
 

 

Clean Technologies and Recycling, 6 (1): 1–32. 

DOI: 10.3934/ctr.2026001 

Received: 28 July 2025 

Revised: 21 November 2025 

Accepted: 22 December 2025 

Published: 06 January 2026 

https://www.aimspress.com/journal/ctr 

 

Research article 

Optimal placement of electric vehicle chargers: A mixed-integer linear 

programming model 

Joubin Zahiri Khameneh* and Emmanuel Fagbenle 

Peter T. Paul College of Business and Economics, University of New Hampshire, Durham, NH, USA 

* Correspondence: Email: Joubin.ZahiriKhameneh@unh.edu; Tel: +18577990511. 

Abstract: Electric vehicle adoption is growing, but New Hampshire lags in public charging 

infrastructure, especially in rural areas. This gap increases range anxiety and economic inefficiencies. 

In this study, we developed a mixed-integer linear programming (MILP) model to optimally locate 

new electric vehicle chargers statewide, maximizing coverage and equity under budget constraints. 

The model includes geographic coverage requirements, population-weighted equity, capacity limits, 

and a $28 million budget. Moreover, the model recommends 855 Level 2 chargers and 149 Direct 

Current Fast Chargers (DCFCs) across 247 ZIP Codes, nearly doubling public charging capacity and 

achieving 98.8% coverage within defined service radii. The plan offers a cost-effective strategy that 

balances urban and rural needs. By integrating coverage, equity, and cost considerations, the model 

provides an adaptable framework for electric vehicle infrastructure planning and demonstrates how 

operations research supports sustainable transportation policy. 

Keywords: Electric vehicles; charging infrastructure; mixed-integer linear programming; optimization; 

equity; transportation planning 

 

Abbreviations:  EV: Electric Vehicle; BEV: Battery Electric Vehicle (fully electric car with no gasoline 

engine);   MILP: Mixed-Integer Linear Programming;   L2: Level 2 EV charger (240 V AC fast charger 

for home/work, ~7–19 kW); DCFC: Direct Current Fast Charger (high-power public EV fast charger);   

RUCA: Rural–Urban Commuting Area (classification of areas by rural/urban status);   NEVI: National 

mailto:Joubin.ZahiriKhameneh@unh.edu


2 

 

Clean Technologies and Recycling                                                                                                  Volume 6, Issue 1, 1–32. 

Electric Vehicle Infrastructure (U.S. federal formula funding program for EV corridors);   CFI: 

Charging and Fueling Infrastructure (U.S. federal grant program for EV charging, especially 

community/rural) 

1.  Introduction 

EV ownership is rising rapidly across the United States, and New Hampshire is beginning to 

follow this trajectory. By 2023, the state had over 16,000 plug-in EVs (9,900 battery electric vehicles 

and 6,600 plug-in hybrid electric vehicles) on the road, compared with just a few hundred in 2016 (see 

Figure 1) [1]. 

 

Figure 1. Motor-vehicle registrations in New Hampshire (2023) by fuel type. Note: 

Data from U.S. Department of Energy, Office of Energy Efficiency and Renewable 

Energy (2023). [2] 

Regional forecasts indicate that this growth will accelerate. By 2033, EVs could comprise roughly 

20% of all vehicles in New Hampshire, or approximately 200,000 EVs, up from a negligible share 

today [3,4]. These projections are consistent with ISO New England’s Transportation Electrification 

Forecast [4], presented in Figure 2. In addition to light-duty vehicles, the state is expected to add 

hundreds of electric medium-duty trucks and school buses by 2033 (see Figure 3). This anticipated 

increase in electric mobility will require a significant expansion of charging infrastructure, highlighting 

the need for rigorous planning tools to guide investment and deployment. 
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Figure 2. Projected annual increase in cumulative EV stock in New Hampshire, 2024–2033. 

 

Figure 3. Forecasted Cumulative EV Adoption for Medium-Duty Delivery, School 

Buses, and Transit Buses in New Hampshire, 2024–2033. 

Despite rising EV demand, New Hampshire lags behind neighboring states in charger availability. 

As of early 2024, the state had approximately 290 public charging station locations (L2 and DCFC), 

fewer than Vermont and Maine, which had over 470 and 530 stations, respectively, based on AFDC 

data available at the time of analysis [5]. 
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Figure 4. Public EV charging station locations in New England states as of 2024. Note: 

Data from U.S. Department of Energy, Alternative Fueling Station Locator, 2024 [6]. 

 

Figure 5. Public EV charging ports in New England states as of 2024. Note: Data from 

U.S. Department of Energy, Alternative Fueling Station Locator, 2024 [6]. 

An analysis showed that the state has deployed only about 7% of the L2 and 22% of the DCFC 

capacity estimated to be needed by 2030 [1]. This shortfall is particularly severe in rural and northern 

areas, where drivers may need to travel over 50 to 60 miles (approximately 80 to 97 kilometers) to find 

a fast charger, intensifying range anxiety. 

This uneven infrastructure distribution not only slows EV adoption but also presents economic 

risks. One analysis projected that the state could lose up to $1.4 billion in tourism revenue by 2031 if 

it fails to match neighboring states’ investments in charging infrastructure [7].  Because many of these 
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gaps occur in rural and northern regions that are underserved and popular with tourists, ensuring 

equitable access will be critical not only for advancing clean transportation goals but also for sustaining 

the state’s economic vitality. 

Consistent with NEVI minimum standards, DC fast charging stations are required to be spaced 

no more than 50 miles (approximately 80 kilometers) apart along designated Alternative Fuel 

Corridors [8]. Public programs are mobilizing to address these gaps. Under the federal NEVI program, 

New Hampshire was allocated approximately $13.6 million as of early 2025 to install DCFC stations 

along major corridors such as Interstates 93 and 89, spaced no more than 50 miles (approximately 80 

kilometers) apart [9]. In addition, the state received an additional $15 million through the federal CFI 

grant to deploy nearly 200 public charging ports, with a focus on rural and underserved areas [10]. 

Together, these funding streams provide approximately $28 million for EV charger expansion, creating 

a timely opportunity to optimize infrastructure planning statewide. 

In response to this transition, we propose an MILP model to identify the optimal locations and 

types of new EV chargers across New Hampshire. This dual capability makes MILP particularly 

suitable for infrastructure planning problems that must account for real-world constraints such as 

budget limits, geographic coverage rules, and equity requirements. Unlike heuristic or simulation-

based methods, MILP provides globally optimal solutions with transparent trade-offs, offering reliable 

guidance for policy and planning decisions. The suitability of MILP for EV charger siting has been 

demonstrated in other research, and representative examples will be discussed further in Section 2. 

Building on this foundation, this report applies MILP to balance cost-efficiency, statewide coverage, 

and equity in New Hampshire’s diverse urban–rural landscape. The model’s key contributions include 

incorporating equity-based constraints, implementing ZIP Code-level spatial targeting, and 

differentiating charger types. It also introduces slack variables to enable limited unmet charging 

demand in low-density or underserved areas, helping to maintain feasibility while promoting equitable 

access. Overall, this data-driven framework provides a scalable decision-support tool for policymakers 

and planners, balancing statewide coverage, cost-efficiency, and social equity, while addressing range 

anxiety and regional disparities. These contributions are particularly relevant given New Hampshire’s 

existing shortfall in charging infrastructure compared with neighboring states. 

2.  Literature review  

2.1. EV charger placement optimization models 

 EV charger placement has long been framed as a facility location problem, with early studies 

emphasizing service coverage, detour minimization, or basic cost constraints. As the demand for 

electric vehicles has increased, research attention has shifted toward more sophisticated approaches 

that account for real-world complexity. 

Early studies from the past decade illustrate this transition. For example, Gopalakrishnan et al. [11] 

combined demand forecasting using canonical correlation analysis with a mixed packing-and-covering 

heuristic framework. Their approach balanced operator objectives (budget and demand maximization) 

with user needs (coverage and accessibility), achieving notable improvements in demand coverage 

compared to baseline siting approaches. This integration underscores the importance of jointly 



6 

 

Clean Technologies and Recycling                                                                                                  Volume 6, Issue 1, 1–32. 

considering user behavior and system constraints in charger placement models. 

Beyond demand-focused work, other researchers have explored metaheuristics for large-scale 

planning. Cintrano et al. [12] formulated the Electric Vehicle Charging Station Location problem as a 

citywide siting challenge constrained by both accessibility and substation capacity. Using a case study 

in Málaga, Spain, they showed that genetic algorithms and Variable Neighborhood Search (VNS) 

significantly outperformed existing municipal deployments, reducing average travel distances by more 

than 50%. Similarly, Lazari and Chassiakos [13] developed a multi-objective Genetic Algorithm (GA)-

based framework that minimized both infrastructure costs and travel distances. Their results 

demonstrate scalability and robustness, illustrating how metaheuristics can generate near-optimal 

solutions for large-scale combinatorial optimization problems, albeit without the global optimality 

guarantees of MILP. 

In contrast, researchers have emphasized the value of MILP formulations for siting and scheduling. 

Some have focused on context-specific siting. For example, Bian et al. [14] developed a Geographic 

Information System (GIS)-based MILP model that identified optimal locations for public fast chargers 

by combining traffic flow data, land use, and economic feasibility (profit-based investment 

considerations). Their work highlights the importance of selecting charger types based on local context, 

favoring fast chargers in high-traffic commercial areas and slower options in residential or workplace 

settings. Others have examined charger-type heterogeneity. For instance, Parent et al. [15] formulated 

an MILP model that allocates heterogeneous charging technologies to candidate sites in Montreal 

under budget constraints, showing how charger-type differentiation and capacity decisions can 

improve network efficiency. A third group of studies has extended MILP formulations with explicit 

unmet-demand penalties and joint siting-sizing choices. For instance, Gulbahar et al. present a 

corridor-focused model in Sustainability [16] that optimizes where to locate stations along highways 

and how many chargers to install at each, allowing limited unmet demand as a penalty to balance 

coverage and cost. Case studies on multiple Turkish corridors reveal cost-efficient station counts and 

charger allocations, demonstrating that penalty terms can guide practical deployment under demand 

and budget constraints. This approach is conceptually consistent with the present study’s use of slack 

variables and policy-aligned constraints, though applied at the corridor rather than ZIP Code scale. 

Popa and Sîrbu [17] applied an MILP formulation to Romania’s national charging infrastructure, 

optimizing station siting with objectives including distance coverage, electricity consumption, CO2 

emissions, and EV penetration. Their results highlight MILP’s flexibility to integrate environmental 

and demand factors in large-scale infrastructure planning. Finally, Chen et al. [18] formulated the EV 

charger siting problem as a mixed-integer linear program but employed an improved Genetic 

Algorithm heuristic to solve it, demonstrating that this hybrid approach can deliver cost-effectiveness 

and well-covered urban charging networks. 

Building on these MILP foundations, hybrid models illustrate how MILP can be combined with 

heuristic or real-time control methods. Al Nahid and Qi [19] proposed a two-tier framework integrating 

MILP-based scheduling with a distributed GA for dynamic charging management. Their results show 

substantial improvements in fairness, demand balancing, and grid reliability, highlighting how MILP 

can provide global coordination while heuristics fine-tune local operations. Similarly, Dukpa and 

Butrylo [20] applied MILP at the station-operation level, optimizing profitability and resource use in 

PV-based charging stations with battery storage. Although not directly focused on siting, their work 
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reinforces the versatility of MILP for EV charging problems involving mixed discrete–continuous decisions. 

Alongside these methodological advances, studies also emphasize equity and scalability 

considerations. Such considerations are reflected in Kim et al. [21], who modeled charger deployment 

as a capacitated facility location problem and compared exact, heuristic, and metaheuristic solvers 

across diverse case studies. By incorporating equity metrics such as the Gini coefficient and combining 

MILP with machine-learning–based site analysis, their work highlights how advanced methods can 

complement MILP to balance coverage, cost, and fairness. Separately, complementary approaches 

outside MILP frameworks have emerged. For instance, Alanazi et al. [22] employed machine-learning 

models (linear regression and Support Vector Machines [SVM, a supervised machine learning method 

for classification and regression]) to forecast station needs from socio-economic, grid, and travel 

indicators, generating demand signals that could subsequently inform MILP-based siting models. 

Taken together, these strands of research illustrate an evolution from basic facility location models 

to more sophisticated optimization frameworks that integrate demand prediction, grid constraints, and 

equity considerations. While heuristic and metaheuristic approaches offer scalability, they often 

sacrifice global optimality, whereas MILP formulations provide stronger guarantees but may face 

computational limits at scale. Hybrid methods bridge these trade-offs, and recent studies increasingly 

emphasize fairness and real-world feasibility. However, gaps remain: Many models assume full 

demand satisfaction, treat chargers as homogeneous, or overlook policy-driven equity requirements. 

Addressing these limitations is critical for developing planning tools that are computationally feasible 

and policy relevant. In response, we adopt a ZIP Code-level MILP framework that distinguishes L2 

and DCFC, integrates equity constraints, and introduces slack variables to reflect budget-limited real-

world conditions. This formulation provides a more flexible and policy-aligned method for allocating 

charging infrastructure in geographically diverse and budget-constrained environments. 

2.2. Policy-informed constraints in prior models 

In addition to methodological advances, policy frameworks are crucial in this study, shaping the 

optimization model for EV charger deployment. Public-sector EV infrastructure planning in the United 

States is shaped by federal and state policy objectives that emphasize accessibility, spatial coverage, 

and equity. Programs such as the NEVI initiative establish minimum regulatory standards, including 

charger-spacing and performance requirements [8], while analyses from the Electric Power Research 

Institute provide complementary planning insights, such as fleet-to-infrastructure ratios and utilization-

based benchmarks, that inform regional and system-level deployment strategies [23,24]. 

Several optimization studies have responded by embedding these policy criteria directly into 

mathematical models. Typical approaches involve applying spatial-coverage constraints, setting 

minimum charger thresholds by population or geography, and incorporating charger-type 

differentiation. For example, Mohammed et al. [25] minimized investment costs while satisfying 

planning standards and engineering guidelines that reflect policy-driven benchmarks. Moreover, Yang 

et al. [26] incorporated taxi dwell behavior and charging congestion into an integer linear programming 

framework to inform charger siting and sizing decisions under realistic urban mobility patterns. 

Together, these studies demonstrate how mathematical programming can serve as a policy-aligned 

decision-support tool for EV infrastructure planning. 
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Equity has also emerged as a growing priority, particularly under federal initiatives, such as 

Justice40, which directs that at least 40% of clean energy investment benefits go toward disadvantaged 

communities [27]. While few models treat equity as a strict constraint, many adopt flexible strategies 

such as population weighting or prioritization of underserved zones to reflect Justice40 priorities. 

Building on these precedents, we incorporate equity considerations and policy-aligned planning 

criteria directly into our optimization framework. The implementation of these constraints is described 

in Section 4. 

2.3. Research gap and contribution 

Building on the methodological and policy-focused studies reviewed above, several gaps remain 

that are particularly relevant to rural and underrepresented regions such as New Hampshire. Reports 

indicate that New Hampshire lacks sufficient charging infrastructure, particularly in northern regions, 

yet relatively few optimization models have been tailored to this context. Most models focus on urban 

areas or national-scale strategies, often overlooking the distinct challenges of small-population states 

with uneven demand, tourism-related traffic, and extensive rural coverage areas.  

In terms of methodology, many prior models either assume full coverage or seek to maximize 

total reach without accounting for the disproportionate cost of serving remote locations. We address 

this limitation by introducing slack variables into an MILP framework, enabling the model to accept 

limited unmet demand at a quantifiable penalty. By doing so, the approach provides a cost-conscious 

way to reflect real-world planning trade-offs between ideal coverage and budget constraints. 

Additionally, while some researchers explore charger-type differentiation, most treat charger 

selection separately from site selection or focus on scenario comparisons. In contrast, this model 

integrates L2 and DCFC siting decisions within the optimization, enabling location-specific choices 

based on cost, demand density, and use-case suitability. 

Equity is another area where this study builds upon previous work. Rather than treating equity as 

a post hoc assessment or using coarse-grained geographic categories, the model includes ZIP Code-

level constraints that allocate chargers proportionally based on population. Rural-urban classification 

codes further support prioritization of underserved communities, and a weighted objective term 

enables additional emphasis on rural ZIP Codes without imposing hard mandates. 

Overall, the model’s contribution lies in adapting EV infrastructure optimization to the specific 

challenges of rural coverage, budget-limited deployment, and localized equity targeting. It 

demonstrates how planners can balance cost-efficiency with broader policy goals through the use of 

flexible and transparent modeling tools. 

3.  Dataset construction and sources 

To support the optimization model, we compile a spatially and demographically enriched dataset 

by integrating multiple authoritative sources. Each New Hampshire ZIP Code serves as the basic unit 

of analysis. The key data components collected and processed include:  

Geographic Classification. We use the 2010 ZIP Code-based Rural-Urban Commuting Area 

(RUCA) codes from the U.S. Department of Agriculture’s Economic Research Service. These codes 
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classify areas based on commuting patterns and levels of urbanization [28]. 

Population and Density. Population counts and density measures are obtained from the U.S. 

Census Bureau’s American Community Survey (ACS) 5-Year Estimates (2017–2021) at the ZIP Code-

level [29] and serve as the primary demographic source. To enhance completeness, supplemental 

demographic attributes (e.g., 2020 population estimates, land area) are retrieved from the SimpleMaps 

U.S. ZIP Code Database [30]. This integration ensured both consistency and coverage in the 

demographic dataset. 

Existing EV Infrastructure. Data on EV charging stations are retrieved from the U.S. Department 

of Energy’s Alternative Fuels Data Center. The dataset includes publicly accessible charging stations 

in New Hampshire, with details on charger level (L2 or DCFC), station type, access type, and 

location [6]. This dataset is filtered to include only public L2 and DCFC chargers within New 

Hampshire’s borders. The resulting records are geospatially joined with the ZIP Code areas, yielding 

an initial count of chargers per ZIP Code to serve as a baseline for the optimization model. 

Distance Matrix. A ZIP-to-ZIP distance matrix is generated using latitude-longitude coordinates 

for each ZIP Code centroid. This matrix provides pairwise distances between ZIP Codes, enabling the 

model to determine which areas fall within a given service radius of each other. These calculated 

distances are subsequently applied to enforce coverage constraints (e.g., whether a ZIP Code has a 

charger within X miles [X kilometers]). 

Together, these components provide a robust empirical foundation for the optimization model 

described in Section 5. 

4.  Model inputs and assumptions 

In this section, we outline the key assumptions and parameter values used in the charger 

deployment optimization model. These inputs are calibrated to reflect prevailing federal and state 

policy requirements, typical industry costs, and infrastructure planning constraints, so that the model 

outputs are practically feasible and policy compliant. 

4.1 Cost assumptions for EV charger deployment 

To ensure cost-sensitive optimization, the model uses fixed installation-cost assumptions of 

$14,000 per L2 charger and $100,000 per DCFC, reflecting realistic expectations for New Hampshire’s 

deployment context. This assumption is supported by several key sources. Borlaug et al. [31] reported 

a median cost of approximately $6,000 for public L2 equipment and installation, based on billing data 

from 119 commercial projects. The Alternative Fuels Data Center reports typical installation costs of 

about $2,500 per L2 connector, excluding hardware [31]. Moreover, the New York State Energy 

Research and Development Authority Charge Ready NY program identified hardware costs ranging 

from $1,000 to $4,000 per port and installation costs from $2,000 to $10,000, with complex 

installations occasionally exceeding $20,000 per port [32]. 

Given the rural characteristics and limited infrastructure in many parts of New Hampshire, a 

conservative estimate of $14,000 per L2 charger is adopted to ensure coverage of higher-cost scenarios. 

Thus, while average installation costs are lower in many urban contexts, the $14,000 assumption 
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reflects rural-specific challenges in New Hampshire, including higher electrical upgrade costs and site 

preparation complexity. For DCFCs, the assumed cost of $100,000 aligns with typical industry 

benchmarks for 150 kW stations, which range from $85,000 to over $150,000, depending on electrical 

upgrades, site preparation, and capacity constraints [33]. This mid-range assumption reflects the higher 

costs expected in rural deployments and the need for a simplified yet realistic input for statewide 

modeling. 

4.2. Distance-based siting constraints for urban and rural areas 

To align with regulatory frameworks and planning practices, this model adopts differentiated 

siting thresholds for charger placement in urban and rural areas. In urban areas, a 1-mile 

(approximately 1.6 kilometers) coverage radius is applied, consistent with the Federal Highway 

Administration’s NEVI guidance, which requires DCFCs within 1 mile (approximately 1.6 kilometers) 

of highway exits on Alternative Fuel Corridors [34]. While this requirement is specific to corridor 

planning, it provides a practical precedent for close-range charger accessibility in densely populated 

zones. 

In rural contexts, the model applies a more flexible 10-mile (approximately 16 kilometers) 

coverage radius. Although this specific distance is not mandated by federal or state regulations, it 

reflects a planning judgment that accounts for New Hampshire’s geographic and land use challenges 

associated with rural deployment. The New Hampshire NEVI Deployment Plan emphasizes the need 

for adaptable planning approaches in low-density areas, though it does not define any fixed siting 

distance for rural regions [35]. Similarly, federal guidance encourages rural infrastructure to be 

responsive to local conditions, mobility patterns, and community needs [36]. The 10-mile 

(approximately 16 kilometers) threshold represents a middle ground: Short enough to mitigate range 

anxiety and ensure service continuity, yet long enough to remain feasible in sparsely populated areas. 

Accordingly, this conservative and practical approximation provides a balanced approach to rural 

deployment without imposing infeasible density requirements. 

4.3. NEVI compliance considerations and rural deployment strategy 

The NEVI program sets federal standards for charger placement along Alternative Fuel Corridors 

(AFCs), including Interstates 93, 89, and Route 101 in New Hampshire. These standards specify a 

maximum spacing of 50 miles (approximately 80 kilometers) between DCFC stations, installation 

within 1 mile (approximately 1.6 kilometers) of highway exits, and the provision of at least four 150 

kW connectors per site [8]. While these requirements are essential for national planning, we adopt a 

more flexible ZIP Code-based siting framework to better reflect New Hampshire’s geographic and 

settlement diversity. 

Instead of enforcing strict corridor-based deployment, the model introduces a soft constraint requiring 

that at least 15% of new chargers be DCFC. This adjustment is motivated by three key considerations: 

• Geographic overlap: Many rural ZIP Codes in New Hampshire are near highway corridors. 

Using ZIP Code-level siting can therefore maintain general corridor accessibility without 

explicitly mapping every charger to the AFC requirements. 
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• Practical feasibility: Strict NEVI compliance may be unrealistic in low-density rural areas due to 

limited electrical infrastructure, long distances between exits, or constraints related to site availability. 

• Policy alignment: Federal planning documents emphasize adaptive strategies that account for local 

transportation patterns and community needs [36], supporting flexibility in rural deployment. 

By combining rural-weighted population coverage with an emphasis on equitable access, the 

model enables scalable deployment strategies that remain consistent with NEVI’s broader policy 

objectives while adapting to New Hampshire’s unique geographic and demographic conditions. 

4.4. Charging station utility weights and scoring 

This model applies a dual-weighting approach: DCFC chargers are assigned a utility weight of 

seven relative to L2 chargers in the optimization objective, while in the coverage and equity constraints 

each DCFC is treated as functionally equivalent to three L2 chargers. This design captures their 

superior charging performance in the objective function while ensuring that coverage assumptions 

remain realistic in both urban and rural contexts. 

The 7:1 weighting in the objective reflects the substantial difference in charging throughput and 

time efficiency between the two charger types. According to the U.S. Department of Transportation, 

L2 chargers typically deliver between 10-20 miles (approximately 16-32 kilometers) of electric range 

per hour, whereas DCFCs can supply approximately 180-240 miles (approximately 290-386 

kilometers) in the same time frame [37]. Similarly, Plug In America reports that while L2 chargers take 

approximately 4-10 hours to charge a BEV to 80%, a DCFC can achieve the same charge level within 

20-30 minutes [38]. Taken together, these observations suggest a throughput advantage of 

approximately 7:1 to 12:1 in favor of DCFCs. To maintain conservative yet realistic assumptions, this 

study adopts the lower bound of 7:1 to account for variability in site conditions, battery-tapering effects, 

and user behavior. 

On the other hand, the 3:1 ratio applied in equity and coverage constraints reflects practical 

deployment realities. While DCFCs deliver substantially faster charging, they are typically installed 

along highway corridors and other high-traffic public locations, where their utility is maximized. In 

contrast, L2 chargers are more commonly deployed in residential, workplace, and mixed-use settings, 

where vehicles remain parked for longer periods and slower charging is sufficient and cost-effective 

[39]. Treating each DCFC as equivalent to three L2 chargers ensures that these high-capacity stations 

meaningfully contribute to coverage calculations without overstating their role in settings where L2 

chargers remain more practical. 

Together, this dual-weighting structure (7:1 in the objective function and 3:1 in the constraints) 

creates a balanced deployment framework. It supports targeted investment in fast-charging 

infrastructure where justified by demand and travel patterns, while preserving equitable geographic 

access across ZIP Codes of varying density. In doing so, the model aligns with federal guidance 

encouraging flexibility in EV infrastructure planning across both rural and urban contexts [36]. 

4.5. Land-use and density constraints 

We incorporate practical land-use constraints using population density as a proxy for site 
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feasibility rather than modeling full zoning or grid-capacity limitations. ZIP Codes with a population 

density exceeding 1,000 people per square mile (approximately 386 people per square kilometer) are 

assumed to face greater spatial and permitting challenges, consistent with the U.S. Census Bureau’s 

classification of urban areas [40]. To operationalize this assumption, the model caps the total number 

of new chargers (L2 and DCFC combined) at a maximum of four per high-density ZIP Code. The 

1,000-person benchmark aligns with federal definitions used in the delineation of urban cores, where 

similar thresholds have historically guided classifications based on housing density and population per 

unit area. 

Conversely, for ZIP Codes with population densities below this threshold, no artificial upper 

bound is imposed, enabling more flexible allocation of charging infrastructure in rural and semi-rural 

regions. Although simplified, this density-based constraint serves as a scalable and policy-relevant 

proxy for urban development pressures, enabling the model to incorporate land-use considerations into 

charger deployment strategies in a consistent manner. 

4.6. Rural–urban classification using RUCA codes 

To more accurately distinguish urban and rural contexts, we employ the Rural-Urban Commuting 

Area (RUCA) classification system, developed by the U.S. Department of Agriculture. RUCA codes 

offer a nuanced approach that incorporates not only population density and urbanization but also 

commuting patterns, thereby enabling a more functionally grounded classification than population 

thresholds alone [28]. 

In the present model, ZIP Codes with RUCA primary codes ranging from 1.0 to 3.0 are classified 

as urban. These RUCA values correspond to metropolitan cores, micropolitan areas, and their 

associated high-commuting zones. ZIP Codes with RUCA values of 4.0 or higher are categorized as 

rural, encompassing smaller towns, low-commuting regions, and isolated areas. This binary 

classification enables the application of distinct planning parameters, such as charger spacing 

thresholds or deployment priorities, that reflect the differing mobility patterns and infrastructure needs 

of both rural and urban communities. 

Integrating RUCA codes ensures that the model captures not only demographic and geographic 

characteristics but also regional economic integration. For instance, a small town where many residents 

commute to a nearby city may be classified as urban under this framework, reflecting its functional 

connection to the larger metropolitan area rather than its population size alone. 

4.7. Funding context for EV charger deployment in New Hampshire 

The model adopts a consolidated public funding budget of $28 million for EV charger deployment 

in New Hampshire, combining the most reliable federal resources available as of mid-2025. This 

includes a $15 million grant awarded under the CFI program by the U.S. Department of Transportation 

and the obligated portion of the state’s $17.27 million allocation from the NEVI formula program that 

was approved before its suspension [36,9]. 

The model incorporates only the obligated NEVI funding that is officially approved and available 

prior to the suspension, excluding any future allocations that were planned but not confirmed. New 
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Hampshire was initially slated to receive NEVI funds from 2022 to 2026, but only the first round 

(Phase 1) was approved before the program was paused in early 2025 due to federal review [9]. This 

conservative approach avoids modeling uncertainty associated with unconfirmed funding streams. 

Other potential funding sources were excluded. For example, New Hampshire received 

approximately $30.9 million from the Volkswagen (VW) Environmental Mitigation Trust, with up to 

15% (around $4.6 million) allocated for light-duty EV charging infrastructure. However, these funds 

were fully awarded by 2022 through a competitive fast-charging request-for-proposals (RFP) process 

[41,42]. Although newer RFPs have been issued for other types of mitigation projects, none have been 

dedicated to EV charger deployment. Likewise, utility-sponsored rebates (typically capped at $5,000 

per site) were considered too limited in scale to meaningfully affect statewide siting plans [41]. 

By anchoring the model to a conservative $28 million funding envelope, this study ensures that 

deployment recommendations are not only technically sound but also consistent with current fiscal and 

policy conditions. This approach enables actionable and context-appropriate planning for EV 

infrastructure development in New Hampshire. 

4.8. Equity-based coverage constraint justification 

Various countries and organizations have adopted ratio-based targets or equity-focused policies 

to ensure the fair deployment of EV chargers. Such strategies provide statistical and regulatory support 

for setting a population-based benchmark for charger deployment in New Hampshire. 

In the European Union, the 2023 Alternative Fuels Infrastructure Regulation (AFIR) mandates 

that each Member State must provide a minimum of 1 kW of publicly accessible charging power per 

BEV, increasing to 3 kW by 2030 [43]. In parallel, and prior to AFIR, the Alternative Fuels 

Infrastructure Directive (AFID) set a recommended benchmark of roughly one public charging point 

per ten EVs; AFIR has since shifted emphasis from “points” to installed power capacity, linking targets 

to fleet composition (e.g., 1.3 kW per BEV and 0.8 kW per PHEV), as documented by the European 

Environment Agency (EEA) [44]. These targets are fleet-based and scale proportionally with EV 

adoption, encouraging decentralized deployment across regions to ensure geographic equity [45]. 

Member States are also encouraged to create national policy frameworks with financial mechanisms 

to support deployment in rural and underserved areas, thereby promoting a more balanced rollout of 

public infrastructure [46,47]. 

In the United States, while there is no formal federal population-based ratio, equity is promoted 

through the Justice40 initiative, which requires that at least 40% of the benefits of certain federal 

programs flow to disadvantaged communities (DACs) [48,49]. Some state-level plans, such as 

Arkansas's NEVI Plan, have implemented scoring systems that prioritize charger proximity to DACs 

and emphasize reduced travel time, accessibility, and job creation [50]. 

According to comparative studies, Vermont leads in EV charger availability with 156 chargers 

per 100,000 people, followed by California (130) and Massachusetts (105) [51,43]. These levels 

correspond to approximately a 1:640–1:950 charger-to-population ratio, providing realistic and high-

performing domestic benchmarks. Vermont and Massachusetts thus serve as instructive examples of 

effective deployment practices. 

Building on these global and national precedents, this study establishes a 1-charger-per-500-
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residents ratio in New Hampshire as an ambitious yet evidence-based equity constraint. This 

benchmark ensures basic coverage even in low-demand or rural ZIP Codes, aligning with best practices 

from Europe and leading U.S. states, while upholding principles of energy justice and accessibility. 

4.9. Adoption heterogeneity across geographic areas 

Future electric vehicle adoption is expected to vary substantially across communities due to 

differences in demographic composition, economic conditions, and spatial development patterns. 

National assessments by NREL [52] indicate large variability not only in total fleet growth but also in 

its regional distribution. Mid-range projections for 2030 estimate approximately 33 million plug-in 

electric vehicles (PEVs) on U.S. roads, with low and high scenarios spanning 30–42 million. Beyond 

total fleet size, NREL projects pronounced regional differences in adoption, with electric vehicles 

potentially comprising as much as 35% of light-duty vehicles in some urban areas but only about 3% 

in rural regions. Such disparities imply that if adoption accelerates in urban ZIP Codes but lags in rural 

areas, a deployment optimized under uniform adoption assumptions may overbuild in rural regions or 

underinvest in cities. Introducing a scenario-weighted parameter (𝑚𝑖), therefore, enables the model to 

test the robustness of siting recommendations under divergent adoption trajectories. 

To represent this heterogeneity in a tractable manner, the optimization introduces a scenario-

weighted parameter (𝑚𝑖), applied to population-linked terms for each ZIP Code i. In the baseline 

specification, 𝑚𝑖 = 1.0 statewide, corresponding to a uniform adoption trajectory analogous to 

NREL’s “Alternate PEV Adoption” case used for sensitivity analysis. Alternative pathways are 

represented by assigning differentiated values of 𝑚𝑖 according to contextual factors. For example, the 

model can simulate a rural-growth scenario (higher weights for ZIP Codes with RUCA ≥ 4), an urban-

acceleration scenario (higher weights for ZIP Codes with RUCA < 4), or a density-tiered scenario 

(higher weights for ZIP Codes with population density ≥ 1,000 persons/𝑚𝑖
2). This scenario-weighted 

specification enables structured robustness checks of deployment outcomes under plausible 

community-specific adoption trajectories, aligning with the scenario and sensitivity framework 

emphasized in NREL [52]. 

5.  Optimization model formulation 

In this study, we employ an MILP model to determine the optimal siting and sizing of EV chargers 

across ZIP Code-level regions in New Hampshire. The model simultaneously considers five 

complementary objectives: maximizing total population coverage, prioritizing rural equity, maximizing 

charger utility, minimizing unmet demand, and ensuring a minimum required share of DCFCs. 

5.1. Sets and indices 

• I: Set of all ZIP Codes in New Hampshire considered as candidate charger sites (indexed by i 

or j). 

• Nᵢ: Set of ZIP Codes within coverage radius Rᵢ of ZIP Code i (defined as approximately 1.6 

kilometers (1 mile) in urban areas and 16 kilometers (10 miles) in rural areas). 
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5.2. Parameters and constants 

• 𝑝𝑖 : Population of ZIP Code i. 

• 𝑅𝑈𝐶𝐴𝑖 ∈ [0 , 10] : Rural-Urban Commuting Area score for ZIP Code i. 

• 𝑑𝑖 : population density in ZIP Code i. 

• 𝐼𝑖 : Existing charger capacity in ZIP Code i. 

• 𝑚𝑖 : (dimensionless): scenario-weighted adoption factor for ZIP Code i, applied to population-

linked terms to reflect heterogeneous adoption trajectories; baseline 𝑚𝑖 = 1.0 ∀ 𝑖 ∈ 𝐼 domain: 

𝑚𝑖 ∈ ℝ≥0. 

• 𝑅𝑖 : Radius of coverage for ZIP Code i (approximately 1.6 kilometers (1 mile) in urban areas 

and 16 kilometers (10 miles) in rural areas). 

• 𝐵 : Total budget available for new charger installations. 

• 𝑐𝐿2 : Cost to install one L2 charger. 

• 𝑐𝐷𝐶 : Cost to install one DCFC. 

• 𝐷𝑖 : {
1,    𝑖𝑓   𝑑𝑖   ≥ 1000 (ℎ𝑖𝑔ℎ − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑍𝐼𝑃)
0,    𝑖𝑓    𝑑𝑖  < 1000 (𝐿𝑜𝑤 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑍𝐼𝑃)

 

• M: A large constant, representing an effectively unconstrained upper bound for low-density 

ZIP Codes. 

5.3. Decision variables 

• 𝑥𝑖
𝐿2 ∈  ℤ>0 : Number of new L2 chargers in ZIP Code i. 

• 𝑥𝑖
𝐷𝐶 ∈  ℤ>0 : Number of new DCFC in ZIP Code i. 

• 𝐶𝑜𝑣𝑖: {
1,    𝑖𝑓 𝑍𝐼𝑃 𝐶𝑜𝑑𝑒 𝑖 𝑖𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐ℎ𝑎𝑟𝑔𝑒𝑟 𝑤𝑖𝑡ℎ𝑖𝑛 𝑖𝑡𝑠 𝑟𝑎𝑑𝑖𝑢𝑠
0,                                                                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• 𝛿𝑖  ≥ 0 ∶  Slack variable for unmet charger demand in ZIP Code i.  

5.4. Objective function 

max (𝛽1 ∑ 𝑚𝑖 . 𝑝𝑖

𝑖

. 𝐶𝑜𝑣𝑖 + 𝛽2 ∑ 𝑚𝑖. (
𝑅𝑈𝐶𝐴𝑖

10
)

𝑖

. 𝑝𝑖. 𝐶𝑜𝑣𝑖 +  𝛽3  ∑(1. 𝑥𝑖
𝐿2 +  7. 𝑥𝑖

𝐷𝐶)

𝑖

−  𝛽4 ∑ 𝛿𝑖

𝑖

−  𝛽5 . max (0, 0.15 . ∑(𝑥𝑖
𝐿2

𝑖

+  𝑥𝑖
𝐷𝐶) − ∑ 𝑥𝑖

𝐷𝐶

𝑖

), 

Component Explanation: 

• Population Coverage Reward (𝛽1 = 1.0): Rewards coverage of residents across ZIP Codes, 

addressing the widespread lack of charging access.  

• Rural Equity Reward (𝛽2 = 1.5):  Prioritizes rural areas by scaling coverage with RUCA 

weights, thereby strengthening equitable deployment.  

• Charger Utility Reward (𝛽3 = 2.0): Rewards installation of chargers, with DCFCs weighted 

seven times (7×) more than L2 chargers to reflect higher throughput. 
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• Unmet Demand Penalty (𝛽4 = 1.0): Penalizes shortfalls relative to the equity threshold of one 

charger per 500 residents. 

• DCFC Share Penalty (𝛽5 = 4.0): Penalizes deviations from the 15% minimum DCFC share, 

supporting corridor coverage without imposing hard constraints. 

The selected β-values reflect practical priorities and observed conditions in New Hampshire. β1 

addresses general statewide access, β2 emphasizes rural equity, β3 captures the higher performance of 

DCFCs, β4 discourages unmet demand unless justified by cost, and β5 encourages corridor alignment. 

These values are calibrated through iterative sensitivity analysis to balance performance, equity, and 

budget efficiency. 

Importantly, the five objectives are integrated into a single weighted-sum formulation, where each 

component is multiplied by its respective weight (𝛽1 − 𝛽5)  and combined into one maximization 

objective. This design ensures that trade-offs among coverage, equity, utility, unmet demand, and 

DCFC share are evaluated simultaneously.  

Accordingly, the weighted-sum approach is selected because it is computationally efficient, well-

suited to linear formulations, and capable of producing an optimal solution to the combined MILP 

problem under the specified weights. It also provides a transparent mechanism for communicating 

trade-offs to policymakers. Furthermore, compared with lexicographic or ε-constraint methods, the 

weighted-sum formulation offers greater flexibility and clarity, while the calibrated β-values ensure 

alignment with real-world policy and planning priorities. 

5.5 Constraints 

Consistent with the assumptions outlined in Section 4, the following constraints formalize how 

the model integrates equity, geographic accessibility, financial feasibility, and land-use 

considerations, thereby ensuring that the optimization results remain technically sound and 

operationally implementable. 

5.5.1. Population-based minimum infrastructure constraint 

To ensure equitable access to charging infrastructure, the model imposes a population-based 

minimum requirement across ZIP Codes. Specifically, each ZIP Code i must maintain at least one 

charger (existing or planned) per 500 residents, aggregated over its neighborhood 𝑁𝑖. This includes 

new L2 and DCFC installations, as well as existing charger capacity 𝐼𝑗 , with DCFCs assigned a weight 

factor of 3 to reflect higher throughput. Formally, for each ZIP i: 

 

∑ (𝑥𝑗
𝐿2 + 3 𝑥𝑗

𝐷𝐶 + 𝐼𝑗) + 𝛿𝑖

𝑗∈𝑁𝑖

≥ ⌈
𝑚𝑖. 𝑝𝑖

500
⌉ ∀ 𝑖, 

Here, 𝛿𝑖  ≥ 0 represents a non-negative slack variable that enables limited violation of the equity 

threshold, which is penalized in the objective function. This relaxed constraint ensures that all 

communities meet a baseline service level while maintaining model feasibility in low-density or high-

cost areas. 
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5.5.2. Coverage definition 

To operationalize geographic accessibility, the model defines a ZIP Code i as “covered” when the 

total effective charger capacity (accounting for existing and new infrastructure) in any neighboring ZIP 

Codes 𝑗 ∈  𝑁𝑖 meets or exceeds at least one full unit. Coverage is determined by the following constraint: 

𝐶𝑜𝑣𝑖 ≤  ∑ min (1, 𝐼𝑗

𝑗 ∈𝑁𝑖

+  𝑥𝑗
𝐿2 +  3𝑥𝑗

𝐷𝐶) ∀ 𝑖, 

The coverage neighborhood 𝑁𝑖 is defined based on RUCA classification: 

𝑅𝑖 =  {
10  𝑖𝑓 𝑅𝑈𝐶𝐴𝑖  ≥ 4 (𝑟𝑢𝑟𝑎𝑙)

1    𝑖𝑓 𝑅𝑈𝐶𝐴𝑖 < 4 (𝑢𝑟𝑏𝑎𝑛)
, 

This structure ensures spatial equity by requiring that at least one unit of charger capacity is 

accessible within 𝑅𝑖. Although coverage is implemented via this formula and incorporated into the 

objective function, it is conceptually aligned with a binary interpretation: A ZIP Code is considered 

“covered” when sufficient charger capacity exists within its defined neighborhood. This framework 

encourages balanced infrastructure deployment across both urban and rural areas. 

Coverage is evaluated strictly on a per–ZIP Code basis. Once a ZIP Code i is deemed covered by 

any charger within its neighborhood set 𝑁𝑖, its contribution to the objective is fixed at one (𝐶𝑜𝑣𝑖 = 1). 

Even if multiple neighboring ZIP Codes provide overlapping coverage, the population of ZIP Code i 

is counted only once in the objective function. This approach ensures that overlapping service areas 

enhance redundancy and reliability without inflating measured coverage benefits. Additional chargers 

in nearby ZIP Codes contribute utility through the charger-count term of the objective function but not 

through repeated population counts. Together, these provisions prevent double-counting and maintain 

consistency between geographic accessibility and utility assessment. 

5.5.3. Budget constraint 

To ensure financial feasibility, the model imposes a budget constraint that limits total installation costs: 

∑(𝑐𝐿2𝑥𝑖
𝐿2 + 𝑐𝐷𝐶𝑥𝑖

𝐷𝐶) ≤ 𝐵

𝑖

, 

𝑐𝐿2 =$14,000: Cost of installing one L2 charger 

𝑐𝐷𝐶 =$100,000: Cost of installing one DCFC 

B=$28,000,000: The total available budget based on confirmed and active public funding 

5.5.4. Density constraints 

To reflect physical and regulatory limitations in high-density areas, the model applies the 

following condition: 
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𝑥𝑖
𝐿2 +  𝑥𝑖

𝐷𝐶  ≤ 𝑀 (1 − 𝐷𝑖) + 4𝐷𝑖  ∀𝑖 

This formulation limits the total number of chargers to a maximum of four in dense urban ZIP 

Codes, where land availability and permitting are constrained, while enabling more flexible 

deployment in rural or low-density areas. Accordingly, this constraint aligns infrastructure planning 

with local feasibility and actual siting conditions. 

5.5.5. Domain constraints 

𝑥𝑖
𝐿2 , 𝑥𝑖

𝐷𝐶  ∈ ℤ≥0 , 𝐶𝑜𝑣𝑖  ∈ {0 , 1}, 𝛿𝑖 > 0, 

All decision variables are subject to appropriate domain restrictions: Charger counts must be non-

negative integers, coverage indicators must be binary, and slack variables must be constrained to be 

non-negative. These constraints maintain mathematical consistency and ensure that all model outputs 

are interpretable and implementable. 

6.  Methodology and model implementation 

The methodological workflow applied in this study is summarized in Figure 6 and integrates 

data preparation, scenario design, model formulation, and computational execution into a coherent 

pipeline for optimizing EV charger deployment in New Hampshire. 

Data from demographic, infrastructure, and spatial sources are standardized at the ZIP Code-level 

and merged into a single analytical dataset. Neighborhood sets are constructed from the centroid-to-

centroid distance matrix (Section 3) and use different coverage radii based on RUCA classification 

(Sections 4.2 and 4.6) to distinguish urban and rural coverage. Scenario variation enters via the 

adoption weights 𝑚𝑖 (Section 4.9), which rescale population-linked terms under alternative trajectories. 

The optimization is formulated as a mixed-integer linear program, using the decision variables 

defined in Section 5.3 (𝑥𝑖
𝐿2, 𝑥𝑖

𝐷𝐶 , 𝐶𝑜𝑣𝑖,𝛿𝑖). The objective function (Section 5.4) balances population 

coverage, rural equity, charger utility, unmet-demand penalties, and a minimum DCFC share, while 

feasibility is enforced by the constraints in Section 5.5, which capture population-based requirements, 

coverage definition, budget and density limits, and variable domains. 
Implementation is carried out in Python 3.10 using the CVXPY optimization library [53], with 

ECOS_BB employed to handle the integer structure of the model. The optimization code written in 

Python iterates over all ZIP Codes, dynamically constructing neighborhood-level constraints. Data 

preprocessing and aggregation are conducted in Microsoft Excel and Power BI to standardize inputs 

prior to model development. Outputs, including charger allocations, coverage indicators, budget 

utilization, and slack measures, are exported to structured CSV files for analysis. When infeasibility 

occurs, key assumptions are adjusted and the model re-run to restore feasibility. 

To ensure transparency and reproducibility, the complete implementation (including 

preprocessing, model formulation, and output generation) is publicly available via GitHub [54]. 
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Figure 6. Methodological Workflow for the EV Charger Optimization Model. 

7.  Deployment results and model performance 

The proposed MILP model yields the installation of 855 new Level 2 (L2) chargers and 149 direct 

current fast chargers (DCFCs), bringing New Hampshire’s total public charging infrastructure to 1,767 

chargers, based on existing public charging ports as of early 2024. The solution achieves coverage in 

244 out of 247 ZIP Codes (98.8%), consistent with coverage definition in Section 5.5.2 and the urban–

rural radii in Sections 4.2 and 4.6. Importantly, the model operates within the fiscal envelope set in 

Section 4.7, utilizing approximately $26.87 million of the available $28 million, indicating a cost-
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effective and resource-conscious deployment. The resulting DCFC share of new installations is 

approximately 15%, aligning with the soft share target embedded in the objective (Section 5.4). 

 

 

Figure 7. Total Public EV Chargers in New Hampshire Before and After Optimization. 

Note: Bubble position represents ZIP Code location, while bubble size represents 

charger quantity. 

In the above figure, the bubble size represents the total number of public chargers associated with 

each ZIP Code. In the “Before Optimization” map (left, blue), bubble size corresponds to the number 

of chargers. In the “After Optimization” map (right, red), bubble size corresponds to the total chargers 

following optimization, which includes existing and newly allocated chargers. 

Following optimization, the charger network becomes more geographically balanced, extending 

into central and northern regions while reinforcing dense southern clusters where utilization potential 

is highest. This reflects the model’s integrated priorities: Maximizing population-linked coverage and 

charger utility in higher-demand areas (Sections 5.4 and 4.4), while ensuring minimum statewide 

access through the equity-based population requirement (Section 5.5.1) and RUCA-informed coverage 

radii (Sections 4.2 and 4.6). 

At a broader geographic scale, Figure 8 reports the net increase in public EV chargers by county 

(L2 + DCFC) after optimization. The largest gains occur in Rockingham (386 units), Hillsborough 

(372), and Strafford (147), consistent with higher population levels, more urban RUCA classifications, 

and siting opportunities under the density cap (Section 5.5.4). By contrast, rural counties such as 

Cheshire (31), Merrimack (27), Carroll (13), Coös (13), Sullivan (10), Grafton (3), Belknap (1), and 

Oxford (1) record modest additions that nonetheless improve baseline accessibility within the 10-miles 

(approximately16 kilometers) rural radius (Sections 4.2 and 4.6). In aggregate, these adjustments 

reconcile equity and feasibility: Rural ZIP Codes meet population-based minimums without 

overbuilding, while urban ZIP Codes receive capacity where demand density and dwell-time patterns 
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support efficient utilization (Sections 4.4–4.6). 

 

Figure 8. Net Growth in Public EV Chargers (L2+DCFC) by County. 

Overall, the optimized deployment demonstrates that a policy-aligned, budget-constrained MILP 

can expand coverage statewide, rebalance spatial access, and respect practical siting limits. The results 

are consistent with the model’s weighted objective (Section 5.4), which trades off population coverage, 

rural emphasis, charger utility, unmet-demand penalties, and an approximate DCFC share target, 

producing a deployment plan that remains both implementable and equitable under current funding 

conditions. The subsequent analyses (Figures 9–13 and Table 1) examine corridor alignment, city-level 

growth, cost distribution, and potential grid impacts. 

Building on the statewide and county‑level results in Figures 7 and 8, we examine corridor 

alignment and ZIP Code-level spatial patterns. 

In contrast to Figure 7, where bubble size reflects total chargers, Figure 9 uses bubble size to 

represent charger growth, defined as the number of newly added chargers in each ZIP Code after 

optimization. 

Although the model does not impose an explicit corridor-siting constraint, the results nevertheless 

align with major transportation routes. As defined earlier (Sections 4.2 and 4.6), urban and rural ZIP 

Codes use distinct coverage radii, and the objective incorporates a soft DCFC‑share term (Section 5.4). 

Together, these elements produce deployment patterns that cluster along the state’s highways (depicted 

in orange on the map), as illustrated in Figure 9. 

Geographically, charger growth concentrates along Interstate 93 (particularly its southern segment 

between Concord and the Massachusetts border) and along Interstate 95 in the Seacoast region. 

Interstate 89 exhibits moderate expansion extending north from Concord toward Lebanon, while 

Interstate 91 shows only partial coverage, especially in the southern and central portions near Keene 

and Claremont. Additional routes, such as U.S. Route 3 in Hillsborough County and segments of NH 



22 

 

Clean Technologies and Recycling                                                                                                  Volume 6, Issue 1, 1–32. 

Route 16 (the Spaulding Turnpike from Portsmouth through Dover and Rochester), also display 

noticeable growth. In Figure 9, these alignments appear as clusters of bubbles tracing the state’s 

principal road network. 

 

Figure 9. Geographic Distribution of EV Charger Growth by ZIP Code. 

Additionally, Figure 9 highlights ZIP Code-level variation in deployment growth. Bubble area is 

proportional to the number of added chargers (L2 + DCFC combined), and bubble color denotes the 

county (categorical). Growth is concentrated in the southern urban corridor, with Nashua (67), Derry 

(62), and Hudson (45) showing the largest increases (see Figure 10), while many rural ZIP Codes 

record only single-digit additions (e.g., Coös 03592: 1; Rockingham 03854: 1; Grafton 03780: 1; for 

more details, see Table 1). Locations with zero growth are not displayed because bubble size is 

proportional to the number of added chargers. 

This ZIP Code-level distribution is consistent with the county totals presented in Figure 8 while 

also revealing localized disparities. The observed spatial pattern reflects the model’s design features, 

including caps on chargers in high-density ZIP Codes (>1,000 persons/mi2, Section 4.5), distance-

based service constraints that differentiate urban and rural radii (Sections 4.2 and 4.6), and the 

population-based minimum requirement (Section 5.5.1). Together, these provisions ensure statewide 
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coverage while concentrating larger deployments in the high-demand southern ZIP Codes. 

Consistent with the southern-corridor clusters observed in Figure 9, Figure 10 ranks the top 15 

municipalities by newly installed chargers. Nashua (67), Derry (62), and Hudson (45) lead the list, 

reflecting their status as high-demand, high-density urban centers. These cities are in the southern part 

of the state (Nashua and Hudson in Hillsborough County, and Derry in Rockingham County), aligning 

with the model’s emphasis on prioritizing areas with higher population concentration and greater siting 

feasibility. 

 

Figure 10. Top 15 Cities by New Charger Installations. 

In summary, the model effectively balances efficiency and equity. While dense and urbanized 

areas receive the highest number of chargers, consistent with the population-based minimum 

requirement (Section 5.5.1), the density cap (Section 5.5.4), and the budget constraint (Section 5.5.3), 

nearly all ZIP Codes attain at least a basic service. These deployment outcomes reflect a deliberate, 

data-driven strategy that aligns with infrastructure readiness and regional mobility needs, avoiding 

over-concentration of investment and the exclusion of rural communities.  

Figure 11 illustrates the distribution of Level 2 and DCFC installation costs by county across New 

Hampshire. Most infrastructure spending is concentrated in Hillsborough and Rockingham counties, 

which together account for nearly $20 million of total investment. These high-density counties 

prioritize both charger types (especially DCFCs) reflecting stronger demand and greater siting 

feasibility. 

By contrast, rural counties such as Grafton, Belknap, and Coös primarily receive L2 chargers, 

directing limited funds toward meeting minimum accessibility thresholds. This pattern is consistent 

with the model’s design: High-cost DCFCs are deployed strategically in high-demand corridors (where 

throughput and reduced travel time benefits justify the investment), while cost-effective L2 units 

provide broad geographic access. 
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Figure 11. Distribution of Level 2 and DCFC Installation Costs by County. 

Statewide, approximately 55% of the budget is allocated to L2 chargers and 45% to DCFCs, 

consistent with the budget constraint (Section 5.5.3) and the assumed cost structure (Section 4.1). 

Although DCFCs represent about 15% of newly installed units, their higher per-unit cost warrants a 

significant share of spending, supporting regional mobility and reliability goals. 

Figure 12 examines how the deployment results translate into spatial outcomes by illustrating the 

relationship between ZIP Code population and the total number of public EV chargers after 

optimization. Although the relationship is not perfectly proportional, the figure indicates a clear 

positive association: ZIP Codes with larger populations generally host more chargers. Urban ZIP Codes 

(blue diamonds with a blue dashed trend line) align more closely with this population-based pattern, 

especially at higher population levels, consistent with the minimum-population requirement (Section 

5.5.1) and the 1-mile urban service radius (Sections 4.2 and 4.6). In contrast, rural ZIP Codes (orange 

open circles with an orange dotted trend line and mostly below 10,000 residents) display greater 

dispersion, reflecting lower population density, the wider 10-mile (approximately 16 kilometers) rural 

coverage radius, and equity-oriented siting rules.  

Because the optimization model incorporates a minimum-accessibility requirement for all ZIP 

Codes, a subset of sparsely populated rural areas receives chargers even when their census-recorded 

populations are very small. This explains the non-zero charger values appearing near the origin of 

Figure 12 and reflects the model’s coverage and equity constraints (Sections 5.5.1 and 5.5.2), rather 

than a data inconsistency. This pattern indicates that the model provides a baseline level of accessibility 

in underserved rural regions, even when population alone would not justify additional installations. 
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Figure 12. Relationship Between Population and Total EV Chargers by Urban–Rural Classification. 

Table 1. Top ZIP Codes by Slack Population and Newly Added Chargers. 

County Name ZIP Code Population Slack Population Total New Charger 

Hillsborough 3104 35274 59 4 

Hillsborough 3102 33755 56 4 

Hillsborough 3060 32223 34 4 

Hillsborough 3064 14565 18 4 

Grafton 3740 1049 2 1 

Grafton 3240 1248 2 0 

Grafton 3777 1289 2 0 

Grafton 3774 1606 2 0 

Grafton 3785 2141 2 0 

Grafton 3574 2545 2 0 

Merrimack 3257 4503 2 0 

Cheshire 3461 6482 2 1 

Hillsborough 3244 8005 2 0 

Grafton 3780 599 1 0 

Grafton 3765 667 1 0 

Grafton 3771 807 1 0 

Rockingham 3854 948 1 1 

Coos 3592 972 1 1 

Grafton 3282 1075 1 1 
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Moreover, Table 1 identifies ZIP Codes with the largest slack populations, that is, residents not 

covered by the 1:500 population minimum formalized in Section 5.5.1 and captured by the slack 

variable 𝛿𝑖. In several dense urban ZIP Codes (e.g., 03104 and 03102 in Manchester), the density-

based cap of four chargers (Section 5.5.4) constrain deployment, leaving these areas slightly 

underserved despite high demand. 

In contrast, most rural ZIP Codes meet their coverage targets with fewer installations, aided by 

lower populations and the larger 10-mile (approximately 16 kilometers) service radius (Sections 4.2 

and 4.6). Although not shown here, the average number of chargers per 1,000 residents is 1.58 in urban 

areas and 1.00 in rural areas, implying a rural-to-urban parity ratio of approximately 0.63. Notably, 

174 of the 218 total slack residents are in Hillsborough County, confirming that residual service gaps 

are concentrated in dense urban zones. These modest shortfalls suggest targeted urban reinvestment or 

policy refinement as pragmatic next steps. 

As a final analysis, we evaluate whether the modeled number of chargers could impose a 

significant burden on New Hampshire’s and New England’s electricity systems. Consistent with the 

modeling conventions used elsewhere in this report, ex-post coincident peak nameplate demand is 

estimated using 7.2 kW per Level 2 (L2) port (240 V, 30 A; SAE J1772; DOE AFDC) and 150 kW per 

DC fast-charging (DCFC) port, aligned with FHWA NEVI standards [39,55]. These values represent 

instantaneous power capacity rather than annual energy use and therefore capture the maximum 

potential grid requirement under a hypothetical simultaneous-operation condition. 

Under these assumptions, the optimized deployment of 855 new L2 ports and 149 new DCFC 

ports corresponds to approximately 28.5 MW of additional statewide load. Of this increment, L2 

contributes about 6.2 MW and DCFC contributes about 22.4 MW, underscoring the greater intensity 

of fast charging. When combined with the approximately 43.0 MW of public electric vehicle supply 

equipment (Section 3; AFDC, early 2024: 297 L2 and 272 DCFC ports), the post-deployment electric 

vehicle supply equipment (EVSE) nameplate capacity totals approximately 71.4 MW, representing 

about a 66% increase over baseline levels. 

To contextualize system impacts, ISO New England (ISO-NE), the regional transmission 

organization for the six New England states, forecasts summer peak demand of approximately 24.8 

GW under typical weather and approximately 25.9 GW under extreme conditions [56]. Against this 

backdrop, the incremental 28.5 MW constitutes only about 0.1 to 0.3 %of the ISO-NE peak, which is 

a negligible addition at the bulk-system level. At the state level, New Hampshire accounts for 

approximately 9% of New England’s electricity consumption [57], implying a summer peak of 

approximately 2.2 GW. Relative to this benchmark, the modeled EVSE load equals approximately 1.3% 

of state peak demand, confirming that statewide impacts remain modest. 

The county-level distribution of added demand is reported in Figure 13. Hillsborough (about 11.0 

MW) and Rockingham (about 9.8 MW) dominate the incremental load, followed by Strafford (about 

4.3 MW). All other counties register less than 2 MW, while rural areas such as Belknap, Grafton, and 

Oxford add only marginal capacity. Across nearly all counties, DC fast chargers drive most of the 

increment and often contribute three to four times the load of L2 ports. This pattern is consistent with 

the charger-utility weighting in Section 4.4 and the DCFC share term in the objective (Section 5.4). 
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Figure 13. Added charger load by county and type (MW). 

Taken together, these results indicate that while regional grid impacts are minimal, localized 

distribution‑system constraints, particularly in rural areas with weaker substations or feeders, they can 

influence siting and phasing. Because DCFCs account for most of the incremental load (Figure 13) 

and their deployment is encouraged through the objective’s soft share term (Section 5.4) and supported 

by the RUCA-informed coverage radii (Sections 4.2 and 4.6), corridor clusters in high‑demand 

counties (Figures 8–10) may necessitate targeted distribution upgrades or load‑management strategies 

(e.g., managed charging, demand response, and power‑sharing cabinets). A focused assessment of 

substation and feeder headroom at priority sites is therefore an important direction for future work. 

8.  Conclusion 

In this study, we present a MILP-based optimization model for deploying EV charging 

infrastructure across New Hampshire, addressing coverage, equity, and cost efficiency within a $28 

million budget. The optimized solution allocates 855 L2 and 149 DCFC chargers across 247 ZIP Codes, 

achieving 98.8% statewide coverage while utilizing $26.87 million. The plan increases nameplate 

EVSE capacity by approximately 66% relative to the baseline and delivers a geographically balanced 

rollout that improves rural accessibility. 

The deployment strategy supports key policy objectives, including bridging urban–rural 

disparities and ensuring the prudent use of public funds. By extending access into underserved 

communities and aligning charger types with local context, the model illustrates how optimization can 

guide practical, policy-aligned planning. The integration of equity constraints and RUCA-informed 

siting radii ensures that high-demand urban areas and low-density rural zones receive adequate service. 

Although effective, the model embodies several simplifying assumptions. It relies on static 

demand data and ZIP Code-level aggregation, which may mask localized variations in charging needs. 
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While the analysis indicates modest impacts at the regional grid scale, distribution-level constraints 

are not explicitly represented. Rural substations and feeders with limited capacity may face challenges 

in accommodating clusters of DC fast chargers, suggesting that localized bottlenecks could alter siting 

outcomes. In addition, because the model caps new chargers in high-density urban ZIP Codes (a 

maximum of four per ZIP Code) and does not explicitly model distribution network constraints (for 

example, feeder headroom, voltage limits, and transformer loading), the results are best interpreted as 

strategic planning guidance rather than detailed engineering design. Accordingly, the findings offer 

high-level strategic guidance rather than site-specific prescriptions. 

In future research, researchers should extend the model by incorporating dynamic EV adoption 

trends, finer spatial resolution, explicit grid feasibility constraints (for example, hosting capacity and 

interconnection costs), and temporal demand variation to enhance deployment realism. The scenario-

weighted adoption specification (Section 4.9) provides a pathway for reflecting differentiated adoption 

trajectories across communities; future applications can employ alternative adoption scenarios or ZIP 

Code-level forecasts to test the robustness of siting strategies as adoption patterns evolve. Applying 

and validating the framework in other regions would test its generalizability and support broader efforts 

in equitable and cost-effective EV infrastructure development. 
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