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Abstract: In this paper, a boundary integral equation method is proposed for the fluid-solid inter-
action scattering problem, and a high-precision numerical method is developed. More specifically,
by introducing the Helmholtz decomposition, the corresponding problem is transformed into a cou-
pled boundary value problem for the Helmholtz equation. Based on the integral equation method,
the coupled value problem is reduced to a system of three coupled hypersingular integral equations.
Semi-discrete and fully-discrete collocation methods are proposed for the singular integral equations.
The presented method is based on trigonometric interpolation and discretized singular operators applied
to differentiated interpolation. The convergence of the method is verified by a numerical experiment.
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1. Introduction

The fluid-solid interaction scattering problem has received more and more attention due to its wide
application in seismology, oceanography, biomedicine and other fields [1-3]. When an incident acoustic
plane wave encounters an elastic solid, which is immersed in a homogeneous fluid, the elastic solid
will have small displacements. We call such a problem the fluid-solid interaction problem. This
physical phenomenon is generally described by a transmission problem with acoustic scattering and
displacements in the elastic solid. The fluid-solid interaction problem has many applications, such as
underwater nondestructive testing (see [4] for details). There are many numerical methods to solve
such scattering problems, such as the variational methods [5, 6], the finite element method [7-10],
mixed finite element method [11-13], T-matrix method [14, 15], immersed boundary method [16, 17]
and pressure-correction schemes [18]. Some other related methods can be found [19-22] for inverse
problems and [23-27] for the direct problems.

The fluid-solid interaction scattering problem is mathematically expressed as a class of boundary
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value transport problems. Gatica et al. [8,9, 12] give some numerical methods for the fluid-solid
interaction problem based on the finite element method. For the scattering transmission problems,
the boundary integral equation method is effective [28—32]. The main idea is to obtain the boundary
integral expression of the unknown function by using Green’s formula or potential theory, and then to
obtain the boundary integral equation equivalent to the original scattering problem by using the limiting
idea to restrict the solution to the boundary of the domain. In [33], Luke and Martin gave several
kinds of boundary integral equations for solving fluid-solid interaction direct scattering problems of
bounded structures, as well as the analysis of existence and uniqueness of solutions. Atkinson [34]
proposed that the most efficient method for solving boundary integral equations on smooth boundaries
is based on trigonometric polynomial approximation. In addition, due to the singularity of the integral
equation, the solution of the equation requires special handling of the singularity of the integral kernel;
see [35] for details. Kress [36] studied the quadrature method of logarithmic singular integral equations,
which discretized the principal part of the singular operator based on triangular interpolation. The
quadrature method of hypersingular integral equation was studied based on triangular interpolation
and differentiation in [37], a fully discrete collocation method was proposed, and the convergence was
analyzed in [38].

In this paper, we study a transmission problem with acoustic scattering and displacements in the
elastic solid. When there are not Jones frequencies [39, 40], the corresponding problem is always
uniquely solvable. The Fredholm theory combined with the variational method can give a theoretical
analysis about this problem. The boundary element methods can get the accurate numerical solution of
this problem [33,41]. Inspired by [42—45] singular integral operators can be decomposed into isomorphic
operators and compact operators, and the fluid-solid interaction scattering problem is reduced to the
coupled singular integral equations by the Helmholtz decomposition. Then, the convergence analysis of
integral equations can be carried out by using the collocation method.

The organization of this paper is as follows. In section 2, we introduce the fluid-solid interaction
scattering problem. In section 3, we give the boundary integral equation of the model and decompose
the singular integral operator. In section 4, the semi-discrete and fully discrete forms of the boundary
integral equation are given, and then the convergence is analyzed using the collocation method based on
triangular interpolation and differentiation. Section 5 presents a benchmark example to demonstrate the
effectiveness of the proposed method.

2. Problem formulation

In this paper, the model is that there is a sufficiently long elastic cylinder immersed in homogeneous
compressible inviscid fluid. We consider the corresponding mathematical problem between the cross
section of the elastic cylinder and the fluid, that is, the two dimensional fluid-solid interaction problem.
We denoted Q C R? be an isotropic elastic solid obstacle, and the boundary 4Q is analytic. Outside the
solution domain €, there is full filled with the compressible inviscid fluid in RZ\ Q. The densities of
the elastic solid obstacle and the fluid are denoted by p, and p;. v = (v;,v,)" is the unit normal vector,
and 7 = (11, 7,)" is the tangential vector on dQ. In general, the components of v and 7 satisfy 7; = —v,,
T = V1.

Given an incident field u"(x) = ¢4, find the elastic displacement u € (C%(Q) N C'(Q))? and the
acoustic scattered field u* € C2(R%\ Q) N C'(R2\Q). Here, the elastic displacement u satisfies the
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following Navier equation
uAu + (A + VY -u+ p,w’u =0, in Q. 2.1)

A and y, usually called Lamé constants, satisfy g > 0 and g + 4 > 0. w > 0 is the frequency. The
acoustic scattered field u* satisfies the Helmholtz equation

A’ + Ku® =0, inR*\ Q, (2.2)
and the Sommerfeld radiation condition gives

lim r'2(0,u* — iku’) = 0, r=|x]. (2.3)

r—00

Here, k, = w/c is the wavenumber, with ¢ being the sound speed in the fluid. In addition, the elastic
displacement u and the total field u = u® + u™ satisfy the transmission conditions on the interface <,

1

——d,u, (2.4)
wopyr

T(w)=-uv, u-v=

where the traction operator 7 is given by
T() :=po,u+ A+ u)(V-uy

It has been shown (see [39]) that for certain geometries and some frequencies w, which are called Jones
frequencies, the solution of the corresponding transmission problem (2.1)—(2.3) is not unique. In this
paper, we assume that the frequency w is not one of the Jones frequencies.

The vector operator curl for a scalar function w is given by

ow  Ow\'
Vxw=[—, -] .
xw (6)62, axl)

The Helmholtz decomposition for the solution u of (2.1) gives the following form:
u=Vu,+Vxu,, (2.5
where u,, and u,, respectively, are the solutions of the Helmholtz equations

2. _ 2., —
Auy + kyu, =0, Aug + kus = 0,

with the compressional wave number &, = fj:;z and the shear wave number k; = /% <> respectively.
m u
Combining (2.4) and (2.5), we get
10,(Vu, +V xug) + (A + ) (V- (Vu, + V X uy))v = —uy, (2.6)
(Vu, +V X uy) - v = 0,u/(wpy). (2.7)
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We can rewrite equation (2.6) by the normal vector direction and the tangential vector direction,
respectively. Together with (2.7), we will have

Au, + Kiup =0, in Q,

Aug + Kfus =0, in Q,

Aw’ + K =0, inR2\ Q,

uv - 8,Vup + v - 8,V X ug — (A + picou, + u* = fi, on 0Q, (2.8)
7-0,Vu, + 70,V Xu; = fo, on 0Q),

dyuy + ey — Ou* [(WPpy) = f3, on 0Q,

lim, e 72(8,u° — ikaut®) = 0, r=xl,

with fi = —u™, fo = 0, f3 = 0,u™ [(p;w?).
For the above problem, we are interested in the case «, > 0, x; > 0 and «, > 0, since the problem we
considered is always a practice problem, such as the copper alloy in the water or the rock in the magma.

3. Boundary integral equations

3.1. Coupled integral equations.

From [44], the solution of the BVPs for the Helmholtz equation can be given by the form of
single-layer potentials, and thus the solution of (2.8) will be given as follows:

() = ﬁ gl = Dn0ds0). 1<, 3.1)
y(x) = fa (k= Dg0)s), X €9 (3.2)
W) = fa Qe Dg0Xs0). T R\D (3.3)

with unknown densities g; € C*(0Q),i = 1,2,3. O(k|x — y|) = ﬁHgl)(le —y|), x # y, is the fundamental
solution of the two-dimensional Helmholtz equation with H(()l) being the Hankel function of the first
kind of order zero.

If we let the point x tend to boundary 9Q in (3.1)—(3.3), together with the jump relations of the
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single-layer potentials (see e.g. [43,44]), we can get

d(g17)
or )

8©(Kp|x YD d(g11)

Ji(x) = — px VT(X)f Dlkylx = YDIVOIV' ()] gl(y)V(X)dS(yH v () ——

0D(kplx = yI) (g1 v)
90 aT()C) 6 aV(X) a

v () f Dl — O g IMAS) + 37 () (gzv)< )

OD(k, P . OD(k, P
T () f (;TI(J; ) v (ng) s + v () f (gVI(J; : v (ng) ()ds0)

() (ds(y) + " (x) f ()ds0)

-1+ u)K2 f(«, O(kplx — yDg1(ds(y) + fa D(kalx = YNz (ds(y),

£ = - 27 () f Doyl = YDIYOW I OIS0 + 37700 (gf)m

AD(kylx — yI) d(g1v) 3(D(Kp|x D agi7)
ot or DEOTIM | T e

T () f Dlilx = DT ()’)]gz(y)V(x)ds(y)+ L <82V>( )

0D(k,|x — yl) 0(ga7) T 6(I)(Ks|x )] 6(ng)
50 BT(x) or 0)s() +7 (x)f ov(x)

ID(kylx = yD) OD(ks|x — yI)
Sx) = f o x ) g1(y)ds(y) + Egl(x) + ﬁg aT—(x)gz()’)dS()’)

1 aq)(’<a|x y|) g3('x)
ds
- fa g ) + 0

-7 (x)

ds(y)

+77(x)

Mds(y),

Through using the single-layer operator

(So)) =2 fa (b= yDg0Ms).  x <09

and its normal and tangential derivative operators

{(Kagx)c) =2 i TE s,

(Hy9)(x) =2 [, “5eee(y)ds(y),
the corresponding coupled equations (3.4) can be rewritten as the form

2f1(x) =— ,uKivTSp[vagl]v + v K,[10:81 + §10:7] — v " H,[v0, 81 + g10:v]
+ VTS [TV galy + v K[V ga + g20,v] + v H 7082 + €20,7]
— A+ S plg1] + Salgsl + pu(v - 0:7)g1 + (v - 0:v)ga + udgo,
256(x) == 107" S v g1y + 7K, [18:81 + 210:7] — " Hy[vdeg1 + g10:v]
+ K2TTS [TV gl + TT K [vDr g2 + £20:v] + T H[10, 82 + g20:7]
+ (- 0:1)81 + (T 0:v)82 + 0:81,

[g5]
2150 =Ky lg11 + Hylgal - 2283l 4 g 83
prw prw

We will get the density functions g, g, and g3 by solving the system (3.5).

34

(3.5)
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3.2. Decomposition of the operators

Suppose that 9D is given by

2() = (z1(D),22(1)), 0 <1< 2m,

with \/(z’1 (0)? + (zé(t))2 > 0, and z(¢) is a 2r—periodic function. To simplify the corresponding coupled
system, we introduce the parameterization of the integral operators S, S i, K, Ko, Hyj as follows:

(Sop)0) =12 () fo } s (1, Me(mdn,

(Saijp)1) = 12/ (D) fo ) mi(t, pm (t, m)sq(t, mMe(mdn,
(Krp)(t) = fo ” ko (t, me(mdn,

(Koip)(1) = fo i} mi(t, Mko(t, Me(mdn,

(Hop)(1) = fo ’ ho(t, Me(mdn,

2
(Hyip)(t) = fo m(t,Nhs(t, n)e(n)dn,

with
s = 5 Hy (6o l2(0) = ).
ke H} (kg l2(8) = 2()
= T e 01 ().
ik H (ki 12(0) = 2(p))) N
he = = a0 201 mGey
and

n(t) = (2(1), =z, ()", v=voz,
(1) ;= (21(1), ()", T=7og,
T =1,1), ¥V =0.%), mo(t, 1) = |2 ()],
my(t,n) =V OV =T O,  mat,n) =V OV () =T (OT (),
msy(t,n) = V' (OTM) = =T OV(), mu(t,n) =¥ OF () = -7 OV ().
Obviously, the functions m;(t,n),i = 0, 1, 2, 3, 4, are analytic.
For the 2r—periodic scalar function w : R — C, we define H?[0, 2x], p > 0 by the corresponding
space, which is equipped with the norm

(&9
Tw = > 4+ m?) il < o.

m=—00
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Here,
27

W, = — w(t)e ™ dt
27T 0

denotes the Fourier coefficients of w. We introduce the Sobolev space
H?[0,2n)° = v =i,va,m3)" 1 vi(t) € HP[0,2r],i = 1,2,3},

and equip the norm

v =l vill, + v llp + sl

Introducing the operators E; : H?[0, 2n] — H?[0, 2r],

(Eip)(t) = mi(t,)¢(1), i=0,2,4,

and the differentiation operator D : H?[0,2n] — HP7'[0,2n],

(De)(1) = ¢' (D).
By equation (3.5), multiplying |z’ (#)|, we can get the system

A Ap Aller Wi
Ap = |Az1 Any Axz||p2| = |W2], (3.6)
Az Az Aszf|es I

where

An =~ pEo + pK 3D + uKpy — ptHyp D = pHyy — (A4 ()K,S ,Eo + pEa,
A = koS g1 Eg + uK D + pK g + pHD + uHgy + pEs + puD,

Az = S4Eo,

Ayt = K0S )31 Eo + KD + Ko + HyaD + Hyy + Ey + D,

Ay = K?S“]Eo - KD —-Ky+HgD+ Hp — Ey,

Az =0,

Ay =K,Eg+D, Ay =HE, As;=(E)—K.E) wp;.

and ¢; = g; 0z, w; = 21Z(OI(f; 0 2, j = 1,2,3.
Since the kernel s, (¢, i7) of the single-layer has a weak singularity at ¢ = n, the kernel s,.(¢,77) can be

rewritten by

l’ —
5o(t,) = s(t, ) In (4 sin® T”) + (1,7, 3.7)

with
1
sL(s,m) = —==Jo(ke|2(t) — z()D),

2n
t —_
S (t,1) = so(t.m) = s,(t,7) In (4 sin’ Tn)
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The above two parts are analytic, and the values at ¢ = i are given by

1 i E 1 K
L, ) = —— 0=+ — 2“2z
sp(t.0) = =5 (60 =5 -~ = —In(FE W)

Based on the above equations, especially by equation (3.7), the singular integral operators S, S »;; will

be split into

S, =S +82+83

Seij=8L. +8% +83

oij o,ij ij?
with
. 21
(%@@=£14Mmt2)amwwm
21
(S29)(1) = l:ﬁ@mwwm
s3 z—lfh d—if2”1(4 21— Nppa
( 90)()—” ) e(mdn ) n (4 sin’ 7 e(mdn,
2
St = [ n(asin® )5k mme. pm (e g,
27
w@@m:i:ﬁmmmmmmmmﬂwm
3 1 2 ) Zt_n
S0 = 5 | (2= In(4sin® —=)Je@ymi(e mm;(r. n)dn.
0
The kernels

1 1
Shtm) = st + —, 32t = si(tn) - =
2 Vi

are also analytic with 5! (¢,1) =0 at7 = n.
As in [46], the kernel k(t,77) has two parts as follows:

l‘ —
ko(t, ) = k(8 1) + k3 (£, m) In (4 sin’ T”)
with

Ko 1 (Ko |2(2) — z())
27z(r) = z(m)l

Btm) = kot = Kt In (4sin® =),

kb (t,m) =

[2() — z()] - n(D),

These two parts are analytic, and the values at ¢ = 1 are

Z7(t) - n(t)

K2(t,1) = ,
o(61) 27|z (1)

kit,ny=0

(3.8)

(3.9)

(3.10)
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Therefore, K¢, K, will be in the following form

(Ko)(1) =(K o)1) + (K2)(2)

27 27

de . t—

= f ko (8, me(dn + f In (4sin’ Tn)kfr(t, me(ndn,
0 0

(Ki)(t) =(KL0)(1) + (K2)(t)

27 27

de . t—

< f ke (2, mymi(t, mp(m)dn + f In (4sin’ Tn)k(‘,(t, mm;(t, )e(n)dn.
0 0

Following the idea in [42], the kernel A, (¢, 7) will be split into
t— -t
o (1) = I(t, ) + Bt ) In (4 sin? T”) + hl(1, 7) cot UT (3.11)

with

n-t
1 _ 2 —_ .nt
W) = s 120D = 0] 00,
Ko J1 (Ko |2(2) = 2()])
27tlz(2) — z(n)|

-t t—
W3(t,m) = ho(t,7) — h..(1,7) cot UT — B2(t, ) In(4 sin’ T”),

R2(t,n) = [2(t) — 2(p)] - ' (2),

When 71 = ¢, the corresponding form will be
3 2 1 1
ho(t,t)=0, h (t,1)=0, h(t,1)=—.
2n
Based on the above equations, especially by the equation (3.11), the singular integral operators H,,
H,; will be given by
H,=H'+H* +H' +H-+ H, (3.12)

H,,=H'+H +H +H, +H

oi’

(3.13)
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with
o =L [ ot Tl oamdn+ - [ oo
( 90)()—2ﬂf0 cot — () n+2ﬂf0 p(n)dn,
1 21 _
(@t =5 [ (2= n(ssin® 1) since = metnin,
~ 271'~
(H')(1) = fo R (t, )e(s)dn,
21
@p0 = [ n(asin® TR mecsidn,
0
~ 271'~
(H2p)(t) = fo R2(t, m)e(s)dn,
1 1 21 n_t l 21
(&@®=7j1mb—%%mﬂwm+—j‘w@mwwm
JT 0 2 27T 0
1 21 _
(o0 =5 [ (2= (asin® 7)) sinte = e i
27
(H!o)(®) = fo R (¢, mymi(t, n)p(s)dn,
) (" R/ AV .
(o0 = | In (4 sin® — = )Rt mymi(e, p)e(s)d,
27
G&@@=£ B2t mymi(t, )p(s)dn.
The kernels
- 1 n-—t
R = (Bt = o) cot .,

- 1
R2(t,1m) = h2(t, 1) + = sin(z — 5),
2

I+ 2sin(t — 5)

h(t,n) = R(t,n) - >
JT

are analytic. The values at 17 = ¢ are given by h'(¢,£) = h2(t,1) = 0.

3.3. Operators equation

By the decomposition of operators, we rewrite integral equations (3.6) by the following from:

Ap=(T +H+B+C) =w, (3.14)
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where ¢ = (1,02, 03)", w = (Wi, wa,w3)", and B = B, + B,,C =C; + C, + C3 + C4, and

—uH!D  pHID+uD 0 UEs —pH)  pE, + uH, 0

d ) d

7Y Hp+D  H'D 0|, H¥| E,+H! H-E, o .
1 E 1
0 0 HiD Ey H'Ey - —-H;D

. —yKIZ,SflEO -1+ ,u)Kf,S3E0 - ,uH% ,quSglEo + yHi S3E,

8 Y K283, + H? RS3Eg+HE 0 |,
0 H’E, 0

-uH? pH; Ol[D D 0
8, Y80 2 H ollp D o,
o 0 oflo o o0

K}, = pHY = S | Eo = (A + piES LEy - puKY +puH2 + S| Ey S LEg

def P~ pll 14 s~ 513
‘e 1 72 271 _rl 72 231
C = K, +H,, +pux,S ,15Eo K, +H, + S, Eo (? ,
1 72 —K.Eo
KpEO HE, gy

pK )y —pH>, pK) +pHL Ol[D D0

def — —~, ~,
.Y Go| K\ +H, -K,+H, o||D D o,
0 0 ojflo 0 o
. u(K2, —H', - H3, - KéEiHEQ) -+ WCS2Ey  u(KY + @4 +H+ K§§~§13Eo) S2E,
C; ef K§2 + ﬁ;4 + H1374 + ykf?SiBEo K2, + H, + H3, + kK2S?, | Eg 0 |,
K2E, H'E, + HE, —Kiky
P s $ wpy
2 7 73 2 7l 73
def ~ /'le3_/'lF1:11171 _ﬁle #Ksl+#€1~s3+/'LHx3 oyp D 0
Cs = CiD| Ky +Hy+H, -K%Z+H! +H 0|[D D 0f.
0 0 o[flo 0 o

It should be noted that, for all p > 0, the differential operator D : H”[0,2x] — HP~'[0,2n] is
bounded for the nullspace containing only the constant functions.

Theorem 1. The integral operators H and B are compact operators from HP[0,2r]* to H?~'[0, 2x]°.

Proof. Noting that E;¢ = m;(t, t)¢ for i = 0,2, 4, where m;(t, t) are analytic, using [43, Theorem 3.1], we
know that E; are bounded operators from H”[0, 2r] to H”[0, 2n]. The operators H), H )‘ : HP[0,2n] —
H?[0, 2rr] are bounded. Noting m;(t, ) = 0 and using [44, Theorem 12.15,13.20], we get that H31 isa
bounded operator from H?[0, 2x] to HP*'[0, 2n] for p > 0, then H31D is also a bounded operator from
H?[0,2nr] to H?[0, 2r] for p > 0.

Therefore, H : H?[0,2x]> — H”[0, 2x]* is bounded and consequently is compact from H”[0, 27x]?
into HP~'10, 2x]3.

In fact, it is sufficient to prove that the operators B, B, are compact by 8 = B, + B,. From [44,
Theorem 8.24], we have that H?,S3 are bounded operators from H”[0,2x] to H?*'[0,2x], then the
integral operators S3 , S3,, H5 are bounded operators from H”[0, 2x] to H?*'[0, 27] for p > 0, hence,
B,,8, : H?[0,2x]® — HP*'[0, 27> are bounded. Note that D is bounded from H”[0.27] to HP~'[0, 2],
then B, is bounded from H”[0, 2n]* to H?[0, 2x]>.

Therefore, the operators B, B, consequently are compact from H?[0, 2] into H?~'[0, 27]°.

Communications in Analysis and Mechanics Volume 15, Issue 4, 716-742.
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Theorem 2. The integral operator C is a compact operator from H?[0,2n]? to H?[0, 2x]°.

Proof. First, it should be noted that
ki(t,t) = WA(t,0) = 5.(t,0) = 0,0 = p, s, a. (3.15)

Together with [44, Theorems 13.20], we can get that K, H2, S! are bounded from H?[0,2x] to
HP*2[0, 2x]. Thus C;, C, are bounded from H”[0, 2x]? into H”+2[0 271]3 Further, C, = C,D. Then, C,
is bounded from H”[0, 2x]? to HP*'[0, 2n]>.

Second, the goal is to show the boundedness of C;, C4. Noting that kernel functions h?,, kfr and

h1 are analytic. From [47, Theorem 3.3], we can see that the kernel function A is also analytic.
Together with [48, Theorem A.45] and [44, Theorems 8.13], we know that the operators K2, SX H3,
IEP H?[0,2xn] — HP*'[0,2n] are boundness for p > 0 and all integers r > 0. Specifically, for
r > 0,p > 0, we can get the boundness of the operators K2, S2, Hf,, H?T : HP[0,27] — HP*?[0,2n].
Thus, the operators C3, Cs are bounded from H?[0, 2x]* into H?*2[0, 2x]°. C4 is bounded from H?[0, 2x]?
to HP*1[0, 2n]3.

Therefore, the operator C is a bounded operator from H”[0,2x]* into HP*'[0,2x]?, and thus a
compact operator from H?[0, 2r]* to H?[0, 2x]>.

4. Collocation method

Consider the operator equation (3.14), , 8 and C are compact operators from H”[0, 2x]* into H?~'[0, 2n]°.
In this section, we use the collocation method to give the convergence of the numerical method.

4.1. Semi-discrete collocation

We describe a semi-discrete method by collocation via trigonometric interpolation. Let X, be an
n-dimensional space of trigonometric polynomials of the form

n n—1
o(t) = Z a,, cCos mt + Zﬁm sin mt.
m=0 m=1

Let P, denote the interpolation operator. If there are 2n points = jr/n,j=0,---,2n-1, uniformly
distributed on [0, 2r], the operator P,, for a function g, will give a trigonometric polynomial P,g
satisfying (P,g)(n}) = g(7)).

Let X3 = {¢ = (¢1, 2, ¢3)7 : ¢; € X,,} and define the interpolation operator P, : H?[0,27]> — X3 by
P.g = (Pogi,Pngr, Prg3)", Vg = (g1, 82, g3) € HP[0, 2n]? For the interpolation error, we note that

C 1
IIPng—glqu%llgllp,OSqu,p>§, 4.1)

for all g € H?[0, 2n] and some constant C depending p and q.
We denote the numerical solution of ¢ = (¢1,¢2,¢3)" corresponding to the equation (3.14) by
¢ = (g, @5 )" € X3, which is the solution of the following equation:

PuT ¢" +Pu(H + B+ C)" =Pyw. 4.2)
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Remark 4.1. For the semi-discrete collocation method, it is expected that the following estimate holds
under certain conditions:

1" =@ ll,< M PuT @)~ T¢llp1
for each p > 1, where M is a positive constant depending on 7 ,H, B and C.

4.2. Fully discrete collocation

For the fully discrete method, we need to approximate all the integral operators
S &S sij» Ksr Kyi, Hy, Hy; and the differentiation operator D. For the differentiation operator D, we
have a description of trigonometric differentiation which approximates D by D, := DP,, i.e., the
derivative Dg of a 2r—periodic function g by the derivative D,g of the trigonometric interpolation
polynomial P,g € X,,. Denote the Lagrange basis by

1 n—1 . . '
2(1) = 5-11 +2;cosk(t—n§.>)+cosn(t—n§.))}, j=0,1,--,2n—1.

For g € H[0, 2rt], from the boundness of D : H?[0,2n] — H?~'[0,2n], we have the error estimate

1
~<p, (4.3)

C
| Dp.g — Dg llg-1= py Il g llps OSqu,z

whith the constant C depending on p and gq.
The trigonometric polynomial numerical solution ¢"(t) = (¢[(1), @,(1), @3(1)" € X3 of ¢ =
(¢1, 92, 3) 7 satisfies the following projected equation:

PoTwg" + Pu(H, + B, + C " = Pow. (4.4)

Here, 8, = B, + B,,, C, = C1, + C2y + Cs,, + C4,,, and the quadrature operators are described by
Tn=TPn, H, = HP,, D, = DP,,,

—uH! Dy pH. Dy +uD, 0 HEgp —pH),  pEp, +pH}, 0
. 3, 1 1
Ty = |Hj Dy + Dy H| D, 0 |, H,=| E2ntH,, H,, —Esn . 0 .
’ Y 1 1 o, 1
0 0 H3.n D, Eon H,Ey, wzp'; - H},n D,
~ukyS3y  Eon s@ mkﬁzson,n - pHj, ukgsg,_,, Eon + ulein S3Eon
B = KpS3y, T HY, KsST1aBon +Hy, 0
H2Eo, 0
2 2
— def _“Hl.n “HS,n 0][Dx D, 0
B =52,y = | H3, Hi, O||Dn Dy O,
0 0 o[l O 0 0
”Kp]zw - F‘lezz,u - “’(;213,1;1 1on = (A + K3S pnEon ”K,:Z,n + IIH.%-/l,n +uiS Ly Eon  SanEon
i 72 231 i 72 251
Cin= Kpgn ¥ Hpgn + HKBS p13 nEon Kgn ¥ Hg + 658 511 0 Eon ]0 .
’ = KL E
K} ,Eon H2,Eq, w"‘z"pf”‘”
1 72 1 72
B e B I s = PR |
Copn =CoyDy = Kpl,n + H’“)&” _K.ﬁ_n + H.vl,n 0||Dy D, 0},
0 0 ofl 0 0 0
/J(Klzm,n - H]])2,n - H}q;z,u - K;’Sf;l 1non) = A+ ST Eon (KD, + H.\1'4,n + H?A,n +60875,Eon) S5 ,Eon
53 o 73 232 27 L 73 2352
Cin = Kogn ¥ Hpg + Hpg 4 1658 13, Eon Kan t g+ H y + 658511y Eon 0 ,
2 7l 3 K3 nEon
Kp nEon HypEon + HyEo TPy
2 71 73 2 1 73
_ or [P -#f’lpl,n “HH L, BKG , tuH G, G Dy O[D, Dy 0
Cin=CanDn'= | Ky +Hy +H, -K% + A+ B o[|b,  D. 0|,
g plin p3n p3.n 3. sl sl
0 0 0|l O 0 0
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Define E; W = mi(t, )W = Egy,i =0,1,2,3,4,S3 =S3P,, H' = H'P,, D, = DP, with P, being the
interpolation with respect to the variable (-), where

2 _
Sl = [ i asin? ) 50 e v,

21
St = [ PRI e,

2 —
(S50 = 217 fo (2-n(4 sinthn))Pn{m,-(t, m(t, Wk,

21
(KL= [ n(asin )P, i oo,
> 0 2
27
(Ko (1) = fo Py{mi(t, e (t, Y fonydn,

1 27 n- ¢ i 27
(el = 5= [ et TP mteowlndn + 5 [ Pt

71'

(H2 (1) = (2 tn (4sin® = ))P, {sintc = e, s,
(L)1) = f PufT e, ) o,

(H2, (1) = f n(4sm ) B (8, i, W,

0= [ PR )i

0

Theorem 3. Assume that0 < g < p and p > % Then, for the quadrature operators B, Ci,, Cs,, the
following estimates hold:

M,
I B14X = B1 X Mg = -0 11 Xl (4.5)

M,
| (Crn + C3,)X = (Cy +C3)X ||q+1< || X lp, (4.6)

| Pu(Crn + C3)@ = Pu(Cr + C3)¢ llgr1< — = 1@ I, 4.7)

p+1 q
for all X € HP[0,2n)? and all ¢ € X3, where M, M,, M, are positive constants depending on p and q.

Proof. We rewrite the functions 8, X, (C; + C3)X in the form of

27 _
(B X)(1) = % fo (2-1In(4sin’ tT”))N(z, mX(m)dn,

27

21 _
(C1X +C3X)(1) = f In (4 sin’ ’T”)Pa, mXdn+ | Q@ mX(pdn,
0

0
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where

ni(t,m) m(t,m) ns(t,n)
N(t,n) = |n4(t,m) ns(t,n) ndhn)},
nq(t,m) ng(t,m) no(t,n)
pit,m)  pa(t,m)  ps(t,mn) qit,n) qt,n) qs(t,mn)
P(t,m) = |pa(t,m)  ps(t,m) ps(t,n)}, Q(t,n)={cm(t,n) qs(t,m) qdnn)],
pr(t,n)  ps(t,m)  po(t,n) q1(t,1m)  qs(t,m)  qolt,m)

ni(t,n) = —pomi (I’ )| = (A + | (] = pma(t, mh*(1,7),

na(t,) = pemy (6, mms (6, I () + pma (e, MR (1,7),

ns3(t,m) =12/ @,

na(t, 1) = kmy (4, ms (6, I ()| + ma(t, PR (2,7),

ns(t,1) = Ko (6, I ()| + mat, > (8, m),

ng(t,m) = K (6, Iz (),

ne(t,1m) = n7(t,m) = no(z,1) = 0.

pi(t,n) = ~[um (t,1) + (A + VIS I ()] = pma (e, (e, 1) + pma(t, AT, ),
pat.) = i (6, yma (6 )Ss (I ()] + pma(t, R, ) + pma (e, kL, 5),
p3(tm) = 5,6l (),

palt.) = Ky (. mms (6, S I ()| + maCt (e ) + ma(t. k(. m),

ps(t.m) = K2mi (6, S @l + moe, (e,

pe(t,n) =0,

pt.m) = k(&I (),

ps(t,n) = Rl (),

po(t,n) = =ki(t, MIZ ]/ w’py

q1(t.m) = —[um3(t.n) + (A + VICSHE I @] = pma (6 hy (e, 1) + (e ] + pma(t DKL, s).
aa(t. ) = ey (1, ma (6, 0)52 (6, (] + pma (It A8, m) + (8, )] + pma (6, K(E, 5),
g3(t,m) = 5ol (),

qa(t.m) = my (L ms(t 5at I ()| + male, )y (e ) + 1t )] + ma(e, k(. m),
gs(t.n) = Kmy (L )52 (6 I )| + mat, (e, ) + (e, )],

qs(t,m) =0,

q1(t.m) = k(6. I (),

gs(t.n) = [hi(t. ) + B3 (6, I (.

qo(t,m) = =k (1, )| ]/ w*pa.

Denote the full-discretization of 8, , C; + C3 via interpolatory quadrature

Communications in Analysis and Mechanics

2 _
wmmmzﬁ @quwigwEwmmﬂ@m,

2,7 _ 2,7
«mxnmmm=ﬁlqmw%§vwnmﬂ@m+ﬁ Pl QX .

Volume 15, Issue 4, 716-742.



731

Since the kernel functions #%(t, ) and m,(t, n), i=1,2,3,4, are analytic, we get that n;(t,),i = 1,--- ,9,
are analytic. Following from [44, theorem 12.15, 12.18], for all X € H”[0, 2x]*, we deduce

M,
| B14X = B1X |lg1= oy Xl

for p > % and 0 < g < p. For C,,, Cs,, we have the analogous estimate

M
1€+ o)X = (€1 + CX lgr< —= 1 X I,

p—

for some constants M, and M, depending on p and ¢. Further, due to k.(t,1) = 3.(t,1) = h2(t,1) = 0,
P(t,t) = 0, using [44, Lemma 13.21], we get

M,
[ Pn(Cran+ Can)p = Pu(Cr + C)@ llgni= 7 [T @ Ml
for all trigonometric polynomials ¢ € X> and some constant M, depending on p and gq.

Theorem 4. Assume that p > % Then, the operators ‘H,, By, Ci, and Cs,, have estimate

1
I Pul(H + Bio + Cran+ Coa) = (H + B1 + Ci + C)I@ llp-15 — N 2 Ml

for all trigonometric polynomials ¢ € X>.

Proof. From the boundness of the operator H : H?[0,2n]> — H?[0,2x]* and the estimate (4.1), for

0<g<p,p> 3, weobtain

L
| HuX = HX [l =ll HPWX = X) 4= Li | P = X) 1lg< —= || X ] (4.8)

nP—4

for all X € H?[0,2n]?, where L, is a positive constant depending on ¢, and L, is a positive constant
depending on ¢ and p. Using the boundness of the operator P, : HP™'[0,27]° — HP7'[0,2n)°,
combining the estimate (4.1) and (4.8), for the trigonometric polynomials ¢ € X>, we obtain

| Pu(Hy = HO llp-1< % ¢ llp (4.9)
for p > % and some constant c¢;. Similarly, combining estimate (4.1) and (4.5), we have
| Pu(B1n = B llp-1< % @ llps (4.10)
for p > % and some constant c¢,. Recalling (4.3) implies
| Pu(Crn + C30)p = Pu(Cr + C3)¢ 1< % Il ¢ llp (4.11)

for p > % and some constant c3. Therefore, combining the estimates (4.9), (4.10), (4.11), the proof is
completed.
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Theorem 5. Assume that p > % Then, the operators B, ,, C, and C4, have estimate

1
” pn[(BZ,n + CZ,n + C4,n) - (BZ + CZ + C4)]‘70 ”p—lS ;l ” ("2 ”p
for all trigonometric polynomials ¢ € X>.
Proof. Noting D,¢ = Dy, for all trigonometric polynomials ¢ € X>, we can transform
P B = B = Pu(B,u Dy = ByD)p = Po(B, — B2) Dep. 4.12)

Po(Con + Cap — Co = Ca)p = Po(ConDy + Cy D, — C,D — C4D)g
= Pu(Cop + Can — Co — C4)Dep.

By the analogous discussion in Theorem 3, for all X € H”[0,2n]* and all ¢ € Xi, we get

(4.13)

| BouX — BrX ||q+1< || Xlp,

— — M,
I €+ Can)X = (Cy + CX o= = | Xy,

for >3 and 0 < g < p, where some constants M3 and M, depend on p and ¢. Thus, in particular,

Bz,, , 82,, - Bz, (Cz .+ C4 n) — (Cz + C4) Czn + C4,, are bounded operators from H”[0, 2x] to H?[0, 2x],
for p > 5.

From the boundedness of D : H”[0,2x] — HP'[0,2n] and the uniform boundedness of P,
HP710,2n1] — HP'0, 2] for p > % together with (4.12) and (4.13), we obtain

~ ~ c
| Pu(Bon = B2 llp-1=ll Pu(Boy — B2) D |lp-1< ;4 el (4.14)

| Pou(Con + Ci — Co = C)@ llp-1=ll Pu(Can + Ca — Co — C) Do || - 1< 2o, (4.15)

for all trigonometric polynomials ¢ € X>.
Hence, combining the estimates (4.14), (4.15), the proof is completed.

Remark 4.2. If the number n > 1, the equation (4.4) is expected to have a unique solution ¢". For
the fully discrete collocation method, it is expected that the following estimate holds under certain
conditions:

" -l
SCUIPuT e =T @ llp-1 + | Pul(Hy + By + Co) = (H + B+ Ol llp-1 +ll P = Dw -1},

forall p > % and some positive constant C.

From the remarks 4.1 and 4.2, we expect that the collocation method is convergent in H” [0, 27]? for
each p > % The convergence analysis of the proposed numerical method depends on the invertibility
of the boundary integral system as well as the discretized system, especially for the analysis of the
properties of the operator 7 and 7, which is currently under investigation.
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5. Numerical experiment
For the smooth integrals, we use the trapezoidal rule:

27 2n—-1
S =Y (),
=0 (5.1)

27 2n—1

Q. mfandn ~ = 3" 01" ).
Jj=0

For the singular integrals, following the quadrature rules in [46, equation (3.93)], [42, equation (4.6)]
and [38, equation (13.39)], we employ the following quadrature rules:

. 2n-1
j; In (4 sin® 1777) fOpdn ~ ; R;n)(l)f (773"))
o 1= T o M) ()
fo In (4 sin T)Q(la mf(mdn = Z(; R (00 m;)f ;")
o . ]2n—1 2n-1
f In ( A sin? 777) O, n)f (n)dn ~ Z Z s R0 i f(n'!")
0 p e (5.2)

2n—1

1 > n—t (n) ()
er(; COtTf(n)dn’V JZ:(; Uj (t)f(nj )

o 2n—-1

1 n-—t N ) (n) (n)

35 |, et Qe mrtdn ~ ; U 007" 0"

1 o 77 t 2n—12n-1

1 - y . (n) 7 7(n) (1) (n)
3 | ot QL (i = ,Z; mzzodm_jU,,, OO, @)

where Q is a continuous function, and the weight function is given by

n—1
. 2r 1 " n "
R (1) = —= ) o | - ') - — cos |n(e = 1™,

[

m=1

(n)_t

1 7;
(n) _ (n) J
UJ. (r) = E[l—cosn(nj —t)]cot 7

_ (_—l)jcot% J==%1,£2,- - 22n -1,
j=0
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Thus, the equation becomes

2n—1 2n—1 2n—1
n _ ) (n) (n)
Wii = Z Xiip#rjt Z Xijs#25 + Z X5,
2n—1
+:um4(77(n) n))go(n) + um, (n(n) n))QD(n) Z dg)ﬁo(zn;w

2n-1 2n—1
(n) _ ) ()
Woi = Z l]l’(plj Z 1199021
(5.3)
2n—1
+mo(n”, ")} + Z dy oy, = ma(m” )5
m=
2n—1 2n—1 1 2n—1
(n) _ (n) (n) n  _(n)
Wii = Z i1t Z 15592, ~ op ZZW""M
a ]:0
+2' ("l + Iz @)l

where

X = =2l (IR )5y ™ I (s (0™ + (u + D)
2n—-1
+u Z ) R ey (! my yms (! miy)) + R Ve (' yma (! ')

2n—1
~u Z dy R 1)y (1) = R ' yma ')

= s @) (o n) + e + )
2n—1 P
—u Z 3 ke i ma G, nl) + ;ukﬁ(nf"), n M ymar”,n”)

2n—1
- —u Z d% (R ™) + m o )y (o )

_ ;,u (’],‘ll (ngn)’ 77(11)) + 13 (775")» n(n))) mz(nfn)’ n(n))

2n—1
—p ) AR U@ ym o) = pU o ma e n')
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X, =l IR (s s oy ()1 )

2n-1
) dn RO @m0 + R e ar i yman” )

2n—1
) A RO, amar, ) + uR o, mar”, )
m=0
n U
+ =i s o s T ym O Gl

2n-1
+ 2y Z i e G ) + Sy )

2n—-1
T
o 2 ) G D )
&

T
(B0 + o g mar” )
2n—1
+u Z ) U o yma 0y + uU o yma (o, 0’1"

X{0, = R s )+ 212 s )

Y =il @R sy yms (s ym (s I ()

2n—1
Z RV ) ym ™ n) + R ™k n' T yma o )

2n-1
+ ) d RO 0 nmsor ) + RO yma 0’
m=0

T ’
+ il sy on s 'y 7 G
n 2n—1
+ ko) Z i ooy G ) + e ma )

211—

2 3 (B ) + B ) ma )
m=0
+ X0+ 1 ) )ma™ ")
n
2n—1
+ Z dy U ma o)) + U ymar” ')
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Y1 =l @RS o )sy ) i lmi @ 0’

2n-1
Z dy Rk o mma o n?) = R ks () yma )

2n-1
+ ) d RO G m o n) + R Gl ymam” 0 )

T
+ il s N Gl o)

Zn 1

-= Z 3 K nims () — kf(nf"),n("))m ")
m=0
2n 1

+ 1 Z d(n)j(’“l (775"),'7;7)) + h?(nﬁ"),ﬂm)))m (TIE"),U%))
m=0

+ ;('ﬁl @) + B 0 )maor” 1)

2n—1

+ Z d U@ ymiar” ni) + U G ymar” 0’ )

2z, = R o n G+ Z ko™ n I )

72 = RO o n i @l + U @ ol + = [h "0 + B )]

ij,s

Z2 = RO 0™l (i) + kz(nf”), 7N )

ija

An exact solution is available for the evaluation of the accuracy. We use the boundary integral
equation method to get the numerical solution of this problem. The domain Q is a disk, whose radius is
Ry. Qs a linear and isotropic elastic solid body, and the incident plane wave is given by u¢ = egf«xd
with the unit direction d = (1, 0). The exact solution for this model can be written as

o0

w(R.6)= ) auH,(kiRo) cos(n),
n=0

u=Vu,+VXxXu,
where

up(R,6) = 3" byJy(k,Ro) cos(n),
n=0

(9]

uy(R, 0) = Z cnd (ks Ro) sin(nf).

n=1
The coefficients a,, b,, ¢, can be determined from the transmission conditions on d<Q by the collocation
method. We can get a linear system as follows:

Ean =€y,

where X,, = (a,,b,,c,)", E, = [E,’;j], e, = [eﬁ], i, j = 1,2,3. The elements are given by the following
formulations:

E}' = H(k,Ry),
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£l [,u(n2 +n)

unk pu(n® + n)
Jo1(ksRy) — ————
R, 1(ksRo) 5

2 Ky
-1+ 2ﬂ)kp Ju(kpRo) — R_OJn—l(kpRO)a

E} = J(ksRo), EX' =0,

0
2

nk n-+n
E? = —J,1(kyRo) — —5—Ju(k,R0),
RO 1 1% 0 Ré 4 0
n’+n
=

B3 = —H,_(k,Ro) + ——H,(k,Ro),
1(kaRo) iR, (k.Ro)

0
3
I

ks
- k?) Jn(ksRO) - R_() n—l(ksR0)7

k n
E? = p?* L\, (k,Ry) — —— J,(k,Ro) |,
n pPrw k 1( p 0) kpRO (p 0)
E® = pa?——J,(k;Ro),
erll = _Enin-]n(kaRO)a
ei =0,
3 ) n
= —,i"J,—1(k,Rg) — — J,,(k,Ry),
e, = —€i"J,-1(k,Ro) iR (kaRo)

where g, = 1,if n = O else ¢, = 2.

In this example, the numbers of the coefficients for a,, b,, c, are all 25, and the radius is Ry = 2 m.
The sound speed in the water is ¢ = 1480 m/s, and the density of the water is p; = 1000 kg/m”.
The density of copper alloy is p = 8100 kg/m?, and the frequency is w = 5knHz. The wave speeds
of the pressure wave and the shear wave in the copper alloy are ¢, = 4840 m/s and ¢, = 2270 m/s.
The number of the collocation points is M = 128, and these points are uniformly distributed on the
circle. We observe the acoustic scattered field on the circle with radius 1.1R, and observe the elastic
displacement field on the circle with radius 0.9R,.

Figure 1 shows the numerical solutions and the analytic solution. We can observe that the
numerical solution can stably approximate the analytic solution even if the displacement and the
acoustic scattering field are multi-level valued. Figure 2 presents the relative errors between the
exact solution and the numerical solution with different numbers of the collocation points. We can
see that the presented method will give accurate results. It also can be seen that the errors do not
decrease for n € {64, 128, 256}.
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Figure 1. The numerical solutions and the exact solution for Ry, = 2 in Example 1.
or or
af = P
=t . '
<., <)
L~ = -
g | S
— ~
= F]ﬁ 5 -
= =
oo Ml 0
2 -5 ﬁ’ 1 _Q -
I
st
. ‘ ‘ ‘ ‘ ‘ ‘ - ‘ ‘
0 0.2 0.8 1 0 0.2 0.4 0.6 0.8 1 ] 0.2 0.8

0.4 0.6
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(a) Error: u*

* Polar angle, 6/(27r)
(b) Error: u,;

0‘,4 0.6
Polar angle, 6/(27)

(c) Error: u,

Figure 2. The accuracy by changing the numbers of the boundary collocation points.

6. Concluding remarks

In this paper, we have studied in two dimensions the fluid-solid interaction scattering problem by a
boundary integral equation method. The effectiveness of the method has been shown by solving some
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examples. In the numerical example, we construct the exact solution to check the feasibility and accuracy of
the presented method. From the numerical results, we can see that the proposed method is effective. We give
some theoretical results for the discretized singular operators. Other potential methods for the corresponding
problem are considered, such as the singular boundary method [49-51], etc.
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