methodologically flawed. First, most consider a few 

criteria and exclude social, technological, or environmental factors [2]. Second, most researchers do 

not adequately deal with uncertainty and vagueness in regard to expert opinions, thereby limiting the 

realism of resulting weights [16]. Third, very few researchers have employed several MCDM 

methodologies to cross-validate rankings of technologies, leaving one to speculate regarding robustness 

as well as transferability of results. Additionally, many studies published before 2023 lack scenario 

analysis to examine how shifting policy or cost considerations influence the final ranking of technology 

options, which is increasingly important in real deployment contexts. 

Very few researchers have integrated FBWM, TOPSIS, and WASPAS in a single framework to 

evaluate electrolysis technologies, especially with a full techno-economic-environmental-

technological-social (TEETS) perspective. While MCDM methods such as TOPSIS and WASPAS 

have been applied separately to hydrogen technologies, there is a notable gap in the literature regarding 

the combined application of FBWM, TOPSIS, and WASPAS in real-world hydrogen electrolysis 

projects. Most MCDM-based assessments also focus only on a few selected indicators, which neglects 

many of the multidimensional factors that influence real-world adoption and policy readiness [14,25]. 

Studies also lack a detailed sensitivity analysis, making it difficult to examine the impact of changes 

in priorities (e.g., policy-cost efficiency or climate resilience) on overall rankings. We address these 

significant gaps through the development of a novel hybrid fuzzy MCDM model that integrates 

FBWM for fuzzy weighting derivation and TOPSIS and WASPAS for cross-method validation of 

rankings. The methodology delineates 30 sub-criteria across five general dimensions: Technical, 

economic, environmental, technological, and social/policy. This represents an increased order of 

granularity in relation to assessments for scope and methodological intensity. We aim to facilitate 

systematic, evidence-based technology choice for green hydrogen systems through the application of 

the following objectives: 

i. To develop a hybrid MCDM methodology that integrates FBWM along with TOPSIS and 

WASPAS ranking methods. 

ii. To rank PEM and Alkaline water electrolyzers against 30 sub-criteria that include technical, 

economic, environmental, technological, and social parameters. 

iii. To conduct scenario-based sensitivity analysis indicating how variations in stakeholder 

preferences affect rankings of the technology, enhancing robustness and usability of results. 

The outcome presents a decision-support tool modified for researchers, policymakers, and energy 

planners seeking to roll out electrolytic hydrogen technologies in the face of evolving sustainability conditions. 

2. Materials and methods 

2.1. Description of the analytical framework 

We use an integrated MCDM approach to compare and rank electrolyzer technologies, PEM and 
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Alkaline electrolyzers, based on a broad array of performance metrics. The analytical system 

comprises four major phases: (i) Criteria identification and categorization, (ii) FBWM for sub-criteria 

weights, (iii) performance comparison by applying two MCDM approaches, TOPSIS and WASPAS, 

and (iv) sensitivity analysis under different weighting scenarios. Figure 1 shows the sequential 

procedure of the suggested evaluation framework. 

 

Figure 1. Flowchart of the analytical framework applied in this study. 

2.2. Choice of decision alternatives 

We contrast two of the most popularly applied electrolyzer technologies: 

i. PEM Electrolyzer: Associated with high hydrogen purity, dynamic response, and compact 

size. Operating temperatures for PEM units are lower (typically ~50 °C) and are therefore sufficient 

for those applications requiring flexible load-following capability. 

ii. Alkaline Electrolyzer: A mature and commercially demonstrated alternative with lower 

capital cost, longer stack life, and simpler system design. Alkaline systems operate at moderate 

temperatures (~80 °C) and are typically favored in centralized, cost-unsupportive hydrogen production 

settings. 

These alternatives were selected based on market relevance and complementary benefits, which 

make them suitable for comparative assessment using multi-criteria methods. 

2.3. Criteria identification and categorization 

To enable an integrated and situation-adequate assessment of electrolyzer technologies, we identified 

30 sub-criteria under five overall categories: Technical, economic, environmental, technological, and 

social/policy (Table 1). These are selected because they are found prominent in existing hydrogen 
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production literature, life-cycle analysis, and multi-criteria models of assessment [1,2]. Fuzzy numbers 

for criteria weights were derived through structured expert elicitation with three industry specialists and 

cross-validated with literature values. Performance data for PEM and Alkaline electrolyzers (efficiency, 

CAPEX, OPEX, stack lifetime, current density, environmental, and policy indicators) were obtained from 

recent literature averages, and validated industry reports [4,7]. Detailed sources are provided in Table 1. 

This ensures that technical and economic assessments reflect realistic operational conditions. 

Table 1. Criteria utilized in the assessment of electrolyzer technologies. 

No. Category Sub-Criterion Type Unit Source(s) 

1 Technical Efficiency (%) Benefit % [4,7] 

2 Economic CAPEX ($/kW) Cost USD/kW [3,11] 

3 Technical Hydrogen Purity (%) Benefit % [5,7] 

4 Economic LCOH ($/kg H₂) Cost USD/kg H₂ [1,2] 

5 Environmental Water Use (L/kg H₂) Cost Liters/kg H₂ [3,25] 

6 Economic OPEX ($/kg H₂) Cost USD/kg H₂ [5,11] 

7 Technical Stack Lifetime (hours) Benefit Hours [4,7] 

8 Technical Current Density (A/cm²) Benefit A/cm² [5,7] 

9 Technological Technology Readiness Level 

(TRL) 

Benefit TRL Scale (1–9) [12] 

10 Environmental GHG Emissions (gCO₂/kWh) Cost gCO₂/kWh [3,25] 

11 Environmental Recyclability (%) Benefit % [15] 

12 Environmental Hazardous Material Use (index) Cost Index [3,25] 

13 Environmental Noise Level (dB) Cost dB [24] 

14 Social/Policy Safety Perception (1–5) Benefit Score (1–5) [12] 

15 Technical Operating Temperature (°C) Cost °C [5] 

16 Technological Scalability (index) Benefit Index [1] 

17 Technological Footprint (m²/kW) Cost m²/kW [1,4] 

18 Technical System Response Time (s) Cost Seconds [4,7] 

19 Economic Balance-of-Plant Cost Share (%) Cost % [5] 

20 Economic Maintenance Frequency (per year) Cost Occurrences/year [10] 

21 Environmental Waste Generation (kg/year) Cost kg/year [25] 

22 Economic Installation Time (months) Cost Months [4] 

23 Social/Policy Job Creation Potential (score) Benefit Score (1–5) [15] 

24 Social/Policy Public Acceptance (1–5) Benefit Score (1–5) [12] 

25 Technological Modularity (index) Benefit Index [12] 

26 Technological Load Following Capability (score) Benefit Score (1–5) [4,7] 

27 Technological Startup Time (min) Cost Minutes [6,26] 

28 Social/Policy Deployment Level (score) Benefit Score (1–5) [27] 

29 Social/Policy Ease of Integration (1–5) Benefit Score (1–5) [12] 

30 Social/Policy Policy Support (score) Benefit Score (1–5) [17,27] 
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2.4. FBWM 

To obtain relative weights of evaluation criteria in a consistent and expert-knowledge-based 

manner, FBWM was employed in this study. FBWM is an advanced MCDM tool that integrates 

pairwise comparison reasoning with fuzzy set theory to represent uncertainty in human judgment. 

FBWM has been widely applied for energy planning, technology assessment, and sustainability studies 

due to its high consistency and minimal comparison burden [16,26]. 

2.4.1. Linguistic scale and fuzzy numbers 

In representing subjective preferences, linguistic terms were converted to triangular fuzzy 

numbers (TFNs) using an adapted five-level scale (Table 2). The fuzzy numbers were assigned based 

on structured expert elicitation involving three hydrogen technology specialists, and the assigned 

values were cross-checked with published literature and manufacturer data to ensure realistic 

representation. This process enables the representation of uncertainty and subjectivity in expert 

judgment using a rigorous mathematical framework. 

Table 2. Linguistic scale and corresponding triangular fuzzy numbers used in FBWM [16]. 

Linguistic Term TFN Low TFN Mid TFN High 

Very Low 0.00 0.00 0.25 

Low 0.00 0.25 0.50 

Moderate 0.25 0.50 0.75 

High 0.50 0.75 1.00 

Very High 0.75 1.00 1.00 

2.4.2. FBWm mathematical framework 

Let the set of criteria be denoted as 𝐶 =  {𝐶1, 𝐶2, … . , 𝐶𝑛}. In FBWM, the decision-maker chooses: 

i. The Best Criterion (B)—the most important one. 

ii. The Worst Criterion (W)—the least important one. 

Then, two fuzzy preference vectors are constructed: 

Best-to-others (BTO) vector: 

𝐴̃𝐵 =  (𝑎𝐵1, 𝑎𝐵2, … , 𝑎𝐵𝑁)                                  (1) 

where 𝑎𝐵𝑗 is the fuzzy preference of the best criterion over criterion j. 

Others-to-worst (OTW) vector: 

𝐴̃𝑤 =  (𝑎1𝑊 , 𝑎2𝑊, … , 𝑎𝑛𝑊)                                (2) 

where 𝑎𝑗𝑊 is the fuzzy preference of criterion j over the Worst. 

The optimal fuzzy weights 𝑤̃𝑗  for all criteria j are subsequently derived by solving the following 

nonlinear optimization model: 

min max {|
𝑤̃𝐵

𝑤̃𝑗
− 𝑎̃𝐵𝑗|  , |

𝑤̃𝑗

𝑤̃𝑊
− 𝑎𝑗𝑊| } 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ = 1𝑛

𝑗=1 ,     𝑤̃𝑗               (3) 
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The optimization minimizes the largest possible difference between the fuzzy judgments and 

weight ratios. 

2.4.3. Normalization and defuzzification 

After computing the fuzzy weights, defuzzified crisp weights wj are calculated through the 

centroid method: 

𝑤𝑗 =  
𝑙𝑗 + 𝑚𝑗 + 𝑢𝑗 

3
                                    (4) 

where 𝑙𝑗 , 𝑚𝑗, 𝑢𝑗  are the lower, middle, and upper values of the TFN for criterion j, respectively [26]. 

All weights are finally normalized in such a way that: 

∑ 𝑤𝑗 = 1𝑛
𝑗=1                                    (5) 

2.4.4. Validation and consistency 

Although FBWM inherently provides more consistency compared to AHP-based methods, one 

can compute the consistency ratio (CR) to validate judgments. In this research work, since the fuzzy 

pairwise comparisons were utilized from literature, an internal consistency check was conducted by 

verifying weight distributions within the priority limits of previous energy-based applications of 

MCDM [15]. 

2.5. Application of TOPSIS for technology ranking 

To evaluate and rank the performance of Alkaline and PEM electrolyzers, the TOPSIS method 

was applied. TOPSIS is a well-known MCDM technique that identifies the best solution with a 

comparison of geometrical distance of each option towards an ideal and an anti-ideal solution [28]. 

2.5.1. Construction of decision matrix 

The performance values of both alternatives were organized into a decision matrix 𝐷 = [𝑥𝑖𝑗]  so 

that every entry shows the performance of alternative i on criterion j. The matrix contains all 30 criteria 

outlined in Section 3.3 and weighted with the scores in Section 3.4 obtained using FBWM. 

2.5.2. Normalization of the matrix 

To enable comparison across criteria with different units, the matrix was normalized through min-

max scaling. The formula for normalization differs according to criterion type: 

For benefit-type criteria: 

𝑟𝑖𝑗 =  
𝑥𝑖𝑗−min(𝑥𝑗)

max(𝑥𝑗)− min(𝑥𝑗)
                                  (6) 

For cost-type criteria: 
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𝑟𝑖𝑗 =  
min(𝑥𝑗)− 𝑥𝑖𝑗

max(𝑥𝑗)− min(𝑥𝑗)
                                 (7) 

where 𝑟𝑖𝑗  is the normalized value. 

2.5.3. Weighted normalized matrix 

Each normalized value was then multiplied by the FBWM weight wjw_jwj to obtain the weighted 

normalized matrix: 

𝑣𝑖𝑗 =  𝑤𝑗  . 𝑟𝑖𝑗                                      (8) 

2.5.4. Identification of ideal and negative-ideal solutions 

The ideal solution (A⁺) and negative-ideal solution (A⁻) were determined as: 

𝐴+ = {max(𝑣𝑖𝑗)| 𝑗 ∈  𝑗𝑏  ; min(𝑣𝑖𝑗) | 𝑗 ∈   𝑗𝑐 }                    (9) 

𝐴− = {min(𝑣𝑖𝑗)| 𝑗 ∈  𝑗𝑏  ; max(𝑣𝑖𝑗) | 𝑗 ∈   𝑗𝑐 }                    (10) 

where sets of benefit and cost criteria are represented by 𝑗𝑏 and 𝑗𝑐, respectively. 

2.5.5. Calculation of closeness coefficients 

The Euclidean distances to ideal and anti-ideal solutions were computed for every alternative: 

𝑆𝑖
+ =  √∑ (𝑣𝑖𝑗  −  𝑣𝑗

+)
2𝑛

𝑗−1  ,      ,   𝑆𝑖
− =  √∑ (𝑣𝑖𝑗  −  𝑣𝑗

−)
2𝑛

𝑗−1              (11) 

The closeness coefficient (CCᵢ) was then calculated as: 

𝐶𝐶𝑖 =  
𝑆𝑖

−

𝑆𝑖
−+ 𝑆𝑖

−                                  (12) 

The alternative with the highest 𝐶𝐶𝑖 is considered the most preferred. 

2.6. WASPAS application for robustness validation 

To validate the TOPSIS rankings, the WASPAS method was applied. WASPAS integrates two 

models: The weighted sum model (WSM) and weighted product model (WPM), enabling more 

consistent decision-making under varying sensitivity conditions [29]. 

2.6.1. WASPAS elements and score calculation 

The overall score 𝑄𝑖  of each alternative is obtained based on a convex combination of WSM and 

WPM scores: 
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𝑄𝑖 =  𝜆 ∙ 𝑄𝑖
(1)

+ (1 −  𝜆)  ∙  𝑄𝑖
(2)

                          (13) 

where: 

i. 𝑄𝑖
(1)

=  ∑ 𝑤𝑗 ∙𝑛
𝑗=1 𝑟𝑖𝑗  is the WSM score. 

ii. 𝑄𝑖
(1)

=  ∏ 𝑟𝑖𝑗
𝑤𝑗𝑛

𝑗=1  is the WPM score. 

𝜆 ∈ [0,1] is the adjustment coefficient set to 0.5 in this study for equal weighting. WPM and 

WSM both utilize identical normalized values 𝑟𝑖𝑗  as TOPSIS. 

2.6.2. Ranking and cross-method validation 

The final WASPAS scores Q_i were then used to rank alternatives and compare results with those 

from TOPSIS. The agreement between the two methods was used as a measure of model stability and 

decision trustworthiness, an exercise tested in recent energy MCDM research [15]. 

2.7. Sensitivity analysis design 

To test the stability of the decision model and investigate the effect of prioritization of criteria on 

final rankings, scenario-based sensitivity analysis was performed. Sensitivity analysis is an integral 

part of MCDM applications as it illustrates the effects of assumptions and stakeholders’ preferences 

on outcomes. 

2.7.1. Scenario construction 

Four weighting situations were created by selectively increasing certain categories of criteria and 

keeping others proportionally reduced. These were: 

i. Scenario 1 (Balanced): Initial FBWM-derived weights. 

ii. Scenario 2 (Cost-Dominant): Economic weights increased by 40%, others proportionally scaled. 

iii. Scenario 3 (Technical-Dominant): Technical weights increased by 40%. 

iv. Scenario 4 (Environmental Priority): Environmental weights increased by 40%. 

All scenarios had a normalized total weight sum of 1 to preserve decision integrity. 

2.7.2. Recalculation of rankings 

The TOPSIS method was re-executed for all the scenarios with the modified weight sets. The 

changes in closeness coefficients (𝐶𝐶𝑖) and the resulting technology rankings were observed. 

The analysis enabled the determination of sensitivity of performance to changing decision 

preferences and identification of the conditions under which either PEM or Alkaline electrolyzers 

would be preferred. 
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2.7.3. Visualization 

Results were graphed on a tornado chart, which shows the size of score variation under each 

scenario. The graphical form enables ranking reversals and most sensitive appraisal criteria to be easily 

spotted [29]. 

2.8. Levelized cost of hydrogen (LCOH) estimation 

While multi-criteria comparison was our primary focus of this study, the LCOH was optionally 

incorporated to give contextual reference and economic realism. LCOH is an economic measure of the 

average cost per unit of hydrogen over the lifetime of the system, covering capital, operating, and 

replacement costs. 

The LCOH was estimated using the simplified model [3]: 

𝐿𝐶𝑂𝐻 =  
𝐶𝐴𝑃𝐸𝑋 ∙𝐶𝑅𝐹+𝑂𝑃𝐸𝑋𝑎𝑛𝑛𝑢𝑎𝑙

𝐻2 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑎𝑛𝑛𝑢𝑎𝑙
                            (14) 

where: CRF = capital recovery factor: 

𝐶𝑅𝐹 =  
𝑟(1+𝑟)𝑛

(1+𝑟)𝑛−1
                                (15) 

where r is the discount rate and n is the system lifetime (years). 

i. OPEX includes electricity, water, maintenance, and labor costs. 

ii. Hydrogen production (H2) is derived from electrolyzer efficiency and annual energy input. 

Due to data and scope limitation, this LCOH calculation is sourced from literature benchmarks 

and not utilized as a ranking criterion in the main MCDM model. 

3. Results 

3.1. Criteria weighting using FBWM 

3.1.1. Weight derivation process 

A five-level linguistic scale was used to evaluate the importance of criteria, translated into TFNs 

for the weighting process (Table 2). Weights were adapted from the MCDM literature focused on 

sustainable energy systems, ensuring relevance to the hydrogen domain. 

3.1.2. Final criteria weights 

The final weights for all 10 sub-criteria are presented in Table 3. These were grouped into five 

major categories: Technical, Economic, Environmental, Technological, and Social/Policy. The results 

indicate a clear dominance of technical and economic considerations in decision-making. Efficiency 

(0.0899) and CAPEX (0.0800) are the two most influential criteria, carrying the highest weight in 

determining technology preference. 

This prioritization aligns with broader literature, indicating that early-stage hydrogen 
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infrastructure remains highly sensitive to performance and capital cost parameters. Environmental 

concerns (e.g., water use and GHG emissions) and technological maturity also contribute significantly 

to the evaluation (Figure 2). 

Table 3. Final normalized weights for top 10 10 sub-criteria used in the MCDM evaluation. 

No. Category Sub-Criterion Realistic_Weight 

1 Technical Efficiency (%) 0.0899 

2 Economic CAPEX ($/kW) 0.08 

3 Technical Hydrogen Purity (%) 0.0609 

4 Economic LCOH ($/kg H₂) 0.06 

5 Environmental Water Use (L/kg H₂) 0.05 

6 Economic OPEX ($/kg H₂) 0.05 

7 Technical Stack Lifetime (hours) 0.0493 

8 Technical Current Density (A/cm²) 0.0406 

9 Technological Technology Readiness Level (TRL) 0.0405 

10 Environmental GHG Emissions (gCO₂/kWh) 0.04 

 

Figure 2. Top 10 highest-weighted sub-criteria based on FBWM analysis. 

3.2. Ranking results from TOPSIS 

3.2.1. Normalized decision matrix 

The performance data for both electrolyzers was normalized to enable direct comparison. Table 4 

provides a snapshot of the top 10 sub-criteria after min-max normalization, aligned with the weight 

structure defined in Section 4.1.2. 
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Table 4. Normalized decision matrix for the top 10 weighted sub-criteria. 

No. Category Sub-Criterion PEM 

Value 

Alkaline 

Value 

PEM 

(Norm) 

Alkaline 

(Norm) 

1 Technical Efficiency (%) 65 60 1.000 0.000 

2 Economic CAPEX ($/kW) 1000 800 0.000 1.000 

3 Technical Hydrogen Purity (%) 99.999 99.9 1.000 0.000 

4 Economic LCOH ($/kg H₂) 4.0 3.0 0.000 1.000 

5 Economic OPEX ($/kg H₂) 1.2 1.0 0.000 1.000 

6 Environmental Water Use (L/kg H₂) 10 12 1.000 0.000 

7 Technical Stack Lifetime (hours) 60000 90000 0.000 1.000 

8 Technical Current Density (A/cm²) 2.0 0.4 1.000 0.000 

9 Technological Technology Readiness 

Level 

8 9 0.000 1.000 

10 Environmental GHG Emissions 

(gCO₂/kWh) 

25 30 1.000 0.000 

3.2.2. Closeness coefficient and final ranking 

Based on the normalized values and weights, closeness coefficients (CCi) were calculated for 

each technology. The PEM electrolyzer achieved a slightly higher CCi (0.507) compared to the 

Alkaline (0.493), indicating marginally better overall performance. Although the numerical difference 

is small, it may influence technology selection under technical or environmental priorities. In cost-

focused scenarios, Alkaline may be preferred due to lower CAPEX and longer stack life. Therefore, 

decision-makers should interpret these marginal differences in the context of project-specific 

objectives and acceptable uncertainty ranges (Table 5). 

Table 5. Final closeness coefficients from TOPSIS. 

Technology Closeness Coefficient (CCi) 

PEM Electrolyser 0.507 

Alkaline Electrolyser 0.493 

Figure 3 shows that PEM outperforms Alkaline in technical indicators, such as efficiency and 

hydrogen purity, which, combined with its competitive environmental performance, explains why it 

leads in the overall rankings. Cost-related criteria slightly favor Alkaline, highlighting scenario-

specific trade-offs. 
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Figure 3. Radar chart showing normalized performance across top 10 sub-criteria. 

3.3. Ranking results from WASPAS 

3.3.1. WASPAS scoring breakdown 

To cross-validate the TOPSIS results, the WASPAS method was applied using equal weights (λ = 

0.5) for the additive (WAM) and multiplicative (WPM) components. The WASPAS scores are 

presented in Table 6. 

The PEM electrolyzer achieved slightly higher scores across all components, with a final 

combined value of 0.432, compared to 0.414 for the Alkaline system. 

Table 6. WASPAS scores for PEM and Alkaline electrolyzer. 

Technology WAM Score WPM Score WASPAS Combined 

PEM Electrolyzer 0.502 0.362 0.432 

Alkaline Electrolyzer 0.498 0.329 0.414 

3.3.2. Final ranking and comparison with TOPSIS 

The final rankings obtained from the TOPSIS and WASPAS methods are shown in Table 7. PEM 

ranks first in both methods, confirming consistency of the evaluation. The practical significance of the 

small difference (PEM: 0.507 vs. Alkaline: 0.493) should be considered: PEM may be preferred for 

projects prioritizing technical or environmental performance, while Alkaline may be more suitable in 

cost-dominant projects. This scenario-specific interpretation ensures results are actionable and aligned 

with real deployment decisions. 
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Table 7. Final ranking comparison from TOPSIS and WASPAS methods. 

Technology TOPSIS CCi WASPAS Combined Final Rank 

PEM Electrolyser 0.507 0.432 1 

Alkaline Electrolyser 0.493 0.414 2 

3.4. Sensitivity analysis 

3.4.1. Variation of criteria weights 

To assess the stability of the ranking outcomes, a sensitivity analysis was conducted by simulating 

multiple decision-making scenarios with varying emphasis on different criteria groups. Four weighting 

scenarios were evaluated: 

i. Balanced: Original FBWM-derived weights. 

ii. Cost-Dominant: Higher weight on economic criteria. 

iii. Tech-Dominant: Emphasis on technical performance. 

iv. Environmental Priority: Increased importance of environmental indicators. 

The rankings were recalculated using TOPSIS under each scenario. Table 8 summarizes the results. 

Table 8. Closeness coefficient (CCi) results under weighting scenarios. 

Scenario PEM_CCi Alkaline_CCi Final Rank 

Balanced 0.507 0.493 PEM Wins 

Cost-Dominant 0.481 0.519 Alkaline Wins 

Tech-Dominant 0.522 0.478 PEM Wins 

Env-Priority 0.515 0.485 PEM Wins 

Figure 4 visualizes the sensitivity of each technology’s CCi under weighting scenarios. PEM 

consistently ranks higher under technical and environmental emphasis, while Alkaline leads only under 

cost-dominant weighting. This confirms the robustness of PEM as the preferred option. 

 

Figure 4. A tornado plot showing variation in CCi values for PEM and Alkaline 

electrolyzers under weighting scenarios. 
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These findings reinforce that while the PEM system is more balanced overall, the final selection 

depends on project-specific goals, especially budget constraints or environmental targets. 

4. Discussion 

We carried out a multi-criteria evaluation of PEM and Alkaline electrolyzers by integrating the 

FBWM and TOPSIS and WASPAS. The results offer insights into the trade-offs among technical 

performance, economic viability, environmental sustainability, and technological maturity. 

4.1. Prevalence of technical and economic criteria 

The weighting process reflected the clear dominance of technical and economic considerations in 

electrolyzer selection. Efficiency, CAPEX, hydrogen purity, and LCOH emerged as the most salient 

sub-criteria. These findings align with earlier MCDM-based studies identifying performance and cost 

as key decision criteria in hydrogen infrastructure deployment [1,12,13]. Environmental criteria, water 

use and greenhouse gas (GHG) emissions, specifically, also featured prominently, consistent with 

increasing sustainability requirements in hydrogen production [2,25]. By contrast, social and policy 

criteria such as public acceptance and ease of integration received relatively lower prominence. While 

such dimensions were included to reflect broader decision-making considerations, the literature 

directly linking social and policy frameworks to electrolyzer technology remains limited, as noted in 

the research [30]. This limitation reflects a wider gap in hydrogen research, where policy and societal 

factors are less frequently quantified compared to technical or economic indicators. Future studies that 

incorporate region-specific policy contexts (e.g., EU, MENA, Sub-Saharan Africa) may provide 

stronger applicability for real deployment scenarios.  

4.2. Comparative performance of alkaline and PEM electrolyzers 

In spite of higher CAPEX and OPEX, PEM systems performed higher than Alkaline electrolyzers 

in WASPAS and TOPSIS analyses. This higher performance is largely due to the higher efficiency, 

increased hydrogen purity, and faster system response of PEM, attributes that are commonly 

emphasized in techno-economic and lifecycle research ([4,7,12]). In contrast, Alkaline electrolyzers 

were demonstrated to be advantageous in cost-dominant scenarios due to their lower capital cost and 

longer stack lifetimes [3,12]. The results are in concurrence with deductions that Alkaline systems 

remain more amenable to centralized, constant-load industrial hydrogen production [6]. 

4.3. Methodological robustness and model agreement 

The coincidence of TOPSIS and WASPAS rankings strengthens the robustness of the evaluation 

framework. Despite methodological differences, TOPSIS prioritizing proximity to an ideal solution 

and WASPAS integrating additive and multiplicative models, the identical outcome validates the use 

of hybrid MCDM applications in energy technology assessment [22,24]. Sensitivity analysis also 

confirmed model robustness: PEM always ranked first in most scenarios, except when cost criteria 

were prioritized. This confirms the model's capability to capture stakeholder-specific trade-offs under 

a range of assumptions [14]. 
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4.4. Policy and practice implications 

The findings indicate that electrolyzer selection must be context-specific. PEM systems are best 

suited to applications demanding operational flexibility, high-purity hydrogen, or frequent cycling (e.g., 

distributed generation or fuel cell vehicles) [4,10]. Alkaline systems remain best suited to applications 

where economic simplicity and long-term stability are most highly valued (e.g., industrial base-load 

production) [11]. These results have direct implications for real deployment in regions such as Africa, 

the EU, and MENA: Cost constraints in developing countries may favor Alkaline deployment, whereas 

higher-investment green hydrogen rollout can prioritize PEM systems. Budget levels and policy 

incentives should guide technology prioritization at regional or project scales. This model offers a 

practical decision-support tool for energy policymakers and planners with opportunities for application 

to other electrolyzer technologies (e.g., AEM and SOEC) or regionalized deployment settings [12]. 

4.5. Limitations and future work 

In this study, we applied a literature-based weighting strategy, prioritizing reproducibility to the 

detriment of context specificity. More elaborate criteria weights in specific geographic or industry 

settings may be derived from future studies through structured expert elicitation, particularly for social 

and policy dimensions where empirical data availability is relatively limited. Study limitations include: 

Limited criteria set, regional cost variability, and data uncertainty. Applying additional dimensions 

such as life-cycle impacts, uncertainty analysis, or renewable resource mapping would contribute to 

decision specificity [3,14]. In future research, researchers should consider inclusion of PEM/AEM 

comparisons, life-cycle costing, and multi-region policy scenario analyses. 

5. Conclusions 

We applied an integrated MCDM framework, comprising the FBWM, TOPSIS, and WASPAS, 

to systematically evaluate and compare the performance of Proton Exchange Membrane (PEM) and 

Alkaline electrolyzers. The FBWM results demonstrated that technical and economic factors exert the 

greatest influence in decision-making for hydrogen production systems, with efficiency and capital 

expenditure emerging as the most critical sub-criteria. The TOPSIS and WASPAS rankings exhibited 

strong consistency, both identifying the PEM electrolyzer as the superior option, achieving higher 

closeness and combined scores, respectively. Despite its higher cost parameters, the PEM technology 

outperformed the Alkaline system in technical and environmental dimensions, indicating a more 

balanced overall performance profile. Sensitivity analysis further validated the robustness of these 

findings, revealing that the PEM electrolyzer remains the preferred choice under balanced, technical, 

and environmental priority scenarios, while the Alkaline system becomes advantageous primarily in 

cost-dominant scenarios. These results suggest that PEM electrolyzers are better suited for applications 

requiring high efficiency, high hydrogen purity, fast dynamic response, or flexible operation, such as 

distributed generation or fuel cell mobility deployments. In contrast, Alkaline electrolyzers remain 

more appropriate for cost-sensitive or large-scale industrial hydrogen production, where lower CAPEX 

and longer stack lifetime provide economic advantages. This practical differentiation offers clearer 

guidance for decision-makers selecting technologies based on project FBWM priorities, whether 

constrained by capital budgets or driven by high-performance requirements. The integrated MCDM 
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framework proved effective in capturing the trade-offs among performance, cost, and sustainability 

criteria, providing valuable insights for policymakers and project developers. Overall, the findings 

underscore that the optimal electrolyzer choice should align with specific project objectives, financial 

conditions, and sustainability targets, and that scenario-based evaluation remains essential for 

informed decision-making in the evolving hydrogen economy. 
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