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1. Introduction

In this paper, we consider the compressible Navier-Stokes-Poisson (NSP) equations for the dynamics
of charged particles of electrons (see [1]). The equations can be written as

p: +div(pu) =0,
(ou); + div(pu ® u) + VP(p) = divS + pVO, (1.1)
AD = p — b(x),

for t > 0 and x € T3, with initial data
t=0: (p’ u, q)) = (pO(x)a I/l()(X), q)o(X)) for xe T3’ (12)

where T? is a three-dimensional torus, x = (X, X5, x3)T € T? and ¢ > 0 denote the spatial coordinate and
time coordinate, respectively. p > 0 is the mass density, and u = (u', u?, u*)" is the fluid velocity. The
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pressure P of the polytropic fluid satisfies

P(p) = Ap?, (1.3)

where A > 0 and y > 1 are the gas constants. @ is the electrostatic potential satisfying

me(t) = f O, x)dx=0, Vr>0. (1.4)
s

Moreover, S is the viscosity stress tensor given by

S =2u(p)D(u) + A(p)divuls, (1.5)
where v VT
D(u) = %(u)

is the deformation tensor, I3 is the 3 X 3 identity matrix, and

up) = ap’,  Ap) = o’ (1.6)

where p is the shear viscosity coefficient, A4 + %,u is the bulk viscosity coefficient, (a, 8, d) are constants
satisfying
a>0, 2a0+3=>0, o6>1, (1.7)

and the function b(x) is the doping profile satisfying the following compatibility condition

f b(x)dx = f Po(x)dx,
T3 T3

which describes the density of fixed, positively charged background ions.

From the mathematical point of view, the NSP equations are the compressible Navier-Stokes
equations coupled with the Poisson equation. Indeed, if the electrostatic effects are absent, then system
(1.1)—(1.3) will be reduced to the isentropic compressible Navier-Stokes equations. For the constant
viscous fluid, there is rich literature on the well-posedness of classical solutions to compressible Navier-
Stokes equations. When inf, po(x) > 0, the local well-posedness of classical solutions follows from the
standard symmetric hyperbolic-parabolic structure satisfying the well-known Kawashima’s condition
(cf. [2]), which has been extended to a global one by Matsumura-Nishida [3] near the nonvacuum
equilibrium. When inf, po(x) = 0, the first main issue is the degeneracy of the time evolution operator,
which makes it difficult to describe the behavior of the velocity field near the vacuum. For this case, the
local-in-time well-posedness of strong solutions with vacuum was first solved by Cho-Choe-Kim [4]
and Cho-Kim [5] in R?, where they introduced an initial compatibility condition to compensate the lack
of a positive lower bound of density. Later, Huang-Li-Xin [6] extended the local solution to a global one
under some initial smallness assumptions in R?. Jiu-Li-Ye [7] proved the global existence of classical
solution with arbitrarily large data and vacuum in R. For local well-posedness results without initial
compatibility condition, we refer to Gong-Li-Liu-Zhang [8], Huang [9] and the references therein.

When viscosity coeflicients are density-dependent, the Navier-Stokes system have received extensive
attentions in recent years, especially for the case with vacuum, where the well-posedness of solutions
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becomes more challenging due to the degenerate viscosity. In fact, the high-order regularity estimates
of the velocity in [4,6,7] (6 = 0) strongly rely on the uniform ellipticity of the Lamé operator. While for
0 > 0, u(p) vanishes as the density function connects to vacuum continuously, thus it is difficult to adapt
the approach of the constant viscosity case. A remarkable discovery of a new mathematical entropy
function was made by Bresch-Desjardins [10] for the viscosity satisfying some mathematical relation,
which provides additional regularity on some derivative of the density. This observation was applied
widely in proving the global existence of weak solutions with vacuum for Navier-Stokes equations and
some related models; see Bresch-Desjardins [10], Bresch-Vasseur-Yu [11], Jiu-Xin [12], Li-Xin [13],
Mellet-Vasseur [14], Vasseur-Yu [15], and so on. Then, we turn our attention to the study of classical
solutions. When 6 = 1, Li-Pan-Zhu [16] obtained the local existence of 2-D classical solution with
far field vacuum, which also applies to the 2-D shallow water equations. When 1 < § < min {3, YTH},
by making full use of the symmetrical structure of the hyperbolic operator and the weak smoothing
effect of the elliptic operator, Li-Pan-Zhu [17] established the local existence of 3-D classical solutions
with arbitrarily large data and vacuum, see also Geng-Li-Zhu [18] for more related results, and Xin-
Zhu [19] for the global existence of classical solution under some initial smallness assumptions in
homogeneous Sobolev space. When 0 < ¢ < 1, Xin-Zhu [20] obtained the local existence of 3-D local
classical solution with far field vacuum, Cao-Li-Zhu [21] proved the global existence of 1-D classical
solution with large initial data. Some other interesting results and discussions can also be found in
Germain-Lefloch [22], Guo-Li-Xin [23], Lions [24], Yang-Zhao [25], and the references therein.

Concerning the NSP system, there are also extensive studies about the local and global well-posedness
of solutions. For constant viscous fluid (i.e., 6 = 0 in (1.6)), Donatelli [26] obtained the local and
global existence of weak solutions to 3-D isentropic Navier-Stokes-Poisson equations with vacuum in a
bounded domain. Li-Matsumura-Zhang [27] established the global existence and large time behavior to
classical solution for Cauchy problem with small data. Zheng [28] established the global existence for
Cauchy problem in Besov space. Tan-Wang-Wang [29] established the global existence of classical
solutions and obtained the time decay rates of the solution. Liu-Xu-Zhang [30] established the global
well-posedness of strong solutions to the Cauchy problem with large oscillations and vacuum. Liu-
Luo-Zhong [31] considered the radially symmetric case, and established the global well-posedness
of classical solutions with large initial data exterior to a ball. Chen-Huang-Shi [32] considered the
initial-boundary-value problem in a 3-D bounded domain with slip boundary condition. The global well-
posedness of classical solution was established with small initial energy but possibly large oscillations
and vacuum.

For the case of density-dependent viscosity coefficients (i.e., > 0 in (1.6)), the problem is much
more challenging due to the degeneration of viscosities near the vacuum and hence the obtained results
are limited. Ducomet et al. [33] studied the global stability of the weak solutions to the Cauchy problem
of the NSP equations with non-monotone pressure as y > ‘3—‘. In [34] they also considered the Cauchy
problem for the NSP equations of spherically symmetric motions, including both constant viscosities and
density-dependent viscosities, and proved the global stability of the weak solutions provided that y > 1.
Zlotinik [35] studied the long-time behavior of the spherically symmetric weak solutions near a hard
core by giving global-in-time bounds for the solutions. Ye-Dou [36] studied the global existence of weak
solutions to the compressible NSP equations with density-dependent viscosities for u(p) = p, A(p) = 0in
(1.6) in a three-dimensional torus. Recently, Yu [37] considered the three-dimensional Cauchy problem
with ¢ > % in (1.6), and established the global existence and H>-decay rate of the strong solution.
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It should be pointed out that, in spite of the above significant achievements, a lot of questions remain
open, including the local well-posedness of classical solutions in multi-dimensions with vacuum. In this
paper, we consider the 3-D isentropic compressible Navier-Stokes-Poisson equations with degenerate
viscosities and vacuum in a torus, where the viscosities depend on the density in a super-linear power
law (i.e., > 11in (1.6)), and obtain the local existence of classical solutions. One of the main difficulties
is that the appearance of the vacuum leads to degeneration in the elliptic part of the momentum equation,
which makes it difficult to estimate the velocity u. To this end, we reformulate the original system
and make use of the “quasi-symmetric hyperbolic’—“degenerate elliptic”’ coupled structure of the new
system to control the behavior of the velocity of the fluid near the vacuum and give uniform estimates.
The second main difficulty is that, although the equation of electrostatic potential @ is linear, it turns
to be a nonlinear one in the higher-order estimates after reformulation. By employing the Poincaré
inequality on a three-dimensional torus and taking advantage of the precise structure of the system, we
can establish the H*-estimates of ®.

Here and throughout this paper, we adopt the following simplified notations: for any p, r € [1, co]
and integer k, s > 0, we denote

Ao = Wfllgys e = W llsgsy D = {f € L, (T) : [V5£], < oo},
DF =D |flper = Ifllpirgrsy 11k = I llpeges)- f f= f f dx,
T3

N Dx = Ifllx + lIgllx, — fllxay = If1lx + 1 f1ly

Definition 1.1. Let T > 0 be a finite constant. A solution (p, u, ®) to the problem (1.1)—(1.2) is called a
regular solution in [0, T % T if (p, u, ®) satisfies this problem in the sense of distribution and:

() p=0, p7 eC(0.TLHY), p= eC(0.T]:H);

(2) ue C(I0, T H)NL* (0,T; H), pT Vue [2(0,T;L2);

(3) u,+u-Vu=0 as p(t,x) =0;

(4) © € C([0.T1: H) N L* (0. T; H*),
where s’ € [2,3) is a constant.

Our main theorem can be stated as follows.

Theorem 1.1. Assume that
0e(1,21U{3}, y> 1.
If the initial data (pg, ugy, @) satisfies the following regularity conditions:

-1 o1
2

P00, (o7, oy s o) € HY, (1.8)

and b(x) € H?, then there exists a positive time T, and a unique regular solution (p,u, ®)(t, x) in
[0, T.] X T? to the problem (1.1)—(1.2) satisfying:

A
i &l 2 2 Slgd 2 0
sup (||pz||3+||p2||3+||u||3+||c1>||4)+ f 0% Viuds < C°,
0

0<t<T.

for a positive constant C° = C°(A, 7, 8, a, B, po, Uy, b(x)). Actually, (p, u, ®) satisfies the problem (1.1)—
(1.2) classically in positive time (0, T.].
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Remark 1.1. The initial data allows vacuum in an open set and we do not need any initial compatibility
conditions. In addition, there are no smallness conditions imposed on the initial data.

The rest of this paper is organized as follows. §2 is dedicated to the preliminary lemmas to be used
later. §3 is devoted to proving the well-posedness of local classical solutions, i.e., Theorem 1.1.

2. Preliminaries

In this section, we list some basic lemmas to be used later. The following well-known Gagliardo-
Nirenberg inequality will be used (see [38]).

Lemma 2.1. For p € [2,6], g € (1,0), and r € (3, ), there exists a constant C > 0 which may depend
on q, r such that for f € H' with sz fdx =0and g € L1 N D", it holds

6-p 3p—6

fl, < CUFLT IV, 2.1)

q(r=3)

3r
l8leo < Clgly™ 7 Vgl,™ . 2.2)

The next several lemmas contain some Sobolev inequalities on the product estimates, the interpolation
estimates, the composite function estimates, etc., which can be found in many works, see Majda [39].

Lemma 2.2. [39] For constants s € Ny, r, p,q € [1, oo] satisfying

I 1 1
- ==+ —,
r-p 9
and functions f,g € WP N W*4, there exists a constant C only depending on s, such that
IV5(f9) = fV°gl, < C(IVA1,19° " gly + IV 1ylgl,) (2.3)
IV5(f8) = V8], < C(IVA1,19° gl + [V lylgl,) (2.4)

where V*f (s > 1) stands for the set of all partial derivatives aif with |é| = s.

Lemma 2.3. [39] If functions f,g € H® and s > % then fg € H®, and there exists a constant C only
depending on s such that

7glls < ClIfllllglls- (2.5)
Lemma 2.4. [39] If f € H®, then for any r € [0, s], there exists a constant C only depending on s such
that e

AU < ClAl, 1Al (2.6)

Lemma 2.5. [39] (1) If f,g € H° N L™ and |{| < s, then there exists a constant C only depending on s
such that

S|, < CUfISIV gL + 18lel V' f12) - 2.7)

(2) Let u(x) be a continuous function taking its values in some open set G such that u € H* N L™, and
g(u) be a smooth vector-valued function on G. Then for any s > 1, there exists a constant C only
depending on s such that

0
IV*g)l, < C H—ag
u

|l [VEul,. (2.8)
s—1
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Lemma 2.6. [39] If function sequence {w,},, converges weakly in a Hilbert space X to w, then w,
converges strongly to w in X if and only if

lwllx = limsup [[wallx -

n—oo
The next one will show some compactness results from the Aubin-Lions lemma.

Lemma 2.7. [40] Let Xo, X, and X, be three Banach spaces with X, C X C X;. Suppose that X, is
compactly embedded in X and that X is continuously embedded in X,. Then:

e Let G be bounded in LP(0,T; Xy) for 1 < p < oo, and ‘96—? be bounded in L'(0,T; X,). Then G is
relatively compact in LP(0, T'; X).

o Let F be bounded in L*(0,T; X,) and %—f be bounded in LP(0,T;X,) with p > 1. Then F is
relatively compact in C(0,T; X).

The last lemma will be used to show the time continuity for the higher-order terms of our solution:

Lemma 2.8. [41]If f(¢,x) € L? (0, T: Lz), then there exists a sequence sy such that
si =0, and si|f (sk,x)lg -0, as k— +oo.

3. Local-in-time well-posedness of solutions

This section is devoted to proving Theorem 1.1. To this end, we first reformulate the original Cauchy
problem (1.1)—(1.2) into a more convenient form in terms of some new variables, and then establish the
local well-posedness of the smooth solution to the reformulated system.

3.1. Reformulation

Inspired by [17,18], we introduce two new quantities,

p=p?, ¢=p7,

pl| o-1
2

to rewrite (1.1)—(1.2) as

¢ +u-Vo+ %‘pdivu =0,

¢ +u-Vo + y—glqﬁdivu =0,
m+wvu+gww+¢%wpw%gmyv¢+vq
AD = &1 — b,

(@, W, D)l =0 = (o(x), Wo(x), Dp(x)), x €T,

which can be rewritten into a new system that consists of a transport equation for ¢, a linear elliptic
equation for @, and a “quasi-symmetric hyperbolic”’—*“degenerate elliptic”’ coupled system with some
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special lower-order source terms for (¢, u):

o +u- Vg0+ ELpdivu = 0,

J=1 degenerate elliptic

symmetric hyperbolic

AD = 71 - b,
(@, W, @)i=0 = (¢0(x), Wo(x), Do(x)) ,

where W(x) = (¢, )" (x), Wo(x) = (¢, uo)"(x) and

0
AW, + ZA,(W)ajW + PLOW) = QWH(g) + [alv CD],

lower-order source

x e T3,

T

1 0 u; .
Ay = , Awy=[ " /
0 ( 0 (1113 ) ]( ) ( y71¢ej aluj]I3

0

LWy = ( ayL(u)

)’ ]: 1’2939

) , L(u) = —a(Au + Vdivu) — fVdivu,

0 0 0
RTY
Ow) = a(Vu + (Vu)") + Bdivls, a; = (7 N
4Ay

Theorem 3.1. Ifinitial data (¢, Wy, ) satisfies

®o > Oa (QDO’ WO) € H3’

(3.1)

(3.2)

and b(x) € H?, then there exists a time T, > 0 and a unique regular solution (¢, ¢, u, ®) in [0, T,] x T°

to the problem (3.1) satisfying:

0eC([0.71:H%), ¢eC([0.T7]:H),

® e C([0, 71 HY) N L (0,77 HY),

ue C(10.7:H')n L= (0.7 H*), s €[2.3),
eViue L2(0,77L%), u e C([0,7°]:H')nL* (0,77 D).

Moreover, we have

0<t<T.

for a positive constant C° = C°(y, 6, o, Wy, @g, b(x)).

Communications in Analysis and Mechanics

sup (II¢|I3 + llepll5 + [l 3 + ||<I>||4 (1) + f lpViulzds < C°,

(3.3)
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3.2. Linearization

Let T be any positive time. In order to solve the nonlinear problem (3.1), we should consider the
following linearized approximation problem for (¢, ¢, u, ®):

¢, +v-Vo+ %gbdivv =0,

b

3
AoW; + Zl Aj(V)OW + (9* + PHIL(W) = Q(V)H(p) +
=

a; VO (3.4)
AD = &1 — b,

(@, W, ®)|i=o = (¢o(x), Wo(x), Pp(x)), x€T?,

where 17 € (0, 1] is a constant, W = (¢,u)",V = (¢,v)7, and Wy = (do,ug)". (&, ) are all known
functions and v = (v,v,,v3)" € R? is a known vector satisfying the initial assumption (&, @, v)(t =
0, x) = (¢o, ¢o, uo) (x) and

g€ C(0,TI; H?), @ €C(0,TI;H*), ¢eC(0,T]; H),

¢ € C(0,TI; HY, veC(0,T;H)NL0,T; H), (3.5)

Vv e L (o, T;Lz), v, € C([o, T];Lz) nL? (0, T;Dl).
Moreover, we assume that

00 >0, ¢0>0, (0, Wo)eH. (3.6)

Now we have the following existence result of a strong solution (¢, ¢, u, ®) to (3.4) by the standard
methods at least when 1 > 0:

Lemma 3.1. Assume that the initial data (¢y, Wy) satisfy (3.6). Then there exists a constant T* > 0,
such that for any T € [0, T*), there exists a unique strong solution (@, ¢,u, ®) in [0, T] x T? to (3.4)
when n > 0 such that
e C(0.T:H?), ¢eC(0.T:H’), ®eL”(0,T;H)nC([0,T]H), (3.7)
ue C(10,T1:H)nL*(0,T:D%), u,€C([0,T1;H')nL*(0,T; D?).
Proof. First, the local-in-time existence and regularities of a unique solution ¢ in (0, T) X T® to the
equations (3.4),; can be obtained by the standard theory of characteristics, see [42, Section 3.2].
Next, since ¢ € C([0,T]; H?) and 5% € [2,00) U {1}, we have @=1 € C([0, T]; H*). Consequently,
the existence and L(0, T; H*) regularity of a unique solution @ in (0, T') X T? to the equations (3.4),

can be obtained by the standard theory of elliptical equations, see [42, Section 6.2—6.3] for details. To
obtain the C([0, T]; H?) regularity of ®, we note that (3.4), implies

2 g 6—-1_. i~ .yl
(906—1 )t = ol (—V . VQO - TQOdIVV) el (0, T,H )
Therefore, for any ¢, s € [0, T], we have

Communications in Analysis and Mechanics Volume 17, Issue 3, 779-809.
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Then standard elliptical estimates and Poincaré inequality imply

() — D(s)ll3 < c'

goa—%(t)—gm—%(s)nl 50,  as s—o 1.

This gives the C([0, T']; H*) regularity of ®.
Finally, when 7 > 0, based on the regularities of ¢ and @, it is not difficult to solve W from the linear
symmetric hyperbolic-parabolic coupled system (3.4), to complete the proof, see [42, Chapter 7]. O

3.3. A priori estimates

In this subsection, we establish some local-in-time a priori estimates independent of 7 for the solution
(¢, ¢, u, @) to (3.4) obtained in Lemma 3.1. For this purpose, we fix a T > 0 and choose a positive
constant ¢, large enough, such that

lIolls + llgolls + [luolls + Ib(x)[l2 < co. (3.8)

Assume that there exist some time 7" € (0, T') and constants ¢; (i = 1,2, 3) such that

.
sup (IBOIE + IBOIE + IMOIE) + fo evafdr <,

0<t<T*
-
~ ~ ~ 2
sup (IIBOIG + IBOIB + IVOIB) + f |V V], de < o3, (3.9)
0<t<T* 0
-
- 2
sup (IIBOIR + IBOIE + IVOIR) + f Vi), dr < a3,
0<t<T* 0

where T* and ¢; (i = 1,2, 3) will be determined later (see (3.44)), and depend only on ¢, and the fixed
constants A, a, B8, y, d,and T.

Hereinafter, we use C > 1 to denote a generic positive constant depending only on fixed constants A,
a, B, v, 0,and T, but is independent of 7.

Lemma 3.2. Let Ty = min{T", (1 + Cc3) ). Thenfor 0 <t < T,
le@lis < Cco, DIl < Ce3, 1Pl < ch%l.
Proof. Apply the operator & (0 < || < 3)to (3.4),, we have
(8‘90), +v- V(')ggo = —(84(\/ Vo) —v- Vaggo) o “(@divy). (3.10)
Multiplying both sides of (3.10) by & and integrating over T°, we get
——|6§<,0|2 < Cldivvle|@igls + ClOL(v - Vo — v - VEQ)Lldipls + ClOY(@divy)a|diel. (3.11)
First we consider the case where |{| < 2,

105(v - Vo = v - V)l < C(Vv - Velo + [Vv - Vil +[V2v - Velo) < ClIvilsliglla,

L (3.12)
105.(pdivv)l, < ClI@l2lIVII3,

Communications in Analysis and Mechanics Volume 17, Issue 3, 779-809.
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which yields that
d g
3 1ell = Clvilsllella + ClilAvls.- (3.13)

Then, according to Gronwall’s inequality, one has
llellz < (leollz + Ce3t) exp(Cest) < Cey, (3.14)

for 0 < T; = min{T*, (1 + Cc3)72}.
When |{| = 3,
05 - V) —v - V&g, < C(IVPv - Vel + [V?v - Vgl + [Vv - V)
< CIvIiliells,
105(@divv)l, < C(1@V3div]y + V@ - VAdive], + [V2@Vdivyl, + [V @divy))
< (VL + 18l3lvils)-

Then we have d
allwlb < C(MIslells + IVIBI@HS + 1@V ). (3.15)

According to Gronwall’s inequality, we obtain that

!
lllls < (Ilwolls + 3t + f |¢V4v|2ds) exp(Ces). (3.16)
0
Noting that
! 1 ! % 1
f 1pV4v]ods < 12 ( f |¢v4v|§ds) < c3t7, (3.17)
0 0
it follows from (3.16)—(3.17) that
llells < Cey, (3.18)
forO<r<T,.
Observing that
¢ = —v- Vo — gdivy, (3.19)

we easily have

iy < C(Vleol Vol + [@lldivvl) < CC2,
it < CVlel V2l + [VVll Viola + [Vl VYl + 13l V2V1) < Cc3,
2 < CVll Vel + VW]l V2l + V2V Vegleo
+ VBl V2V + (@l VPV]) < Cc3

IA

IA

It follows from (3.4)5, (3.18), and standard elliptical estimates that

2
ID()lls < Cllg™ = bl < Clle |l + I(IL) < Cef

Thus, we complete the proof of the lemma. O
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Lemma 3.3. Let (¢, W, @) be the solutions to (3.4). Then
f
IWOIIT + f | Ve? + n2V2ul3ds < Cc,
0

for0 <t < Ty 2 min (T, (1 + Ces), (1 + Cep) ).

Proof. Applying &% to (3.4);, we have

3
AW, + Z A (V)B,EW + (¢ + P)L(EEW)
=1
J . 3
= FQWH(@) — (" A;(a;W) = >\ A(V)965W)
J=1 j=1

= (80 + PIL(W)) = (@ + PILEW))
+(0UQH() - HQV)H() + (alvoaiq)) :
Multiplying (3.20) by 85W on both sides and integrating over T2,
335 | EWTAGEW + aial TV + a1(a+ BN NG
= % f (W) divA(V)HEW — a, f V(> +177) - (@VFEu + (a + B)divdiuly)) - du

_l_

6115 2a¢ ol
12 [meeou - o

3 3
- f (65D AV W) = > A (VIO W) - W
j=1 J=1

“an [ (#E PIL0) - (¢ L) -

0
+ 6“1 - f(ai(VQDZ . Q(v)) _ VQDZ ) Q(aiv)) ‘ 5§Cu

+ay fvai(l) - &u

where A(V) = (A;(V),Ay(V),A3(V)) and divA(V) = i 9;A;(V).
“
When |{| < 1, we have ’

1
L=3 f (W) TdivA(V)EW < CIVV| 5 W3

(3.20)

(3.21)
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< C||VIBIOEWR < Cesld WP,
L =-a f V(> +177) - (@Vu + (a + B)divdiuly)) - du
< CIV¢leolV Bl Ot
< S5 V&P PV + Celéfu
1% [eeow -
< Clelo Vel VO V105 ul
< Cc3ld2uly < Cc3|0%ul; + Cas,
L=- f (ag(iA (V)O,W) - ZSIA.,(V)Gj@iW) L EW
j=1 j=1
< C|VVI[VW < Ce3|VWE,
Is = —aja f (05(” + L) = (¢ + LS w)) - Fu
< CIVelle LIkl < STING + 1PVl + Cefléfub,

1)
2 (#5200 - 72 - 00 -
< CAPlVVIVgls + [VV1IThI Vel

< CAlduly < Ccj + Ccalduls,

I3:

16:

4
I; = a f VED - u < Cl|D|ldul, < Ceo + Ccl ™ 16 ul?.
Then, it yields that
1d CUNT A Al 1 L) 3, 5! 2 3
73, | @W) AW + Saial Vo? + PV2ul} < C(c3 +c; )||W||1 +Ca;.
By Gronwall’s inequality, we have
! 4
IWIE+ | 13e + 12V2uPds < CAWoll> + S exp(Clt + CcT ' t) < Cc2,
1 2 1 3 3 0 0
0

for 0 <7< 7 = min {7y, (1 + Ce3)™, (1 + Ceg) 54 .

Lemma 3.4. Let (¢, W, ®) be the solutions to (3.4). Then

A
|W(l)|2Dz + f |Ve? + n2V3ul5ds < Ccj,
0
!
llp (Dl + |, (D] + f |Ms|?)1ds < Cac3,
0

fOrOStSTz.

(3.22)

(3.23)

(3.24)
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Proof. Now we consider the terms on the righthand side of (3.21) when |{] = 2. It follows from Lemma
2.1, (3.21), Holder’s inequality, Young’s inequality, and integration by parts that

1
=3 f (W) divA(V)EW < CIVV | |05W 3
< CIVIEIOWE, < Cesldi Wi,

L =-a f V(> +177) - (@VFu + (a + B)divdiuly)) - du

arx
< CIV@lol@V&u|dul, < # Ve + p2Vul} + Ccjldbul,
a;o
=% [ (@0 - du
< Clgleo|Vepl3| VN6l 1l

< CAlduly < CAldul; + Caj,

3 3
I = - f (65 AV W) = > A (VIO W) - W

J=1 J=1

< C|VV|o|[V2W[ + CIV2V 3 VW05 W], < Ces| VW3,
Is = —a, f (65((¢” + L)) — (@* + LA ) - O
< CUV@ILIVZuls + [Velolg V2 ula | V:uly)

a
< W' Vo2 + 2V3ul2 + CAV2ul2,

I, = 40 f (64(Ve® - 0)) = V* - Q) - Hu

0—1

< Clgloo V3]s V20l3 + [VI2 VY] + [Vl V2l Vs
+ 100l V@12 VVleo + [V leo VWl VL) V211l

< CcilVPul, < Cei + Ca3V2ul3,

4
I =q f VED - u < C||D|3l65uly < Ceo + Cci ™ 16 ul?.

Then, it yields that

1d 1 .
S= f W) AW + Sanal Vg + PVl < (c§ s 1) WE, + Ccl.

According to Gronwall’s inequality, we have

! 4 _
W2, + f | Vg2 + 2 V2ulids < C(Wol2, + i) exp (chr +Ccl ‘t) < Ccj,
0

forO0<r<T>.

From the relation that

Communications in Analysis and Mechanics
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(3.27)

(3.28)

(3.29)
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we have

e < Clv - Vo + gdivul
< C(V|w| Vel + |Pleoldivuly)
< Ccs, (3.30)
(¢idpr < CUVVIIVl2 + Mol V2BL2 + VLol Vil + [Bleol V2 ul2)
< Cq;.

Noting that

24y -
w +v- Vi + —71¢V¢ — (@ + ) (ahu + (@ + B)Vdivu)
’y —

5 (3.31)
6—1(a(Vv + (V)7 + Bdivvl;) - Vo + VO,
we get

iy < C(lelVuly + 1816Vl + 16 + 1771l Vutls + Il Violoo V12 + VD)
2 (3.32)
< Cey + Ccl.
For |ut|D| ’

IA

ludpr < CVVIsIVuls + Vol VZutly + V13Vl + [Blecl V22

+ 1V + Pl V2 + V3 uly + 1] Vel V20l .
+ V@2 Vv + 10l V20131 VW6 + [@loo| Viploo V201 + [V2D]) '

2

ch + Ccy" + Coyl Ve? + n2V3u|2,

IA

which implies that

t t 4

f luyl7,ds < C f (5 + Cel™ + gl Vg2 + PPV3ul3)ds < Ccl, (3.34)
0 0

forO<r<T>,.

Lemma 3.5. Let (¢, W, ®@) be the solutions to (3.4). Then

t
WOl + f | Ve? + n*V*ul3ds < Ccp,
0

!
2 2 2 6
B0 + OB, + [ lufds <
0

for0 <t <Ts 2 min{T,, (1 + Ce3)™).

Proof. Now we consider the terms on the righthand side of (3.21) when |{] = 3. It follows from Lemma
2.1, (3.21), Holder’s inequality, and Young’s inequality that

1
=1 f (EW)TdVAVIEW < CIVV]l WP
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< CIVIKIEWIS < Cesldi W,

L =—-a f V(> +177) - (@VFEu + (a + B)divdiuly)) - du
< CIV@loloV*ulaldul, < %| V& + PV R + Clul,
a0
1% [eeiow -
= Pl VVRAIVTU|2 @IV UV V]2 PloolPV U[V V]2
< C(\Vl2 IV VLI Viuly + [V20l3le V3 uls| Vvl + [VeloleViul |V v])
< CEV3UP +Cct + %| V& + VAUl

13:

3 3
I, = - f (650D AIaW) = >~ A (VIO W) - oW
J=1 J=1
< C(IVVIu VW + V2V VWV WL, + [V VL VWG| VW)

< Cc3| VW,

Is = —a; f (aﬁ(qﬁ +17)L(w) - (¢* + nZ)L(agu)) - u

< C(V@lo V203 V2l Vi uly + V30l V2 ulslViuls + [Vol2 [V ul3
+ V2010V uls| V2 uly + |Vele oV uula| V1))

< TSIV PV} + CI b,
Iy < CAIVPul2 + Cct + %| N
I; = a f VH®D - u < C||D||y|Vul, < Cep + Cc(‘;%‘ viul2,
where I¢ was estimated through the argument in [18, Lemma 3.5]. Then, it yields that

1d 1 o
Ed_t f((9§W)TA06§W+ Eala’l V(,Dz + 772V4I/t|% < C(Cg + C8_1 1)|W|5)3 + ch‘_

According to Gronwall’s inequality, we have

! 4
W2, + f V@2 + 12 VAulds < C(Wol2, + cit) exp (ccgt +Ccl! lt) < Ccp,
0

for 0 <t < T3 = min{T>, (1 + Cc3)™).
For |¢,|p2, from (3.29), we have

pilp2 < C(V2V3IVls + VYV Bls + Ve VBl
+ V2|3 Vuls + VI3 VZuls + 1BlelVul2)

2
Ccs.

IA

It follows from (3.33) that

2 2
lupr < Cc3 + Cey' + Ceol Vo + *Vul, < Cc; + Cei'.

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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For |u;|p2, from (3.31), we have

luilpe < C(AVIslllls + IBlIaliglls + lllallulls + llplllulls + lplol Vo> + 72 VEuly + [V OL)

2
5

ch +Cci" + Ces|Vg? + 12Viul,,

IA

which implies that

t ! 4
f lul2,ds < C f (5 +Ccy ™ + AUV + PV4ul))ds < Cc,
0 0
forO <r<T;s.

Combining the estimates obtained in Lemmas 3.2-3.5, we have

2
gz < Ceg il < Cez, 110@)Nls < Cej

t
IWIE + f oViulds < O,
0
!
|W|éz+f|90V3u|§ds§Ccé,
0
!
2 2 2 6
I + 2 + f uds < CCS,
0
!
|W|§,3+f leViul5ds < Ccj,
0
!
2 2 2 6
G0, + a2, + f wds < S,
0

for 0 < ¢ < T3 = min{T», (1 + Cc3)™*}.
Therefore, if we define the constants ¢; (i = 1,2,3) and 7" by

ci=cy=c;=Cley, T*=min(T, (1+Cco)™, (1 + CCO)_S‘%?},

then we deduce that

y
sup. (o0 + 10X + 1uColR) + [ 1o v < &
0<t<T* 0

)
sup. (0 + 1600 + o) + [ ¥ ubar <
0<t<T* 0

0
sup. (10 + 1600, + ) + [ loVtuiar <
0<t<T* 0

T* 4

sup (Ilull} + llgdl3 + llpil3) + f w2odt < Cc§,  sup [[DIF < Cc.
0<t<T* 0 0<t<T*

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)
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3.4. Passing to the limitasn — 0

Now we consider the system (3.4) when 7 — 0 as follows:

O +v- Vgo+ ELadivy = 0,

0
AW, + 32 A:(V)O;W + (¢ + nHL(W) = Q(V)H(p) + ,
Wi+ 21 Aj(V)O;W + (9™ + n)L(W) = Q(V)H(p) (alvq)] (3.46)
AD = @51 — b,
(@, W, D)li=o = (o(x), Wo(x), Dp(x)), x€T.

Based on the local-in-time a priori estimates (3.45), we now establish the following local existence
result.

Lemma 3.6. Assume (¢o, Wy) satisfies (3.6). Then there exists a time T* > 0 and a unique strong
solution (¢, W, ®) in [0, T*] X T3 to (3.46) such that
e C(l0.T°:H), ¢eC(0.T]:H),
ue c([o, T ;HS’) NL® ([o, T*] ;H3), s €[2,3),
eViue L*([0.7°1:L%), u, € C([0.T°];H')nL*([0,T"]: D?),
® e C([0.T°]:H) N L= ([0,T°];: H*).

(3.47)

Moreover, (¢, W, ®) also satisfies the a priori estimates (3.45).

Proof. We prove the existence, uniqueness, and time-continuity in three steps.

Step 1. Existence. Due to Lemma 3.1 and the uniform estimates (3.45), for every n > 0, there exists
a unique strong solution (7, W7, ®7) in [0, T*] x T° to the linearized problem (3.4) satisfying estimates
(3.45), where the time 7" > 0 is independent of 7.

By virtue of the uniform estimates (3.45) independent of  and Lemma 2.7, we know that for any
R > 0, there exists a subsequence of solutions (still denoted by) (p”, ¢", W), which converges to a limit
(¢, W) = (¢, ¢, u) in the following strong sense:

(@ W") = (@.W) in C([0,T"];H* (By)), as n— 0. (3.48)

Again by virtue of the uniform estimates (3.45) independent of 77, we also know that there exists a
subsequence of solutions (still denoted by) (¢, W7, ®7), which converges to (¢, W, @) in the following
weak or weak—* sense:

(¢". W) = (p. @, W) weakly—s in L= ([0, 7] H* (T°))
(¢!, 87) = (o1 @1 &) weakly—s in L™ ([0, T"]; HZ( ).
@7 — @ weakly— in L™ ([0, T"]; H* (T*)), (3.49)
(0.71: (),
u] — u, weakly in [? ([0 T*]:D? (T3))

u] — u, weakly— in L*
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which, along with the lower semi-continuity of weak convergence, implies that (¢, W, @) also satisfies
the corresponding estimates (3.45) except those of pV*u.

Combining the strong convergence in (3.48) and the weak convergence in (3.49), we easily obtain
that (p, ¢, W) also satisfies the local estimates (3.45) and

@'V — ¢V weaklyin L?([0,T"]x T%). (3.50)

Now we want to show that (p, ¢, W) is a weak solution in the sense of distributions to the linearized
problem (3.46). Multiplying (3.46), by test function f(z,x) = (f', /2, f*) € C* ([0,T*) x T*) on both
sides, and integrating over [0, 7] X T3, we have

[ [ sasas= [ [ wevwrgasas- [ Z2gvgnas
0 JT13 0 JT3 0 Tz’y_l

=— f uo - £(0, %) + f t f (" + 7’ L") fdxds (3.51)
0 T3

_Lff Q(V)'V(¢”)2fdxds—a1ffV(I)”fdxds.
6—-1 0 JT3 0 JT13

Combining the strong convergence in (3.48) and the weak convergences in (3.49)—(3.50), and letting
n — 0in (3.51), we have

f[fu.f,dxds—ftf(v.V)u.fdxds——sz ftngngfdxds

0 J13 0 J13 y-1Jo Jm

=- f uo - £(0, x) + f f ©*L(u) fdxds (3.52)
0 T3

9) ! !
i f QW) - V¢ fdxds — a; f f VO fdxds.
6-1Jo Jm 0 Jm

Thus it is obvious that (¢, W, @) is a weak solution in the sense of distributions to the linearized problem
(3.46), satistying the regularities

(¢.9) € C([0.T"1:H°), @€ C(0.T°]:H) nL=([0,T°]; H),
(¢nd) € C(0.T1:H?), ueC(0.T1:H')NL” ([0.T°]: H*), s €[2.3), (3.53)
eViue L([0.71:L%), u, € C([0.T°1:H')n L*([0,T°]; D?).

Step 2. Uniqueness. Let (¢, Wi, @) and (¢,, W,, @,) be two solutions obtained in the above step.
We denote
p=¢1—¢, W=W-W,, ©=0 -0,

Then from (3.46), and (3.46);, we have
G +v-Vp=0, AD=0,
which implies that § = 0,® = 0. Let W = (¢, #)". From (3.46); and ¢, = ¢,, we have

AW, + A\(V)W, = —*L(W). (3.54)
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Then multiplying (3.54) by W on both sides, and integrating over T°, we have

1d (- -
Ed—thTA0W+a1a|<prﬁ|§

IA

CIVVIIWP + [V, il e Vil (3.55)
aa _
o o1 Vi + CAIWE,

IA

which yields that
d - -
3 IWE + 11 Vil < CIWE. (3.56)

From Gronwall’s inequality, we obtain that W = 0, which gives the uniqueness.
Step 3. Time-continuity. First for ¢, via the regularities shown in (3.53) and the classical Sobolev
embedding theorem, we have

¢ C([0.71: H*) N C([0,T°]; weak — H°). (3.57)

Using the same arguments as in Lemma 3.2, we have

! _ _ 5 !
||so(t>||§s(||¢o||§+c f (||50||§||v||§+|¢V4v|2)ds)exp(C f [ ds),
0 0

which implies that
lim sup [le(®ll3 < llgolls -

t—0

Then according to Lemma 2.6 and (3.57), we know that ¢ is right continuous at # = 0 in H> space. From
the reversibility on the time to equation (3.46),, we know

peC(0.T7]: HY). (3.58)
For ¢,, from
o-1_ .
¢, =—-v-Vp-— T(pdlvv,
we only need to consider the term @divv. Due to
pdivv € L2 ([0,T°1: H),  (@divv), € L*([0.T"]: H'),
and the Sobolev embedding theorem, we have
gdiv € C([0.T"]: H?),

which implies that
i€ C(10,T°]; ).

Similar arguments can be used to deal with the regularities of ¢ and we can get that

¢ C([0.T°1:H), ¢, €C([0,T]:H). (3.59)
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Using similar methods as in the proof of Lemma 3.1, we can get that ® € C ([O, T"] ;H3).
For velocity u, from the regularity shown in (3.53) and Sobolev’s embedding theorem, we obtain that

ue C([0,T°]; H) N C ([0, T"]: weak — H"). (3.60)
Then from Lemma 2.4, for any s’ € [2, 3), we have
-5 Id
llully < Cluly *lully-
Together with the upper bound shown in (3.45) and the time continuity (3.60), we have
u e C([0,T*]; H). (3.61)
Finally, we consider u,. From equations (3.46); we have
2Ay . 0
U= —v-Vu— 22X 596 — a?Lu) + —— Q@) - Vg* + VO,
v—1 o-1
From (3.53), we have
2 2 7. 12 2 2 ¥7. 72
¢’Lw € L*([0,T°1; H?),  (¢°L@w) € L*(10,7"]; L),

which means that

¢’L(u) € C([0.7"]: H'). (3.62)
Combining (3.47), (3.58)—(3.59), (3.61) and (3.62), we deduce that
u, € C([0,7]:H'). (3.63)
Hence we complete the proof. O

3.5. Proof of Theorem 3.1

Based on the classical iteration scheme and the existence results for the linearized problem obtained
in Section 3.4, we are ready to prove Theorem 3.1. As in Section 3.3, we define constants ¢y and
¢; (i=1,2,3), and assume that

1+ llgolls + IWolls < co.

Let ((,00, WO = ((;50, uo)), with the regularities
@ eC(0.T°1:H), ¢"eC(0.T71:H%), ¢V e L([0,T°]:L7),
u’ € C(0, T*1; H )N L™ ([0, T*] ;H3) for any s’ € [2,3),

be the solution to the problem

X, +uy-VX=0 in (0, +o0) X T?,
Y, +uy-VY =0 in (0, +00) X T°, (3.64)
Z, - X*AZ =0 in (0, +00) X T?, '

(X, Y, Z)l,=o = (@0, b0, uo)  in'T°.
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We take a time 7" € (0, T*] small enough such that

-
sup (16 [} + 16 + 1’ 0IE ) + fo "V dr < 3,

0<t<T

-
sup (@l + 8O + 0], + fo "V dr < 2,

0<t<T*

-
sup (e, + 00, + 0], + fo "V dr < 2.

0<t<T*

Proof. We prove the existence, uniqueness, and time-continuity in three steps.

(3.65)

Step 1. Existence. Let (3, @,v) = ((,00, ¢, uo). We define (gol, wl, (Dl) as a strong solution to problem

(3.46). Then we construct approximate solutions

(¢k+l, Wk+l, (Dk+l) — ((,Dk+l, ¢k+1’ uk+1’ ch+1)

inductively. By assuming that ((,o", Wk, (Dk) was defined for k > 1, let (go"“, Wk, CDk”) be the unique

solution to problem (3.46) with (@, ¢, v) replaced by (tpk , Wk) as follows:
Ok VP 4 %‘pkdivuk =0,

2

V(Dkﬂ

AOW;H—I + 25:1 Aj(Wk)ajWkH + (ng+1)2L(Wk+l) — Q(Wk) . H(QOkH) + al[

ADK! = ((pk+l)5%| — b,
(‘PkH, Wk+19 q)k+1)|t:0 = (QDO(X)’ W()(X), (Do) 5 X € T3-

(3.66)

It follows from Lemma 3.6 that the sequence (c,o", Wk, d)k) satisfies the uniform a priori estimates

(3.45) for 0 < t < T*. Then, from (3.66), we can obtain that
|
G Uk v 4 7 Vet + T(@’f divu*! + g divi*) = 0,

3
AOWtk+1 + ZAJ(Wk)a]Wk+l + (‘,0k+1)2L(Wk+l)
j=1

3
= > AWHWE = F (T + LW + Q) - (B - Hgh)
j=1

+ QWY - + a (V£k+1) ,

ADF! = (¢k+l)% _ (‘pk)%.

k+1

First, we consider |¢**!|,. Multiplying (3.67), by 2¢**! and integrating over T, one has

d o —1
d_tl(’_DkHl%: _Zf(uk.v()bkﬂ_i_aktvwk_i_ 12 (¢kdivuk—1+¢kdivﬁk)¢k+1

< CIVUMl@™ 5 + CIE ! (17 IVe | + 18IV | + 16" div i),

(3.67)
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which means that

d .
aﬂ@“%ﬂ@scx@“%nﬁ+v(m%n@+w¢%m§+w%dwu%ﬂ@) (3.68)

with C, = C(l + v‘l) and0 <v < 1lo is a constant.
Furthermore, from (3.67); and Lagrange’s mean value theorem, we can easily deduce that

_ 2 3-
|A(I)k+1| — ﬁ(9k+l)£|(,—0k+ll < Cl(,_Dk+1|, (369)

due to 6 € (1,2] U {3}, where 6**! is between ¢**! and ¢*.
It follows from (3.69) and the Poincaré inequality that

5+, = g1, 3.70)

Next, we consider |[W**!|,. Multiplying (3.66); by 2W**! and integrating over T°, we obtain that

d - -
a f(Wk+1)TAowk+1 + 2a10|¢k+1Vﬁk+l|é + zal(a +,8)|90k+1 le ﬁk+1|%

IA

3
[y avaorhmit s [ 3w oW
=1

_ 2611 fv(sok+l)2 . Q(ﬁk+1) . L_lk+l _ zal f(¢k+1(‘;0k+1 + Sok) . L(uk)) . uk+l

0—1
6-1 fv(¢k+l(¢k+l + gDk)) X Q(l/lk) . =k+1

fv(sok)Z . (Q(Mk) _ Q(l/lk_l)) . ﬁk+l +a fv(i) . ﬁk+l

(3.71)

<

- 2(11

0

,
= >

i=1

+ 2a,

It follows from Lemma 2.1, (3.21), Holder’s inequality, Young’s inequality, and (3.70), that

Ji

3
J2 = fZAJ-(V_Vk)ﬁjWk-VVk“
Jj=1

CIVWH [ WELIW )y < OV WS + v,

. fv(g0k+l)2 . Q(ﬁk+1) . ﬁk+1
CIVE |l Vi i, (3.72)

12 . A g —k+1)2
C|W+|2+1—0|90+VM+|2,

_MRPWW¢“+¢»MM»ﬂW

f (W"“)T div A(WHW ! < CIVWHA W R < w12,

IA

J3 = —2(11

IA

IA

Ja
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IA

_krl) (kL) | kg2, k et | kel k) o2,k
Cle" ™ Ll V'l + Cl@™ Lal™ " || V-uu' 3

T T T Y, 2 k12002 k2 . Y ke lgakel)2
SC|90+|z|u+IzIQDVuloo+C|90+|2|Vu|3+1—0|s0+Vu+|2

IA

_ _ a _
C|Q0k+1|g + C(l + |"Ok+lv4uk|2)|uk+1|§ + 1_0|90k+lvuk+1|%,

0—1
Js

- 2(11

fv(¢k+l(g0k+l + SDk)) i Q(uk) . Ijlk+1

CIV2ulslg"* Ll @ 15 + CIg alg V2ol 12

+ CIF o Vib || V|, + ClE ol VE | Vi .

+ Clg 1 BIVUb | [V,

CIg '3 + C( + [V DIWE +
o0—1

IA

A1 il -k+1)2
— Vi
10 l 15,

f V(g")* - Q) — oY) - !
CIVRF || VE @ |, < OV IWR R + vk Vb,

IA

J6 2(11

IA

—
~
|

= fVCT) Ca < C|VCI)|2|L_tk+1|2 < C|V(D|% + C|ﬁk+l|§

_ 2 _
<C |(,0k+1|2 + Cluk”I%.

Then, from (3.71) and (3.72), it yields that

d (. _
E f(Wk+l)TAowk+l +alal|(’0k+lvﬁk+l|%
< C(v7' + I VAER) WS + QI + v (16 Vi B + 185 + IWFB).

We denote

k+1 = k1, 22 kel N2
S = sup W (s)l; + sup [@ (s)]5-
5€[0,1] s€[0,1]

From (3.68), (3.70), and (3.73), we have
d - -
& f((WkH)TAOWkH + |¢k+1(s)|§) + |‘pk+lvlzk+1|%
< ESIWHR + 18 D) + v (16 VB + 1843 + IW4G),

for some E* such that fot Efds < C+C(1 + %)t. According to Gronwall’s inequality, one has

t
Sk+1+flg0k+1Vﬁk+1|%dS

IA

0
!
- 1
CVf (" Vi3 + |g"3 + W 3)ds - exp(C + C(1 + —)1)
0 v

IA

!

_ 1

(cv f Vi 3ds + Ctv sup (W3 + |8*1)) exp(C + C(1 + =)n).
0 s€[0,1] \4

We can choose vy > 0 and 7. € (0, min(1, 7**)) small enough such that
1

1
CvpexpC < 3 exp(C(1 + —-)T,) <2,
v

(3.73)

(3.74)

(3.75)
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which yields that

+00

T.
Z(Sk+l(T*)+f |‘pk+lvﬁk+llg) < C < +oo. (3.76)
0

k=1
It follows from (3.45), (3.70), and (3.76) that (¢*, W*, ®*) converges to a limit (¢, W, ®) in the
following strong sense:

(", WK, &%) = (o, W,®) in L0, T.; H*(T?)). (3.77)

Due to the local estimates (3.45) and the lower-continuity of norm for weak or weak* convergence,
we know that (¢, W, @) satisfies the estimates (3.45). According to the strong convergence in (3.76), we
can show that (¢, W, @) is a weak solution of (3.1) in the sense of distribution with the regularities:

0 e L([0.T°]: H®) ¢, € L™ ([0,T"]: H?) ¢ € L™ ([0, T*1: H*) . ¢, € L™ ([0, T"]: H?),
® e L ([0, T HY) ,u e L™ ([0,T°]: H*) . V*u € L* ([0, T7]: L?), (3.78)
u, € L ([0, T°]: H') n L* ([0, 7] D?).

Thus the existence of strong solutions is proved.

Step 2. Uniqueness and time-continuity. It can be obtained via the same arguments used in the proof
of Lemma 3.6. o

3.6. Proof of Theorem 1.1

Proof. Now we are ready to prove Theorem 1.1 and the proof is divided into two steps.

Step 1. Existence of regular solutions. First, for the initial assumption (1.8), it follows from Theorem
3.1 that there exists a positive time 7', such that problem (3.1) has a unique strong solution (¢, ¢, 1) in
[0, T,] x T? satisfying the regularities in (3.3), which means that

(pé—;l,p%) = (.)€ C' (0.T)xT), and (u,Vu) € C((0,T.)xT).

2
o—

Noticing that p = @1 and % > 1, it is easy to show that

peC ((0.T.)xT. (3.79)

Second, the system (3.1), for W = (¢, u) could be written as

¢ +u-Vo+ Lrpdivu =0,
u,+u-Vu+yTIV¢ +¢°Lu=V¢° - Q(u) + V0.
Multiplying (3.80), by g—f;(t, X) = y%l(b%(l‘, x)eC ((0, T,) % T3) on both sides, we get the continuity
equation in (1.1), :
p;+u-Vo+pdivu = 0.
Multiplying (3.80), by ¢77 = p(t,x) € C! ((0, T.) X T3) on both sides, we get the momentum
equation in (1.1), :

pu, + pu - Vu + VP = div (u(p) (Vu + (Vu)") + A(p) div ulz) + pV .
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Finally, recalling that p can be represented by the formula
t
p(t, x) = po(U(0, 1, x)) exp ( f div u(s, U(s, 1, x))ds |,
0

where U € C! ([O, T.]1 %[0, T.] x T3) is the solution to the initial value problem

%U(t, s,x)=u(s,U(s,t,x)), 0<s<T,,
Uitt,x)=x, 0<t<T, xeT>,

it is obvious that
p(t,x) >0, VY (t,x)e(0,T,)xT.

That is to say, (o, u, @) satisfies problem (1.1) in the sense of distributions, and has the regularities
shown in Definition 1.1, which means that the Cauchy problem (1.1)—(1.2) has a unique regular solution

(o, u, D).
Step 2. The smoothness of regular solutions. Now we will show that the regular solution that we
obtained in the above step is indeed a classical one in positive time (0, 7'.].
Due to the definition of regular solution and the classical Sobolev embedding theorem, we immedi-
ately know that
(. V. pu 1, Vu, V®) € C ([0, T.] x T?).

Now we only need to prove that
(u,, divS) € C((0, T.] x T%).
Next, we first give the continuity of u,. We differentiate (3.80), with respect to ¢ :
Uy + ¢*Lu, = — (902)[ Lu— (u-Vu), - %V ((pz)t + (Ve Q(u))t + VO, (3.81)
which, along with (3.3), easily implies that
uy € L ([0, 715 L%). (3.82)

Applying & (12 = 2) to (3.81), multiplying the resulting equations by &u, and integrating over T°, we
obtain

%% (], + @ [pVOuu]; + (@ + B o div ],
- [ (96 0 () - (#(¢'Lu) - ¢'Lw)) -
. f (—ai ((¢2), L) = - V), - %&iv (¢2)t) g (3.83)

+ f & (Ve - Q) - &, + f VoD, - &,
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It follows from Holder’s inequality, Lemma 2.1, and Young’s inequality that

Py

IA

P,

IA

IA

i
I

IA

IA

P,

IA

IA

IA

IA

P6:
<

P7:

[ 56 ofain)) ot

C |eV3ul, |V2u, Vel < == |oV3u> + Clu,

(04
20
f— (8){ (gazLut) — (sz@iu,) . 8§ut
C (|eV2ud, IVepleo + 1Vl lurl e + [V2ep|, [ V2] ) ] 2
a

20
[() 1) a5

C(|V2el; ILuls il It 2 + | @Vt lpilpo | Lutls
+ [Vle [Veulg Luls | p2 + [V u|, [Vl L] 2

»

Vi, + Clul2, .

Vgl lpilo [V, T2 + lilo lusle [ 094 )

SoleVul; + Clull, + Clviul, + .

f—@i(u - Vu), - 8u,
C (lully + lutg p2) lluallz — f(u-V)aiuz-é’iuz

2 2 2
C+ Clu,ID2 + C|Vu|s Giut , < C+ Clutlp2 ,

- [, o

y-17°
C( |V2¢’|2 |¢V3”’|z + |¢f|<>° |V3¢|2 |V2”f|2
+ C|V2|, IVeils [V2u|, + [V, IVl Vi), )
%IW%I% + O+ 105u,P),
f & (Ve* - o) - u,
;—O|<pv3u,|§ + Cl6u, + CloV*ul2 + C,

f VHD, - Fu; < Clou,| V2D, < Clobu s + C.

It follows from (3.83)—(3.84) that

—— |V2ut|§ +

(0

> |<,0V3u,|§ <C |V2u,|§ +C |50V4u|§ + C.

(3.84)

(3.85)

Then multiplying both sides of (3.85) with 7 and integrating over [, ¢] for any 7 € (0, 7), one gets
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!
2
a2, + f s|eViu|, ds < Crlu @, + C(1 +1).

(3.86)
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According to the definition of the regular solution, we know that
Veu, € L*([0,7.]: %),
which, along with Lemma 2.8, implies that there exists a sequence s; such that
sy > 0 and s |V2ut (g, )|§ -0, ask— +oo.
Then, letting 7 = 5, — 01in (3.86), we have

!
tlutléz + f s |¢V3u,|§ ds<C(l+1<C,
0

which implies that

ru, e L*([0,7.];: H2). (3.87)
Based on the classical Sobolev embedding theorem
L= (10,73 H') n W' ([0, TI: H™') < C ([0, T]; L9), (3.88)

for any g € (3, 6), from (3.82) and (3.87), we have
tu, € C([0,T.]1; W),

which implies that u, € C ((0, T.] % T3). Finally, we consider the continuity of div S. Denote N =
¢*Lu — V¢? - Q(u). Based on (3.3) and (3.87), we have

N € L™ (0, T.; H?).
From N, € L2 (O, T.; Lz) and (3.88), we obtain /N € C ([0, T.]; W1’4), which implies that
NeC((0.T.0xT).

Since p € C ([0, T.] x T3) and divS = pN, then we obtain the desired conclusion. |
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