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Abstract: In this paper, we capture the dynamic behavior of hourly consumption of electricity
during the period of power crisis (“dumsor” period) in Ghana using two-state Markov switching
autoregressive (MS-AR) and autoregressive (AR) models. Hourly data between the periods of January
1, 2014 and December 31, 2014 was obtained from the Ghana Grid company and used for the study.
Using different information criteria, the MS(2)-AR(4) is selected as the optimal model to describe the
dynamic behavior of electricity consumption during periods of power crisis in Ghana. The parameters
of the MS(2)-AR(4) model are then estimated using the expectation-maximization algorithm. From the
results, the likelihood of staying under a low electricity consumption regime is estimated to be 87%.
The expected duration for a low electricity consumption regime is 7.8 hours, and the high electricity
consumption regime is expected to last 2.3 hours before switching to the low demand regime. The
proposed model is robust as compared to the autoregressive model because it effectively captures the
dynamics of electricity demand over time through the peaks and significant fluctuations in consumption
patterns. Similarly, the model can identify distinct regime changes linked to electricity consumption
during periods of power crises.
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1. Introduction

While energy supply in Ghana has been relatively stable in recent years, the country has been beset
by energy supply issues in the past, which have had a substantial impact on the country’s economic
status [1]. This is due to either low levels of water in the dams or technical malfunctions of equipment
caused by high amounts of water. However, the issue of electricity generation and delivery does not
appear to be limited to Ghana; it appears to be a concern in many developing countries, including all
member states of the Economic Community of West African States (ECOWAS). In Ghana, electricity
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consumption is constantly plagued with power outages and fluctuations commonly referred to as
“DumSor” a term meaning “Off and On”. [2] claims that in order for ECOWAS to meet its 2030 goal
of achieving 100% electrification in all member countries, significant increases in energy generation
capacity are required. Ghana’s electricity sector is in a period of transition and its electricity
consumption growth rate for the past five years has been increasing by 10.3% annually, with supply
falling short of expectations [3]. Projections were made in line with ECOWAS’ aim to make
electricity accessible to all Ghanaians by 2020 [4]. However, as at the end of 2019, the access rate
was 83.5% and with a growth rate of 3.13%, the country missed the target by 14%. The actual
challenge is ensuring that this aim is met and, more importantly, that supply is both consistent and
enough. Ghana, as at 2021, still experiences nationwide blackouts like on Sunday, March 7th, 2021
and load shedding exercises like the Volta and Oti Region load shedding operation from Thursday,
March 18th, to Monday, March 21st, 2021. In addition, the annual increase in electricity demand has
caught up with available generation, leaving very little spare capacity to deal with a system outage.

Different techniques for modelling hourly electricity consumption have been studied in the
literature. For instance, [5] used the self-exciting threshold autoregressive (SETAR) model and the
smooth transition regression (STR) model to model, analyze and forecast the residential electricity
consumption in Ethiopia. The study showed that the SETAR model was more effective than the STR
model. [6] used a back propagation neural network to model electricity consumption. In a study
conducted by [7], a regression model was used to generate hourly electricity consumption over the
course of a year for the commercial and industrial sectors of three US cities. The model was built
using hourly datasets from the previous four years. [8] considered a new extension of the stochastic
Gamma diffusion process by introducing time functions to model electric power consumption during
a period of economic crisis. [9] employed bottom-up stochastic models to simulate high-resolution
heating and cooling electricity consumption profiles. In a recent study, [10] used the Markov process
technique, feature selection and clustering to model electricity consumption forecasting for
Bushehr-Iran Power Distribution Company. [11] used principal component analysis to model the
monthly electricity consumption of public sanitary buildings using climatological variables.

Globally, household electricity consumption is affected by factors like seasons, the number of
occupants living in the house, the income of the household and time of day. People also consume
electricity in different ways and with different degrees of urgency. The variation in Ghana’s household
electricity consumption is greatly affected by the time of day, where low consumption is recorded
during the early hours of the day and high consumption is usually in the evening and nighttime since
most people are employed during the day. Understanding how variation in residential electricity
demand affects consumers and businesses alike is crucial for sustainability programs. Typically, time
series models are commonly used to evaluate the transient behavior of variables like power demand,
exchange rates and temperature, among others. The mixed autoregressive moving averages (ARMA),
moving average (MA) and autoregressive (AR) models are the most popular and often used models.
Although these models are highly effective in a variety of applications, they are incapable of
representing certain nonlinear dynamic patterns, such as asymmetry, amplitude dependency and
volatility clustering. For example, electricity consumption normally fluctuates during the time of the
day, with high and low consumption depending on the time of the day (Figure 2). With this kind of
data, it would be inefficient to think that a single linear model could explain all of these different
behaviors. Markov switching models (MSM) are a type of nonlinear time series model that has
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become popular for explaining how different time series regimes behave.
According to [12], the Markov switching model consists of a set of models that may characterize

time series behavioral patterns under various regimes. The switching technique is regulated by a
latent state variable that assumes the process of a “first-order Markov chain”, which is a distinctive
aspect of the Markov switching model. For instance, [13] modeled electricity spot prices using
regime-switching models. [14] used full-period, pre-form and post-reform sample times to model the
demand for electricity in Ghana based on the effects of policy regime switching. The study found that
technology changes were energy-saving during the pre-reform period, while technology changes were
energy-consuming during the post-reform period. Using the entire sample period, electricity demand
in the long run is highly influenced by GDP and industry efficiency. [15] developed a time-dependent
two-state Markov regime switching (MRS) model to capture the hourly spot price of electricity. The
constructed model was efficient as it was able to capture the main characteristics exhibited in the
hourly electricity spot price. To model the dynamics of temperature for weather derivatives, [15] used
a time-changing mean-reversion Levy regime-switching model to capture both normal and extreme
temperature fluctuations. [16] described “El Nino Southern Oscillation (ENSO)” patterns using a
two-state Markov regime-switching framework. They discovered that the behavioral patterns of both
research phases (El Nino and La Nina events) are diametrically opposed and distinct. The findings of
the study also show that, while the Box-Jenkins approach produces a decent representation of the time
series under review, it is unable to capture some nonlinearities that arise as a result of the presence of
changing regimes. Furthermore, it was shown that the presence of weather cycles necessitates the
origin of non-linear factors in many climatic time series for describing climatic variables. The model
was able to reflect the index’s properties across time. This study therefore employs a Markov regime
switching model to model electricity consumption since its switching mechanism can capture the
distinct behavior of electricity consumption. This ability is particularly relevant in the context of
insufficient supply, as it allows for the identification of critical periods of high demand and the
subsequent allocation of resources accordingly. Specifically, the objective of this paper is: (1) to
model the consumption of electricity during periods of power crisis using a Markov-regime switching
model and (2) to estimate the expected duration of each regime for the selected period.

The paper is organized as follows. The Markov switching autoregressive model and parameter
estimate of the model using the expectation maximization algorithm are presented in Section 2. In
Section 3, the data description and analysis are presented. The results and analysis are presented in
Section 4, whilst the conclusion and policy recommendations are presented in Section 5.

2. Markov switching autoregressive (MS-AR) model

The MS-AR model’s point of reference is the Markov chain. An approach called the Markov chain
explains how the likelihood of the occurrence of an event depends solely on the attained state of a prior
event. The constructed Markov switching model is based on the studies of [12] and [17].

2.1. Markov switching (MS) model

An MS model is the name given to a combination of discrete-time stochastic processes, one of
which is unobserved (latent) and the other of which is observed. The dynamics of the process that is
not being observed affects that of the observed. As a result, the series of observations can be used to
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rebuild the distribution of the unobserved process [17]. Given that the Markov chain is conditionally
autoregressive, the unobserved process is a Markov chain with finite-state defined as st, whereas the
observable process is defined as yt.

Let st denote an unobservable state variable assuming the value one or two. A simple switching
model for the variable yt involves two AR specifications (Eq 1):

yt =

{
α0 + βyt−1 + ϵt, st = 1
α0 + α1 + βyt−1 + ϵt, st = 2

(1)

where |β| < 1 and ϵt ∼ i.i.d.N(0, σ2
ϵ ). When st = 1, yt is a stationary AR(1) process with mean

α0/(1−β) and when st changes from 1 to 2, yt switches to another stationary AR(1) process with mean
(α0+α1)/(1−β). Based on the value of the state variable st, this model accepts two dynamic structures
at various levels if and only if α1 , 1. st controls the switching between these two states which are two
distinct distributions with different means coming together to form yt.

2.2. Autoregressive (AR) models

An autoregressive model is a specific type of regression model for time series where a value from
the series is regressed on prior value(s) of that same series. For example,

yt = α0 + α1yt−1 + ϵt (2)

In Eq 2 response variable from the preceding time period, yt−1, has been transformed into a predictor.
Under the usual assumptions, the error terms are ϵt ∼ i.i.d.N(0, σ2

ϵ ).
The number of immediate past values used in predicting the current time value determines the order

of the AR model. A first-order autoregressive model abbreviated as AR(1) is given by Eq 2.
Using two prior values of the time series as predictors in the model changes the model from AR(1)

to AR(2), a second-order autoregressive model which can be written as:

yt = α0 + α1yt−1 + α2yt−2 + ϵt (3)

A generalized autoregressive model of the p-th-order abbreviated as AR(p) is obtained by
incorporating prior values of the series at times t − 1, t − 2, . . . , t − p as predictors into a multiple
linear regression model to predict the current time value. This model may be expressed as follows:

yt = α0 + α1yt−1 + α2yt−2 + · · · + αpyt−p + ϵt (4)

The model given by Eq 4, predicts yt based on the prior time values to time t − p.
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2.3. Markov switching autoregressive (MS-AR) models

The MS-AR model requires a probabilistic process to govern the transition of yt from one regime
(state) to another. In our case, a two-state Markov chain is used. This chain assumes that the probability
of being in state st is solely determined by the previous value of state st−1.

Pr(st = j|st−1 = i, st−2 = k, ...) = Pr(st = j|st−1 = i) = pi j (5)

where the transition probability pi j which depicts the possibility of moving to state j following that the
process is in state i satisfies Eq 6:

K∑
j=1

pi j = 1 (6)

The shift between regimes in the MS-AR models is governed by an unobserved Markov chain which
is based solely on the observed time series. Model Eq 7 summarized the general form of the MS-AR
model.

(yt − µst) =

K∑
i=1

βi(yt−i − µst−i) + ϵt (7)

where the relevant observations are given by yt, the coefficients are βi, i = 1, . . . ,K, st is the regime at
time t, µst is a constant that depends on the regime st, and the distribution of ϵt is Gaussian N(0, σ2).

The conditional likelihood density model Eq 8 can be used to depict the likelihood density model
of yt given the stochastic variable st for j = 1, 2, . . . ,K.

f (yt|st = j; µ j, σ
2
j) =

1√
2πσ2

j

exp

−(yt − µ j)2

2σ2
j

 (8)

Certain stochastic distributions determine the hidden or latent regime st. Equation 9 shows how the
model is represented by π j for the marginal likelihood of st and j = 1, 2, . . . ,K.

π j = Pr(st = j; θ) (9)

θ includes the likelihood of π j, where θ = (µ1, µ2, . . . , µK , σ
2
1, σ

2
2, . . . , σ

2
K , π1, π2, . . . , πK).

2.4. Parameter estimation of MS-AR model

The expectation maximization (EM) approach is used to estimate the model’s parameters. In doing
so, a preliminary estimate of the probability density function is made. This function is then used to
derive the log-likelihood function. This process of estimation can be divided into two main steps.

2.4.1. Derivation of joint density function of yt, st and st−1

The first step is to consider the joint density of yt, st and st−1 conditioned on ψt−1 information. To
achieve this, we must derive the density function of yt. This is produced from a fundamental analysis
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of a two-state Markov switching model with a first order autoregressive term using the the MS-AR
model in Eq 7 and the transition probability condition in Eq 6 as shown in model Eq 10.

f (yt|st, st−1, ψt−1; θ) =
1√

2πσ2
st

exp
(
((yt − µst) − β1(yt−1 − µst−1))

2

2σ2
st

)
(10)

where ψt−1 refers to information up to time t − 1 and θ = (µ1, µ2, σ
2, β1) is the parameter space of the

MS(2)-AR(1) model.
Then the joint density of yt, st and st−1 conditioned on ψt−1 is:

f (yt, st, st−1|ψt−1; θ) = f (yt|st, st−1, ψt−1; θ) × Pr(st, st−1|ψt−1; θ) (11)

where f (yt|st, st−1, ψt−1; θ) is given by Eq 10.

2.4.2. Aggregation of densities over regime

Aggregating the joint density in Eq 11 over all possible values for both st and st−1 yields the marginal
density:

f (yt|ψt−1; θ)

=

K∑
st=1

K∑
st−1=1

f (yt, st, st−1|ψt−1; θ)

=

K∑
st=1

K∑
st−1=1

f (yt|st, st−1, ψt−1; θ) × Pr(st, st−1|ψt−1; θ)

(12)

Then the log-likelihood function is given by:

ln L(θ) =

T∑
t=1

ln


K∑

st=1

K∑
st−1=1

f (yt|st, st−1, ψt−1; θ) × Pr(st, st−1|ψt−1; θ)

 (13)

To complete the above procedure, we still need to deal with the challenges in the calculation of
Pr(st, st−1|ψt−1; θ). The filtering and smoothing algorithms are used to assess the probability that an
observation will follow a particular pattern from one observation t − 1 to the next t.

The filtering algorithm is illustrated with the two steps below:
STEP 1: At the t-th iteration or beginning of time t, Pr(S t−1 = i|ψt−1; θ), , i = 1, 2, . . . ,K is already
know. Then the weighting terms Pr(st = j, st−1 = i|ψt−1; θ), i = j = 1, 2, . . . ,K can be calculated as:

Pr(st = j, st−1 = i|ψt−1; θ) = Pr(st = j|st−1 = i|; θ) × Pr(st−1 = i|ψt−1; θ) (14)

where Pr(st = j|st−1 = i|; θ), i = j = 1, 2, . . . ,K are the transition probabilities.
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STEP 2: At the end of the t − th iteration or the end time t, yt will be observed. We will then update
the probability terms as follows:

Pr(st = j, st−1 = i|ψt−1, yt; θ)

=
f (yt, st = j, st−1 = i|ψt−1; θ)

f (yt|ψt−1; θ)

=
f (yt|st = j, st−1 = i, ψt−1; θ) × Pr(st = j, st−1 = i|ψt−1; θ)

K∑
st=1

K∑
st−1=1

f (yt|st, st−1, ψt−1; θ) × Pr(st, st−1|ψt−1; θ)

(15)

with

Pr(st = j|ψt−1, yt; θ) =

K∑
i=1

Pr(st = j, st−1 = i|ψt−1, yt; θ) (16)

Iterating the above two steps for t = 1, 2, . . . ,T provides us with the appropriate weighting terms in
Eq 12.

The smoothing algorithm on the other hand uses all the observation in the sample. This gives
Pr(st = j|ψT ; θ), which is the smoothed probability as opposed to Pr(st = j|ψt−1, yt; θ) = Pr(st =

j|ψt; θ), t = 1, 2, . . . ,T, which is the filtered probability in Eq 16.
The smoothing algorithm as illustrated below considers the derivation of the joint probability that

st = j and st+1 = k is based on the full observation:

Pr(st = j, st+1 = k|ψT ; θ)
= Pr(st+1 = k|ψT ; θ) × Pr(st = j, st+1 = k|ψt; θ)

=
Pr(st+1 = k|ψT ; θ) × Pr(st = j, st+1 = k|ψt; θ)

Pr(st+1 = k|ψt; θ)

=
Pr(st+1 = k|ψT ; θ) × Pr(st = j|ψt; θ) × Pr(st+1 = k|st = j; θ)

Pr(st+1 = k|ψt; θ)

(17)

and

Pr(st = j|ψT ; θ) =

K∑
k=1

Pr(st = j, st+1 = k|ψT ; θ) (18)

The basic filter’s last iteration produces Pr(sT |ψT ) which would be use in the above iteration for
t = T − 1,T − 2, . . . , 1 to generate the smoothed probabilities, Pr(st|ψT ), t = T − 1,T − 2, . . . , 1.

We then differentiate Eq 13 with respect to each of the parameters in θ = (µ j, σ
2
j , π j, β j) and equate

to zero to maximize the parameters estimates on θ. This is illustrated in Eq 19.

∂ ln L(θ)
∂θ

=

T∑
t=1

1
f (yt; θ)

×
∂ f (yt; θ)
∂θ

(19)
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The MS-AR model parameters can be estimated with the equations below:

µ j =

T∑
t=1

yt × Pr(st = j|yt; θ)

T∑
t=1

Pr(st = j|yt; θ)

(20)

σ2
j =

T∑
t=1

(yt − µ j)2 × Pr(st = j|yt; θ)

T∑
t=1

Pr(st = j|yt; θ)

(21)

π j =
1
T

T∑
t=1

Pr(st = j|yt; θ) (22)

β j =

T∑
t=1

K−1∑
j=1

(yt − µ j) × Pr(st = j|ψT ; θ)

T∑
t=1

K−2∑
j=1

Pr(st = j|ψT ; θ)

(23)

The expected duration of the regimes is then estimated with the equation below:

E(D) =
1

1 − p j j
(24)

3. Data description

The electricity consumption data was obtained from the Ghana Grid Company (GRIDCO) limited.
The data was analyzed from January 1, 2014, to December 31, 2014. The data obtained is the hourly
power consumed by all installations linked to the distribution network. This study period is the period
where Ghana was in a power crisis which was popularly referred to as the “dumsor” period.

Multilevel seasonality is an essential characteristic of electricity consumption; the consumption
pattern varies by month, day of the week and hour of the day. These seasonalities are highly predictable
and can be deterministically modeled. Figure 1 shows the time series plot of the hourly electricity
consumption data for the period under study. Changes in the consumption of electricity for a period
of one month are shown in Figure 2. The plot exhibits seasonal movement. Generally, it can be seen
that the electricity consumption during the power crisis is mean-reverting, that is, it reverts back to its
mean, which is about 1700 MW. Clearly, there are two distinct periods that can be characterized by this
plot–high and low consumption periods. This can be attributed to the fact that electricity consumption
during the power crisis period was lower in the early hours of the day and higher in the latter hours of
the day. Each of these two periods is characterized by distinct behavioral tendencies that are inherently
opposed to one another. The length of the phases that occur between the two, however, is unknown.
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The MS-AR approach can be used to model the electricity consumption data based on the above-
mentioned conditions. The low consumption state is determined to be state one (1), while state two (2)
is designated as the high consumption state.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2014   

800

1000

1200

1400

1600

1800

2000

Figure 1. Plot of hourly electricity consumption time series data over the study period.
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2014   
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Figure 2. Illustration of electricity consumption during time of the day over a one month
period.

The descriptive statistics are shown in Table 1. The skewness values are observed to be above 0
which indicates the consumption series is positively skewed and, as such, not normally distributed.
The kurtosis is 0.2580, which implies that the distribution of the series is leptokurtic. The standard
deviation value clearly shows that there is high volatility in the amount of electricity consumed during
the electricity crisis period (Figure 3).

Table 1. Descriptive statistics of hourly electricity consumption for 2014.

Minimum Maximum Mean Standard deviation Skewness Kurtosis
2014 809 1974 1488.0913 142.7847 0.1885 0.2580
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Figure 3. Histogram and normal curve of electricity consumption during the study period.

The autocorrelation function (ACF) plots in Figure 4 clearly show a daily seasonal trend with peaks
at 24 hours, 48 hours, 72 hours and so on. Consider the equation below:

L(t) = L̃t +Ct (25)

where L(t) is the hourly electricity consumption, L̃t is the deseasonalized electricty consumption and
Ct is detrministic seasonal component for t = 0 hour, 1 hour, 2 hours, 3 hours, · · · . From Eq 25, the
electricity consumption data can be deseasonalized.

Figure 4. ACF plot of time series data 2014.

3.1. Test for stationarity of deseasonalized data

A stationarity test was done on the data to ascertain if a unit root exists or not. The Augmented
Dickey–Fuller (ADF) and Phillips–Perron (PP) tests are the methodologies used in this case. The
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results are presented in Tables 2 and 3, respectively. The ADF test for the three years covered by the
study is summarized in Table 2. Several exogenous factors (without constant, with constant and with
constant and trend) are used in this test. The test results indicated that, regardless of the exogenous
factors utilized, the series for the various years is stationary since the absolute value of the test statistics
of all the three years’ test results is greater than the absolute of the corresponding critical value. The
PP unit root test result is shown in Table 3. The series is stationary, as evidenced by the test results for
all three years.

Table 2. ADF test results of hourly electricity consumption for 2014.

Year Test statistics 5% critical value
Without constant 2014 -2.2313 -1.95
With constant 2014 -24.3513 -2.86
With constant and trend 2014 -27.8649 -3.41

Table 3. PP test results of hourly electricity consumption for 2014.

Year Test statistics 5% critical value
With constant 2014 -20.8710 -2.862418
With trend 2014 -23.6494 -3.413069

3.2. Correlogram

The number of significant autoregressive terms needed to estimate the parameters, including the
transitional probabilities and autoregressive coefficients, is obtained from the partial autocorrelation
function (PACF) and ACF plots. To correctly model the electricity consumption data sets, it is essential
to obtain a lag order that will result in the best autoregressive model. The PACF plot is used to establish
the optimal order of the AR process since it eliminates differences caused by prior lags and keeps only
the pertinent features. Utilizing the PACF also guarantees that only the necessary features or lags are
kept, which is another benefit. PACF plots of the deseasonalized time series for 2014 are shown in
Figure 5. For the period under consideration, lags 1, 2, 3 and 4 are statistically significant enough to
be incorporated into the model.

Figure 5. PACF plots of deseasonalized 2014 data.
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4. Results and analysis

4.1. Markov switching autoregressive model parameter estimation

From Figure 5, the PACF suggested we consider an AR(1), AR(2), AR(3) and AR(4) for our MS(2)-
AR(p) model.

To select the optimum model that describes the phenomenon, lag values 1,2,3,4 of the MS(2)-AR(p)
models are analyzed and the AIC, BIC, HQC and log-likelihood values were calculated. The model
with the least AIC, BIC and HQC values performs better than the others. Using the AIC, BIC, and
HQC values, the best model obtained from Table 4 was MS(2)-AR(4).

Table 4. Models for 2014 hourly electricity consumption data.

Model AIC BIC HQC Log-likelihood
MS(2)-AR(1) 90520.77 90585.39 90530.43 -45256.39
MS(2)-AR(2) 90413.28 90510.21 90427.75 -45200.64
MS(2)-AR(3) 90391.16 90520.40 90410.45 -45187.58
MS(2)-AR(4) 90381.16 90542.71 90405.28 -45180.58

To ascertain the efficiency of the MS(2)-AR(4) model, it is compared with four (4) single-state
models: AR(1), AR(2), AR(3) and AR(4). AIC, BIC, HQC and log-likelihood are used to select
the best model. From Table 5, the AIC, BIC and HQC values of the MS(2)-AR(4) model are the
lowest, and the log-likelihood value of MS(2)-AR(4) is the largest. These indicate the superiority of
the constructed MS(2)-AR(4) model in capturing the dynamics of electricity consumption through time
and at different regimes.

Table 5. Comparison of single-state regime models and 2-state regime model for hourly
electricity consumption.

Model AIC BIC HQC Log-likelihood
AR(1) 92472.54 92493.78 92479.78 -46233.27
AR(2) 92293.95 92322.26 92303.59 -46142.97
AR(3) 92272.28 92307.67 92284.34 -46131.14
AR(4) 92269.50 92311.97 92283.97 -46128.75
MS(2)-AR(4) 90381.16 90542.71 90405.28 -45180.58

From the parameter estimation procedure using expectation maximization, the estimates of the
model specification (MS(2)-AR(4)) of the transition probabilities and autoregressive coefficients are
computed. The Table 6 summarizes the estimated parameters. µ is the estimated regime constant,
which depends on st and the βi parameters are the autoregressive coefficients for the regimes.
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Table 6. Estimates of 2014 hourly electricity consumption regime parameters.

Regime Parameter Coefficient Std. error t-statistic p-value
1 µ 72.9800 6.4039 11.3962 <0.0001

β1 0.8705 0.0143 60.8741 <0.0001
β2 0.0751 0.0156 4.8141 <0.0001
β3 -0.0106 0.0136 -0.7794 0.4357
β4 0.0171 0.0105 1.6286 0.1034

2 µ 211.3742 27.5262 7.6790 <0.0001
β1 0.6267 0.0303 20.6832 <0.0001
β2 0.0827 0.0387 2.1370 0.0326
β3 0.1040 0.0439 2.3690 0.0178
β4 0.0389 0.0376 1.0346 0.3009

The MS(2)-AR(4) fitted model for 2014 hourly electricity consumption can therefore be specified
as:

yt =


0.8705(yt−1 − µst−1) + 0.0751(yt−2 − µst−2)
−0.0106(yt−3 − µst−3) + 0.0171(yt−4 − µst−4), st = 1
0.6267(yt−1 − µst−1) + 0.0827(yt−2 − µst−2)
+0.1040(yt−3 − µst−3) + 0.0389(yt−4 − µst−4), st = 2

(26)

The expected duration of the two regime with the transitional, smoothed and filtered probabilities
are estimated using the fitted model. The transitional probabilities for the MS(2)-AR(4) model is
illustrated as a matrix bellow:

P =
(

P11 P12

P21 P22

)
=

(
0.8714 0.1286
0.4416 0.5584

)
(27)

which satisfies Eq 6. From matrix Eq 27, the likelihood of the consumption of electricity remaining low
during the next hour given that it was low in the previous hour is P11 = 0.8714, and the likelihood of the
consumption of electricity being high during the next hour given that it was high in the previous hour
is P12 = 0.1286. With a probability of P22 = 0.5584, the consumption of electricity will remain high
during the next hour given that it was high in the previous hour and with a probability of P21 = 0.4416,
the consumption will move to the low consumption regime.

Using Eq 24, the expected duration of the low electricity consumption regime in 2014 is at least
1/(1 − 0.8714) = 7.8 hours, while the high electricity consumption regime is expected to last at least
1/(1 − 0.5584) = 2.3 hours before switching to a low demand regime.

Figures 6 and 7 illustrate the plots for the filtered and smoothed probability, respectively. They
approximate the odds of remaining in the same regime to one or zero for a given regime. During a
low consumption regime, the likelihood of being in state 1, P(S (t) = 1) is approximately one. This
confirms P11 = 0.8714 in matrix Eq 27. In contrast, the likelihood of being in state 2, P(S (t) = 2) is
approximately zero during a low consumption regime.
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Figure 6. Filtered probability for 2014 hourly electricity consumption data.

Figure 7. Smoothed probability for 2014 hourly electricity consumption data.

To test the validity of the fitted model, we examined the residuals of the model with the Durbin–
Watson test. The MS(2)-AR(4) has a Durbin–Watson test statistic of 2.00223, indicating uncorrelated
residuals, which implies that the error terms’ variances are constant. Figure 8 shows the residuals plot.
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Data was simulated using the estimated parameter values from the MS(2)-AR(4) model. The
simulated data was fitted to the original deaseasonalized series. The deseasonalized series, as well as
the fitted MS(2)-AR(4) model, are depicted in Figure 9. The figure shows that the proposed model is
capable of effectively capturing the index’s behavior over time. The suggested model can identify
peaks and significant fluctuations in the electricity consumption pattern in 2014. Similarly, the model
can identify distinct regime swings linked with electricity consumption.

Figure 8. Residual plot for 2014.

Figure 9. Deseasonalized and fitted plot of 2014.

4.2. Discussions of findings

According to the study’s results, the expected duration for low and high electricity consumption
periods is 7.8 and 2.3 hours, respectively, during periods of power crisis. Transitional periods also
exist between these low and high consumption regimes. These are transitions from a low consumption
regime to a high consumption regime and from a high consumption regime to a low consumption
regime. For the year under consideration, the transition from a low to high electricity consumption
regime and from a high to a low consumption regime is projected to take at least 1.1 and 1.8 hours,
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respectively. It is clear that electricity consumption in Ghana is low on average, with an erratic
pattern. As seen in Figure 1, it also swings and varies over time, with some extremely low periods of
consumption possibly due to the effects of climate change. This is reinforced by [18], who concludes
that under various scenarios of climate change, temperature rises would impact household electricity
consumption significantly.

5. Conclusions and policy recommendation

From the study, a two-state MS(2)-AR(4) model best captures Ghana’s electrical consumption
pattern during the period of power crisis. According to the analysis, the likelihood of maintaining a
low electricity consumption regime in 2014 is estimated to be 87%, while the likelihood of
maintaining a high electricity consumption regime is estimated to be 56%. During the power crisis,
the expected duration of a low electricity consumption regime is 7.8 hours. Over the course of the
entire research period, the high electricity consumption regime is expected to last 2.3 hours before
switching to the low demand regime.

The findings of this paper offer crucial insights for policy implementation for both policymakers
and utility companies. Policymakers can prioritize load shedding or load shifting initiatives during
the estimated 7.8 hours of the low electricity consumption regime. By implementing these measures,
policymakers can ensure the efficient allocation of available electricity resources, thereby reducing
system strain and preserving a balanced supply-demand dynamic. Moreover, both policymakers and
utility companies must optimize resource allocation and respond promptly to changes in consumption.
This includes implementing real-time monitoring systems to detect transitions between high and low
electricity consumption regimes, allowing for timely resource allocation adjustments. By effectively
managing these consumption shifts, policymakers and utility companies can maintain a resilient and
dependable electricity infrastructure, which will ultimately benefit the economy and end consumers.
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