
AllVlS 
Communications in 
Analysis and Mechanics 

https://www.aimspress.com/journal/cam

Communications in Analysis and Mechanics, 15(3): 533–550.
DOI: 10.3934/cam.2023026
Received: 06 July 2023
Revised: 03 September 2023
Accepted: 03 September 2023
Published: 06 September 2023

Research article

Solutions for a class of problems driven by an anisotropic (p, q)-Laplacian
type operator

Leandro Tavares*

Center of Sciences and Technology, Federal University of Cariri, Juazeiro do Norte/CE, CEP:
63048-080, Brazil

* Correspondence: Email: leandrolstav@gmail.com.

Abstract: In this manuscript, existence and multiplicity results are obtained for a problem involving an
anisotropic (p,q)-Laplacian-type operator by means of sub-supersolutions and variational techniques. This
problem arises in various applications such as in the study of the enhancement of images, the spread of
epidemic disease and in the dynamic of fluids. Under a general condition, the existence of a solution is proved,
and the multiplicity of solutions is obtained by considering an additional natural hypothesis.

Keywords: (p,q)-Laplacian type operator; anisotropic operator, sub-supersolutions; existence; multiplicity
Mathematics Subject Classification: 35A15, 35J60

1. Introduction

In this paper it is considered the existence and multiplicity of nonnegative solutions for the nonho-
mogeneous anisotropic (p, q)-Laplacian type problem given by{

−∆−→p u − ∆−→q u = k(x)uα−1 + f (x, u) in Ω,

u = 0 on ∂Ω,
(P)

with Ω ⊂ RN(N ≥ 3) a bounded domain with smooth boundary, 1 < α, where

∆−→p u :=
N∑

i=1

∂

∂xi

(∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

)
,

∆−→q u :=
N∑

i=1

∂

∂xi

(∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi

)
,
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and

1 < p1 ≤ p2 ≤ ... ≤ pN < p∗,
N∑

i=1

1
pi
> 1,

1 < q1 ≤ q2 ≤ ... ≤ qN < q∗,
N∑

i=1

1
qi
> 1,

where p∗ :=
N p

N − p
, q∗ :=

Nq
N − q

, p :=
N∑N

i=1
1
pi

, q :=
N∑N

i=1
1
qi

, f : Ω × [0,+∞) → R is a continuous

function and

(H) k ∈ L∞(Ω) and k(x) > 0 a.e. in Ω;
( f1) There exists δ > 0 such that f (x, t) ≥ (1 − tα−1)k(x), for all 0 ≤ t ≤ δ, a.e. in Ω;
( f2) There is r > 1 with | f (x, t)| ≤ k(x)(1 + |t|r−1), for all t ≥ 0, a.e. in Ω.

Consider X := W1,−→p
0 (Ω) ∩W1,−→q

0 (Ω) with the norm ‖ · ‖ defined in Section 3. We say that u ∈ X is a
weak solution for (P) if∫

Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

∂φ

∂xi
+

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi

∂φ

∂xi
=

∫
Ω

k(x)uα−1φ + f (x, u)φ,

for all φ ∈ X.
Let ‖ · ‖∞ denote the norm in the space L∞(Ω). By applying sub-supersolutions and a minimization

argument, it is possible to obtain the existence result provided below.

Theorem 1.1. Consider the hypotheses (H) and ( f1) − ( f2). If ‖k‖∞ is small enough, then (P) has a
nonnegative solution.

Under subcriticial growth and a Ambrosetti-Rabinowitz type condition

( f3) It holds that r < min{p∗, q∗} and α ≤ min{p1, q1} or it holds simultaneously that max{pN , qN} < α

and there is t0 > 0 with

0 < θF(x, t) ≤ t f (x, t), a.e. in Ω for all t ≥ t0,

where θ > max{pN , qN} and F is the primitive of f , that is, F(x, t) =

∫ t

0
f (x, τ) dτ.

it is possible to obtain a multiplicity result.

Theorem 1.2. Consider the hypotheses (H) and ( f1) − ( f3). If ‖k‖∞ is small enough, then (P) admits at
least two nonnegative weak solutions.

Partial Differential equations involving anisotropic operators have significant relevance in several
domains of Science and Technology. For example in the reference [1] it was considered a mathematical
model which was applied for both image enhancement and denoising in terms of anisotropic equations
as well as allowing the preservation of significant characteristics of the image. We also quote that
anisotropic differential equations are considered in models that describe the spread of epidemic disease
in heterogeneous environments. In Physics such operators can be applied to describe the dynamics of
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fluids with different conductivities in different directions. For more details concerning such applications
see [1–4].

On the other hand differential equations with (p, q)−Laplacian type operators in (P) arose due to its
applicability in several relevant models in biophysics, plasma physics and chemical reaction design
which are driven by the parabolic reaction-diffusion system

ut − div[(|∇u|p−2 + |∇u|q−2)∇u] = c(x, u). (1.1)

In such applications, the function u plays an important role as it provides the concentration of the
substance being studied. The divergent term, on the other hand, provides important informations
regarding the diffusion process incorporated into the model. Additionally, the term c introduces the
reaction component and encompasses relevant informations such as the source and the loss occurring
in the process. It is worth noting that in Biology and Chemistry applications, the reaction term c(x, u)
exhibits a polynomial behavior with respect to the variable u and has variable coefficients. For more
technical details concerning these applications, we point out the following references [5, 6].

Recently, anisotropic equations with a (p, q)-Laplacian type operator have been under consideration
in the literature. For example in the reference [7] the authors obtained, under certain conditions and
through a sub-supersolution approach and minimization arguments in convex sets, the existence of a
positive solution for the problem {

−∆−→p u − ∆−→q u = λuγ−1 in Ω,

u = 0 on ∂Ω,

with 1 < qi ≤ pi, i = 1, ...,N, λ is a parameter and γ > 1. In the case 1 < γ < q1 it was obtained that
the above problem has a solution if and only if λ > 0. In the case q1 ≤ γ < pN it was proved that there
exists σ > 0, such that the problem does not have positive solutions for λ < σ and at least one positive
solution for λ > σ.

In [8], by means of the condition 1 < qi ≤ pi, i = 1, ..,N, results for weighted anisotropic Sobolev
spaces and the Galerkin technique, it was considered the weighted problem

N∑
i=1

∂

∂xi

(
a(x)

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi
± b(x)

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi

)
= f (x, u,∇u) in Ω,

u = 0 on ∂Ω,

and existence results were obtained.
We also mention that in [9], the application of genus theory and Clark’s theorem led to the multiplicity

and the existence of infinitely many solutions for anisotropic problems with a (p, q)-Laplacian type
operator with a subcritical growth. Such results depend on the behavior of the considered nonlinearity.
Moreover, the same method was applied to obtain infinitely many solutions for the critical case.

Regarding the isotropic case, we refer to the recent references [10, 11], whose authors obtained
existence and multiplicity results for a class of problems driven by an operator with non-standard growth,
that includes the (p, q)−Laplacian. For a survey on isotropic problems involving the (p, q)−Laplacian
operator, see [12].

An important fact is that the (p, q)−Laplacian operator is a particular case of the double-phase
operator

La
p,q(u) := div(|∇u|p−2∇u + a(x)|∇u|q−2∇u),
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where p, q > 1 and a is a nonnegative essentially bounded function. In the last years there is an
increasing interest in problems involving the operator mentioned above. For example in [13], multiplicity
of solutions for double phase problem involving the above operator, a Kirchhoff term, a singular function
and a subcritical nonlinearity is obtained via the fibering method in form of the Nehari manifold. In
the reference [14], the existence of a pair of nontrivial nonnegative and nonpositive solutions for a
double-phase type problem in RN involving variable exponents is obtained using variational methods.
We also quote the related reference [15], where the authors obtained existence and uniqueness of
solutions for a parabolic problem involving a double-phase operator with variable exponents.

Regarding the motivations to study (P) we quote the recent references [7–9] and [16], where in
this last one existence and multiplicty results were proved for an anisotropic problem related to (P)
with α = 2. We also point out that this work was motivated by [17], where a problem related to (P)
was considered in a variable exponents setting. This paper was also motivated by [18], where the
authors studied an isotropic version of the problem (P), considering a differential operator that allows to
consider several cases such as the usual p&q−Laplacian operator. The main difference of the present
manuscript with respect to [18] is that different estimates and new results were needed, see for instance
Lemmas 3.1, 3.3, 3.5, 3.6, and Corollary 3.2. Regarding the results obtained in this manuscript, we point
out that differently from [7–9], the problem (P) allows not to assume that qi ≤ pi, i = 1, ...,N, thanks
to Lemma 3.1 and Corollary 3.2. By using a global minimization argument, Theorem 1.1 allows to
handle a wide class of nonlinearities such as supercritical and critical nonlinearities, that are challenging
cases in the study of elliptic problems. By additionally considering an Ambrosetti-Rabinowitz type
condition and a subcritical growth, Theorem 1.2 provides the existence of at least two solutions for (P).
A common aspect in such results is the appropriate construction of sub-supersolutions, which is possible
due to Lemma 3.6. Moreover, we quote that such approach cannot be directly applied and it is rare in
the literature in anisotropic problems due to several technicalities, such as the lack of homogeneity of
anisotropic operators.

The results of this manuscript permits to consider in the problem (P) the function

f (x, t) =

{
k(x)(1 − tα−1), 0 ≤ t ≤ s0,

k(x)((1 − sα−1
0 ) + (t − s0)r−1), t > s0,

where 0 < s0 < 1 is fixed and 1 < min{α, r} ≤ max{α, r} < min{p?, q?}.

2. Preliminaries

Let Ω be a bounded domain in RN with N ≥ 3. Consider 1 < p1 ≤ p2 ≤ ... ≤ pN real numbers and
−→p := (p1, ..., pN) ∈ RN . We denote by W1,−→p (Ω) the space given by

W1,−→p (Ω) :=
{

u ∈ LpN (Ω);
∂u
∂xi
∈ Lpi(Ω), i = 1, ...,N

}
,

which is a Banach space when endowed with the norm

|u|1,−→p := ‖u‖LpN +

N∑
i=1

∥∥∥∥∥ ∂u
∂xi

∥∥∥∥∥
Lpi

, (2.1)
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where ‖ · ‖Lpi denotes the usual norm of Lpi(Ω), i = 1, ...,N. It will be denoted by W1,−→p
0 (Ω) the Banach

space defined as the closure of C∞0 (Ω) in W1,−→p (Ω) with respect to the norm ‖ · ‖1,−→p .
Consider p the harmonic mean of pi, i = 1, ...,N, that is

p := N/
N∑

i=1

1
pi
.

Suppose that p < N and consider p∗ :=
N p

N − p
. If pN < p?, then there exists an embedding W1,−→p

0 (Ω) ↪→

Lq(Ω), which is continuous for q ∈ [1, p∗] and compact in the case q ∈ [1, p∗), see [19] . Thus, it follows
that the norm,

|u| :=
N∑

i=1

∥∥∥∥∥ ∂u
∂xi

∥∥∥∥∥
Lpi

, u ∈ W1,−→p
0 (Ω),

is equivalent to the one given in (2.1).

3. Auxiliary results

In this section it will be presented several results that will play an important role in the study of (P).
Applying the same reasoning of the proof of [20, Theorem 2.2], we obtain the result below.

Lemma 3.1. The space W1,−→p
0 (Ω) equipped with the norm ‖u‖1,−→p :=

 N∑
i=1

∥∥∥∥∥ ∂u
∂xi

∥∥∥∥∥2

Lpi

1/2

, u ∈ W1,−→p
0 (Ω) is a

uniformly convex Banach space.

Proof. It is clear that W1,−→p
0 (Ω) is a Banach space with the given norm. From [21, Theorem 5.2.25]

(see also [22, Remark 1]) it holds that W := Lp1(Ω) × · · · × LpN (Ω) with the norm |||(w1, ...,wN)||| := N∑
i=1

‖wi‖
2
Lpi

1/2

is a uniformly convex Banach space. Note that the inclusion

I : (W1,−→p
0 (Ω), | · |) −→ (W, ||| · |||)

u −→ u

is an isometric embedding. Since every linear subspace of a uniformly convex linear normed space is
also uniformly convex, then (W1,−→p

0 (Ω), | · |) is uniformly convex.

The previous result implies the next one.

Corollary 3.2. The linear space X equipped with the norm ‖u‖ := max{‖u‖1,−→p , ‖u‖1,−→q }, u ∈ X is a
uniformly convex Banach space, and consequently it is reflexive.

Below, we present an existence result. Its proof is based on adapting the proofs of [16, Lemma 2.1]
and [23, Lemma 3.1].
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Lemma 3.3. Let a ∈ X′.Then the problem −∆−→p u − ∆−→q u = a in Ω,

u = 0 on ∂Ω,

has a unique solution in X.

Proof. Let T : X → X′ be the continuous map given by〈
Tu, φ

〉
=

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

∂φ

∂xi
+

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi

∂φ

∂xi

Since qi, pi > 1, i = 1, ...,N, we have from Simon’s inequality [24, page 210]

〈|x|l−2x − |y|l−2y, x − y〉 ≥

 C
|x − y|2

(1 + |x| + |y|)2−l if 1 ≤ l ≤ 2,

C|x − y|l if l ≥ 2,
(3.1)

for some constant C > 0 and all x, y ∈ RN , where 〈·, ·〉 denotes the usual inner product in RN , that〈
Tu − Tv, u − v

〉
> 0 for all u, v ∈ X with u , v.

Let (un) ⊂ X be a sequence with ‖un‖ → +∞. As in the proof of [25, Theorem 36], for each
i ∈ {1, ...,N} and n ∈ N consider

αi,n :=


pN , if

∥∥∥∥∥∂un

∂xi

∥∥∥∥∥
pi

≤ 1,

p1, if
∥∥∥∥∥∂un

∂xi

∥∥∥∥∥
pi

> 1.

Since (a1 + ... + aN)β ≤ C(aβ1 + ... + aβN) for β ≥ 1 and ai ≥ 0, i = 1, ...,N for some constant C > 0, we
obtain that ∫

Ω

N∑
i=1

∣∣∣∣∣∂un

∂xi

∣∣∣∣∣pi

≥

N∑
i=1

∥∥∥∥∥∂un

∂xi

∥∥∥∥∥αi,n

pi

=
∑

{i;αi,n=pN }

∥∥∥∥∥∂un

∂xi

∥∥∥∥∥αi,n

pi

+
∑

{i;αi,n=p1}

∥∥∥∥∥∂un

∂xi

∥∥∥∥∥αi,n

pi

≥ C1

 ∑
{i;αi,n=pN }

∥∥∥∥∥∂un

∂xi

∥∥∥∥∥
pi


pN

+ C2

 ∑
{i;αi,n=p1}

∥∥∥∥∥∂un

∂xi

∥∥∥∥∥
pi


p1

= C1

 ∑
{i;αi,n=pN }

∥∥∥∥∥∂un

∂xi

∥∥∥∥∥
pi


pN

+ C2

 ∑
{i;αi,n=p1}

∥∥∥∥∥∂un

∂xi

∥∥∥∥∥
pi


p1

+ C2

 ∑
{i;αi,n=pN }

∥∥∥∥∥∂un

∂xi

∥∥∥∥∥
pi


p1

−C2

 ∑
{i;αi,n=pN }

∥∥∥∥∥∂un

∂xi

∥∥∥∥∥
pi


p1

≥ C3‖u‖
p1

1,−→p
−C4,

(3.2)

Communications in Analysis and Mechanics Volume 15, Issue 3, 533–550.



539

where Ci > 0, i = 1, ..., 4 are constants, and

∫
Ω

N∑
i=1

∣∣∣∣∣∂un

∂xi

∣∣∣∣∣qi

≥ A1‖u‖
q1

1,−→q
− A2,

where A1, A2 > 0 are constants. Thus, we conclude that

∫
Ω

N∑
i=1

∣∣∣∣∣∂un

∂xi

∣∣∣∣∣pi

+

∫
Ω

N∑
i=1

∣∣∣∣∣∂un

∂xi

∣∣∣∣∣qi

≥ A3 min{‖u‖p1 , ‖u‖q1} − A4,

where A3, A4 > 0 are constants.
Therefore

lim
n→+∞

〈
Tun, un

〉
‖un‖

= +∞.

Therefore, by using Minty-Browder’s Theorem [26, Theorem 5.16], we conclude that there exists a
unique function u ∈ X such that Tu = a.

Definition 3.4. Consider u, v ∈ X. It will be denoted by −∆−→p u − ∆−→q u ≤ −∆−→p v − ∆−→q v in Ω if

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

∂φ

∂xi
+

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi

∂φ

∂xi
≤

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂v
∂xi

∣∣∣∣∣pi−2 ∂v
∂xi

∂φ

∂xi
+

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂v
∂xi

∣∣∣∣∣qi−2 ∂v
∂xi

∂φ

∂xi
,

holds for all φ ∈ X with φ(x) ≥ 0 a.e. in Ω.

By adapting the idea of the proof of [16, Lemma 2.2], we can obtain the next result, which consists
in a weak comparison principle.

Lemma 3.5. Let Ω be a bounded domain and consider u, v ∈ X satisfying{
−∆−→p u − ∆−→q u ≤ −∆−→p v − ∆−→q v in Ω,

u ≤ v on ∂Ω,

where u ≤ v on ∂Ω means that (u − v)+ := max{0, u − v} ∈ X. Then u(x) ≤ v(x) a.e. in Ω.

Proof. Using the test function φ = (u − v)+ := max{u − v, 0} ∈ X it follows that

∫
Ω

⋂
[u≥v]

N∑
i=1

[(∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi
−

∣∣∣∣∣ ∂v
∂xi

∣∣∣∣∣pi−2 ∂v
∂xi

) (
∂u
∂xi
−
∂v
∂xi

)
+

(∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi
−

∣∣∣∣∣ ∂v
∂xi

∣∣∣∣∣qi−2 ∂v
∂xi

) (
∂u
∂xi
−
∂v
∂xi

)]
≤ 0.

Thus, from inequality (3.1) we obtain that
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∫
Ω

∣∣∣∣∣ ∂∂xi
(u − v)+

∣∣∣∣∣pi

= 0, if 2 ≤ pi,∫
Ω

∣∣∣∣∣ ∂∂xi
(u − v)+

∣∣∣∣∣qi

= 0, if 2 ≤ qi,

∫
Ω

∣∣∣∣∣ ∂∂xi
(u − v)+

∣∣∣∣∣2(
1 +

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣ +

∣∣∣∣∣ ∂v
∂xi

∣∣∣∣∣)2−pi
= 0, if 1 < pi ≤ 2,

∫
Ω

∣∣∣∣∣ ∂∂xi
(u − v)+

∣∣∣∣∣2(
1 +

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣ +

∣∣∣∣∣ ∂v
∂xi

∣∣∣∣∣)2−qi
= 0, if 1 < qi ≤ 2.

Therefore ‖(u − v)+‖ = 0 , which finishes the proof of the result.

Reasoning as in [27, Lemma 4.1] we obtain the result below.

Lemma 3.6. Let Ω be a bounded domain in RN(N ≥ 3) such that the embedding W1,1
0 (Ω) ↪→ L

N
N−1 (Ω)

holds. Let λ > 0 and consider uλ ∈ X the unique solution of the problem

{
−∆−→p u − ∆−→q u = λ in Ω,

u = 0 in Ω.
(Pλ)

Consider C0 the best constant of the embedding W1,1
0 (Ω) ↪→ L

N
N−1 (Ω). Define h :=

p1

2|Ω|
1
N C0

, and

t :=
q1

2|Ω|
1
N C0

. If λ ≥ h, then u ∈ L∞(Ω) with ‖u‖∞ ≤ C
−→pλ

1
p1−1 , and ‖u‖∞ ≤ C−→pλ

1
pN−1 when λ < h. If λ ≥ t,

then u ∈ L∞(Ω) with ‖u‖∞ ≤ C
−→qλ

1
q1−1 , and ‖u‖∞ ≤ C−→qλ

1
qN−1 when λ < t. Here C

−→p ,C−→p are constants
depending only on p1, pN , |Ω| and C0 and C

−→q ,C−→q are constants that depends only on q1, qN , |Ω| and C0.

Proof. Consider the solution uλ of (Pλ). It is clear that uλ is a nontrivial function satisfying u(x) ≥ 0
a. e. in Ω. For k ≥ 0, l define the set Ak := {x ∈ Ω; u(x) > k}. Now, consider ε > 0. By using the test
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function (u − k)+ ∈ X in (Pλ), we can apply Young’s inequality, yielding to∫
Ak

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

dx ≤
∫

Ak

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi

dx +

∫
Ak

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

dx

=λ

∫
Ak

(u − k)dx

≤λ|Ak|
1
N ‖(u − k)+‖

L
N

N−1 (Ω)

≤λ|Ak|
1
N C0

∫
Ak

|∇u|dx

≤λ|Ak|
1
N C0

∫
Ak

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣ dx

≤λ|Ak|
1
N C0

k∑
i=1

∫
Ak

(∣∣∣∣∣ε ∂u
∂xi

∣∣∣∣∣)qi

qi
dx + λ|Ak|

1
N C0

k∑
i=1

∫
Ak

(ε−1)(qi)′

qi
′

dx.

(3.3)

Note that

λ|Ak|
1
N C0

k∑
i=1

∫
Ak

(
ε
∣∣∣∣ ∂u
∂xi

∣∣∣∣)qi

qi
≤

M|Ak|
1
N C0

q1

∫
Ak

εqi

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

dx

≤
M|Ω|

1
N C0

p1

k∑
i=1

∫
Ak

εqi

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

dx.

Let t :=
q1

2|Ω|
1
N C0

. Suppose that M ≥ t. Define

ε :=
(

q1

2M|Ω|
1
N C0

) 1
q1

.

Thus, ε ≤ 1 and

λ|Ω|
1
N C0

q1

k∑
i=1

∫
Ak

εqi

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

dx ≤
λ|Ω|

1
N C0ε

q1

q1

k∑
i=1

∫
Ak

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

dx

=
1
2

k∑
i=1

∫
Ak

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

dx.

(3.4)

From (3.3) and (3.4) we have that
k∑

i=1

∫
Ak

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

dx ≤
2λ|Ak|

1
N C0

(qN)′

k∑
i=1

∫
Ak

ε−(qi)′dx

≤γ|Ak|
1+ 1

N ,

where

γ :=
2Nε−(q1)′C0

(qN)′
,
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which implies that ∫
Ak

(u − k)dx =
1
λ

N∑
i=1

∫
Ak

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

dx ≤ γ|Ak|
1+ 1

N .

Therefore by the L∞ estimates in [28, Lemma 5.1-Chapter 2] we get

‖u‖∞ ≤γ(N + 1)|Ω|
1
N

=C
−→qλ

1
q1−1 ,

where C
−→q is a constant that has the dependence described in the statement of the result. The case λ < t

follows by repeating the previous arguments with

ε :=
(

q1

2λ|Ω|
1
N C0

) 1
qN

.

The other parts of the result follows by reasoning as in the previous cases.

4. Proof of Theorem 1.1

We will now present the notion of sub-supersolution that we will consider, and a lemma involving
such a concept.

A pair (u, u) ∈ (X ∩ L∞(Ω)) × (X ∩ L∞(Ω)) is said to be a sub-supersolution for (P) if u(x) ≤ u(x) a.e.
in Ω and the inequalities∫

Ω

N∑
i=1

∣∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣∣pi−2
∂u
∂xi

∂φ

∂xi
+

∫
Ω

N∑
i=1

∣∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣∣qi−2
∂u
∂xi

∂φ

∂xi
≤

∫
Ω

k(x)uα−1φ +

∫
Ω

f (x, u)φ,

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

∂φ

∂xi
+

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi

∂φ

∂xi
≥

∫
Ω

k(x)uα−1φ +

∫
Ω

f (x, u)φ,

(4.1)

hold for all φ ∈ X, with φ(x) ≥ 0 a.e. in Ω.

For ‖k‖∞ small enough, the following result, where the Lemmas 4.1, 3.6 and 3.5 plays an importat
role in its proof, provides the existence of a sub-supersolution for (P).

Lemma 4.1. Consider the hypotheses (H) and ( f1) − ( f2). Then, there exists η > 0 such that (P) has a
sub-supersolution (u, u) ∈ (X ∩ L∞(Ω)) × (X ∩ L∞(Ω)), with ‖u‖∞ ≤ δ, where δ was provided in ( f1),
whenever ‖k‖∞ < η.

Proof. From Lemmas 3.3 and 3.6 there are unique nonnegative functions u, u ∈ X ∩ L∞(Ω) satisfying −∆−→p u − ∆−→q u = k(x) in Ω,

u = 0 on ∂Ω and

 −∆−→p u − ∆−→q u = 1 + k(x) in Ω,

u = 0 on ∂Ω, (4.2)

respectively with

‖u‖∞ ≤ max{C
−→p ‖k‖

1
p1−1
∞ ,C−→p ‖k‖

1
pN−1
∞ ,C

−→q ‖k‖
1

q1−1
∞ ,C−→q ‖k‖

1
qN−1
∞ }
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and
‖u‖∞ ≤ max{C

−→p ‖1 + k‖
1

p1−1
∞ ,C−→p ‖1 + k‖

1
pN−1
∞ ,C

−→q ‖1 + k‖
1

q1−1
∞ ,C−→q ‖1 + k‖

1
qN−1
∞ },

where the constants C
−→p ,C

−→q ,C−→p , and C−→q are provided by Lemma 3.6. Moreover, by applying Lemma
3.6, it is possible to choose η > 0, depending only on C

−→p ,C
−→q ,C−→p , and C−→q such that ‖u‖∞ ≤ δ/2 and

‖k‖∞max{‖u‖α−1
∞ , ‖u‖r−1

∞ } ≤ 1 for ‖k‖∞ < η. From Lemma 3.5 and (4.2) we get 0 < u(x) ≤ u(x) a.e. in Ω.

Consider φ ∈ X with φ(x) ≥ 0 a.e. in Ω. From ( f1) and (4.2) we get∫
Ω

N∑
i=1

∣∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣∣pi−2
∂u
∂xi

∂φ

∂xi
+

∫
Ω

N∑
i=1

∣∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣∣qi−2
∂u
∂xi

∂φ

∂xi
−

∫
Ω

k(x)uα−1φ −

∫
Ω

f (x, u)φ ≤
∫

Ω

k(x)φ −
∫

Ω

k(x)uα−1φ

−

∫
Ω

(1 − uα−1)k(x)φ

= 0.

Combining ( f2), (4.2), and considering the choice of η that was made before, we have

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

∂φ

∂xi
+

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi

∂φ

∂xi
−

∫
Ω

k(x)uα−1φ −

∫
Ω

f (x, u)φ ≥
∫

Ω

(1 − ‖k‖∞max{‖u‖α−1
∞ , ‖u‖r−1

∞ })φ ≥ 0,

for all φ ∈ X with φ(x) ≥ 0 a.e in Ω, which finishes the proof.

Proof of Theorem 1.1. Let u, u ∈ X be the functions provided in Lemma 4.2. Consider

z(x, t) :=


k(x)uα−1

+ f (x, u(x)), t > u(x),
k(x)tα−1 + f (x, t), u(x) ≤ t ≤ u(x),
k(x)uα−1 + f (x, u(x)), t < u(x),

(4.3)

for (x, t) ∈ Ω × R, and the problem{
−∆−→p u − ∆−→q u = z(x, u) in Ω,

u = 0 on ∂Ω,
(P̃)

whose solutions are the critical points of the C1((X, ‖ · ‖),R) functional given by

J(u) :=
∫

Ω

N∑
i=1

1
pi

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi

+

∫
Ω

N∑
i=1

1
qi

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

−

∫
Ω

Z(x, u), u ∈ X,

where Z(x, t) :=
∫ t

0
z(x, τ)dτ. We affirm that J is a sequentially weakly lower semicontinuous functional.

In fact, let (un) ⊂ X be a sequence with un ⇀ u in X. From the weakly lower semicontinuity of the
norm, we obtain ‖u‖ ≤ lim infn→+∞ ‖un‖. The continuous embedding X ↪→ W1,−→p

0 (Ω) and the compact

embedding W1,−→p
0 (Ω) ↪→ Lq(Ω), where q ∈ [1, p?), imply, up to a subsequence, that un(x)→ u(x) a.e. in

Ω. Thus, by applying the fact that z ∈ L∞(Ω) and using the Lebesgue Dominated Convergence theorem,
we obtain
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∫
Ω

Z(x, un)→
∫

Ω

Z(x, u).

Therefore

J(u) =

∫
Ω

N∑
i=1

1
pi

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi

+

∫
Ω

N∑
i=1

1
qi

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

−

∫
Ω

Z(x, u)

≤ lim inf
n→+∞

∫
Ω

N∑
i=1

1
pi

∣∣∣∣∣∂un

∂xi

∣∣∣∣∣pi

+

∫
Ω

N∑
i=1

1
qi

∣∣∣∣∣∂un

∂xi

∣∣∣∣∣qi

−

∫
Ω

Z(x, un)

= lim inf
n→+∞

J(un),

which proves the claim.

Note that J is coercive, which implies that J is bounded below. Thus, there exists ρ := inf
u∈X

J(u) and
a sequence (un) ⊂ X such that J(un) → ρ. Since J is coercive, it follows that (un) is bounded in X.
Then, up to a subsequence, it holds that un ⇀ u for some u ∈ X. From the sequential weakly lower
semicontinuity, we have

α ≤ J(u) ≤ lim inf
n→+∞

(un) = ρ.

Thus, u is a critical point of J, which implies that it is a solution of (P̃). We affirm that u(x) ≤ u(x) ≤ u(x)
a.e. in Ω. Since u solves (P̃), we obtain for the test function φ := (u − u)+ ∈ X that

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

∂(u − u)+

∂xi
+

∫
Ω

N∑
i=1

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi

∂(u − u)+

∂xi
=

∫
Ω

z(x, u)(u − u)+.

Using the previous equality, and the first inequality of (4.1) we obtain that

∫
Ω

⋂
[u≥u]

N∑
i=1

[(∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi
−

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

) (
∂u
∂xi
−
∂u
∂xi

)
+

(∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi
−

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi

) (
∂u
∂xi
−
∂u
∂xi

)]
≤

∫
Ω

⋂
[u≥u]

(k(x)uα−1 + f (x, u) − z(x, u))(u − u)+

= 0.

From the inequality (3.1) we obtain that
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∫
Ω

∣∣∣∣∣ ∂∂xi
(u − u)+

∣∣∣∣∣pi

= 0, if 2 ≤ pi,∫
Ω

∣∣∣∣∣ ∂∂xi
(u − u)+

∣∣∣∣∣qi

= 0, if 2 ≤ qi,

∫
Ω

∣∣∣∣∣ ∂∂xi
(u − u)+

∣∣∣∣∣2(
1 +

∣∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣∣ +

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣)2−pi
= 0, if 1 < pi ≤ 2,

∫
Ω

∣∣∣∣∣ ∂∂xi
(u − u)+

∣∣∣∣∣2(
1 +

∣∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣∣ +

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣)2−qi
= 0, if 1 < qi ≤ 2.

Therefore ‖(u − u)+‖ = 0 , which provides that u(x) ≤ u(x) a.e. in Ω. On the other hand we have

∫
Ω

⋂
[u≥u]

N∑
i=1

[(∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi
−

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

) (
∂u
∂xi
−
∂u
∂xi

)
+

(∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi
−

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi

) (
∂u
∂xi
−
∂u
∂xi

)]
≤

∫
Ω

⋂
[u≥u]

(z(x, u) − k(x)uα−1
− f (x, u))(u − u)+

= 0,

which provides that ‖(u − u)+‖ = 0. Therefore u(x) ≤ u(x) a.e. in Ω. Thus, u solves (P).

5. Proof of Theorem 1.2

Consider u ∈ X obtained in Lemma 4.2, the function

w(x, t) =

{
k(x)tα−1 + f (x, t), t ≥ u(x),
k(x)u(x)α−1 + f (x, u(x)) t < u(x),

and the problem {
−∆−→p u − ∆−→q u = w(x, u) in Ω,

u = 0 on ∂Ω,
(5.1)

whose solutions coincide with the critical points of the C1((X, ‖ · ‖),R) functional

L(u) :=
∫

Ω

N∑
i=1

1
pi

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi

+

∫
Ω

N∑
i=1

1
qi

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi

−

∫
Ω

W(x, u), u ∈ X, (5.2)

where W(x, t) :=
∫ t

0
w(x, τ)dτ.

Lemma 5.1. The functional L satisfies the Palais-Smale condition.
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Proof. Let (un) ⊂ X be a sequence such that L′(un)→ 0 and L(un)→ c for some c ∈ R.
The proof will start by considering the case where max{pN , qN} < α. We have that ( f3) holds for

θ′ > 0 satisfying max{pN , qN} < θ
′ < minα, θ. By combining ( f2) − ( f3), the boundedness of u and the

continuous embedding X ↪→ L1(Ω), we can find positive constants Ci > 0, i = 1, 2, 3, such that

C1 + ‖un‖ ≥ L(un) −
1
θ′

L′(un)un

≥ C2(‖un‖
p1

1,−→p
+ ‖un‖

q1

1,−→q
) +

∫
{un≥u}

(
1
θ′
−

1
α

)
k(x)uαn −C3‖un‖

≥ C2(‖un‖
p1

1,−→p
+ ‖un‖

q1

1,−→q
) −C3‖un‖,

which imply the boundedness of (un) in X.
Regarding the case α < min{p1, q1} note that ( f2), ( f3), the boundedness of u and the continuous

embeddings X ↪→ Lα(Ω) implies

K1 + ‖un‖ ≥ L(un) −
1
θ

L′(un)un

≥ K2(‖un‖
p1

1,−→p
+ ‖un‖

q1

1,−→q
) − K3

∫
Ω

k(x)|un|
α
− K3‖un‖

≥ K2(‖un‖
p1

1,−→p
+ ‖un‖

q1

1,−→q
) − K4‖k‖∞‖un‖

α − K3‖un‖,

(5.3)

for some constants Ki > 0, i = 1, ..., 4, which do not depend on n ∈ N. Since α < min{p1, q1} we have
that (un) is bounded in X.

Suppose that α = p1. Let ‖k‖∞ be small enough such that K2 − K4‖k‖∞ > 0. By reasoning as in (5.3)
and applying the continuous embedding W1,−→p

0 (Ω) ↪→ Lα(Ω), we can obtain that

K1 + ‖un‖ ≥ (K2 − K4‖k‖∞)‖un‖
p1

1,−→p
+ K2‖un‖

q1

1,−→q
− K3‖un‖,

which provides that (un) is bounded in X . To obtain the boundedness of the sequence (un) in X when
α = q1, we can apply a similar argument as before.

From Corollary 3.2 we obtain, up to a subsequence, that
un ⇀ u in X,

un(x) → u(x) a.e. in Ω,

un → u in Lq(Ω), for all 1 ≤ q < min{p∗, q∗},

for some u ∈ X. Thus, from the Lebesgue’s Dominated Convergence Theorem we get∫
Ω

N∑
i=1

[(∣∣∣∣∣∂un

∂xi

∣∣∣∣∣pi−2∂un

∂xi
−

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣pi−2 ∂u
∂xi

) (
∂un

∂xi
−
∂u
∂xi

)
+

(∣∣∣∣∣∂un

∂xi

∣∣∣∣∣qi−2∂un

∂xi
−

∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣qi−2 ∂u
∂xi

) (
∂un

∂xi
−
∂u
∂xi

)]
= on(1).

The inequality (3.1) and the previous equality we obtain, up to a subsequence, that∫
Ω

∣∣∣∣∣ ∂∂xi
(un − u)

∣∣∣∣∣pi

=

∫
Ω

∣∣∣∣∣ ∂∂xi
(un − u)

∣∣∣∣∣qi

→ 0, i = 1, ...,N,

which implies that ‖un − u‖ → 0.
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The Mountain Pass Geometry for the functional L defined in (5.2) is obtained in the next result.

Lemma 5.2. For ‖k‖∞ small enough the assertions below hold.

(i) There are constants R and σ with R > ‖u‖, satisfying

L(u) < 0 < σ ≤ inf
u∈∂BR(0)

L(u).

(ii) There is e ∈ X \ B2R(0) satisfying L(e) < σ.

Proof. Since p1, q1 > 1 we have L(u) < 0. Let u ∈ X be a function. From the continuous embeddings
X ↪→ Lξ(Ω), ξ = α, r, and arguing as in 3.2 we have

L(u) ≥ K1 min{‖u‖p1 , ‖u‖q1} − K2‖u‖ − K3‖k‖∞(‖u‖α + ‖u‖r) − K4,

for constants Ki > 0, i = 1, 2, 3, 4. If necessary, decrease ‖k‖∞ in such a way that ‖u‖ =

max{‖u‖1,p, ‖u‖1,q} < 1, which is possible by choosing the test function φ = u in the first inequal-
ity of (4.1) and applying Lemma 3.6.

Fix σ > 0 and consider R ≥ 1 > ‖u‖ large enough satisfying K1 min{Rp1 ,Rq1} − K2R − K4 ≥ 2σ.
Decreasing ‖k‖∞ such that K3‖k‖∞(Rα + Rr) ≤ σ, we get L(u) ≥ σ for all u ∈ X such that ‖u‖ = R, which
proves (i).

Regarding the proof of (ii) note that ( f3) and the inequality max{pn, qN} < θ provides that L(tu) ≤
K1(tpN + tqN ) − K2tα − K3tθ + K4 < 0 for some constants Ci > 0, i = 1, ..., 4 and t > 0 large enough.

Proof of Theorem 1.2. Let u, u ∈ X be the functions given in Lemma 4.2 and denote by u1 ∈ X the
solution of (P) obtained in Theorem 1.1, which minimizes J that was defined in (4.4). Applying Lemma
5.1 and 5.2 we obtain that the conditions of the Mountain Pass Theorem [29, Theorem 2.1] are satisfied
by the functional L. Therefore,

c := inf
γ∈Γ

max
t∈[0,1]

L(γ(t)), where Γ := {γ ∈ C([0, 1], X); γ(0) = u, γ(1) = e},

is a critical value of the functional L, that is, L′(u2) = 0 and L(u2) = c, for some u2 ∈ X. The definition of
z provided in (4.3) provides that J(u) = L(u) for u ∈ {h ∈ X; 0 ≤ h(x) ≤ u(x) a.e in Ω}.Hence J(u) = L(u)
and L(u1) = J(u1) = infu∈X J(u). Recall from the proof of Lemma 5.2 that L(u) < 0. Thus, if u2(x) ≥ u(x)
a.e. in Ω, then it will follow that (P) has two solutions u1, u2 ∈ X with L(u1) ≤ L(u) < 0 < σ ≤ c = L(u2),
where σ > 0 is provided in Lemma 5.2.

We affirm that the inequality u2(x) ≥ u(x) a.e. in Ω holds. In fact, by applying in (5.1) the test
function (u − u2)+ ∈ X we get∫

Ω

N∑
i=1

∣∣∣∣∣∂u2

∂xi

∣∣∣∣∣pi−2 ∂u2

∂xi

(u − u2)+

∂xi
+

∫
Ω

N∑
i=1

∣∣∣∣∣∂u2

∂xi

∣∣∣∣∣qi−2 ∂u2

∂xi

(u − u2)+

∂xi
=

∫
Ω

w(x, u2)(u − u2)+

=

∫
Ω

(k(x)u(x)α−1 + f (x, u(x)))(u − u2)+

≥

∫
Ω

N∑
i=1

∣∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣∣pi−2
∂u
∂xi

∂(u − u2)+

∂xi
+

∫
Ω

N∑
i=1

∣∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣∣qi−2
∂u
∂xi

∂(u − u2)+

∂xi
.
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Thus, it follows from (3.1) that ∫
Ω

∣∣∣∣∣ ∂∂xi
(u − u2)+

∣∣∣∣∣pi

= 0, if 2 ≤ pi,∫
Ω

∣∣∣∣∣ ∂∂xi
(u − u2)+

∣∣∣∣∣qi

= 0, if 2 ≤ qi,

∫
Ω

∣∣∣∣∣ ∂∂xi
(u − u2)+

∣∣∣∣∣2(
1 +

∣∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣∣ +

∣∣∣∣∣∂u2

∂xi

∣∣∣∣∣)2−pi
= 0, if 1 < pi ≤ 2,

∫
Ω

∣∣∣∣∣ ∂∂xi
(u − u2)+

∣∣∣∣∣2(
1 +

∣∣∣∣∣∣ ∂u
∂xi

∣∣∣∣∣∣ +

∣∣∣∣∣∂u2

∂xi

∣∣∣∣∣)2−qi
= 0, if 1 < qi ≤ 2,

which provides that ‖(u − u2)+‖ = 0. Therefore u2(x) ≥ u(x) a.e. in Ω.
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