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Abstract: High-throughput plant phenotyping systems capable of producing large numbers of images
have been constructed in recent years. In order for statistical analysis of plant traits to be possible,
image processing must take place. This paper considers the extraction of plant trait data from soybean
images taken in the University of Nebraska-Lincoln Greenhouse Innovation Center. Using transfer
learning, which utilizes the VGG16 model along with its parameters in the convolutional layers as
part of our model, convolutional neural networks (CNNs) are trained to predict measurements such
as height, width, and size of the plants. It is demonstrated that, by making use of transfer learning,
our CNNs efficiently and accurately extract the trait measurements from the images using a relatively
small amount of training data. This approach to plant trait extraction is new to the field of plant
phenomics, and the superiority of our CNN-based trait extraction approach to an image segmentation-
based approach is demonstrated.
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1. Introduction

The keys for quantitative analysis of plant traits are accurate and efficient collection of genetic and
phenotypic data. Compared to recent advances in large-scale genetic information collection, the
classical hand-measured approach for collecting plant traits is labor-intensive and inefficient.
High-throughput image-based phenotyping systems have recently been built to overcome this
problem. Substantial advancements have been made by engineers to enable the large-scale collection
of plant images and sensor data [1–5]. A unifying objective among researchers is the accurate
extraction of plant traits from images [6, 7]. While systems able to produce thousands of images per
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day exist, the raw images are often only stepping stones to further analysis. For this reason, an
important current area of research involves obtaining plant traits from raw images that can then be
used in downstream analyses. A host of image analysis techniques from the field of computer vision
are often applied to extract various plant traits, and, increasingly, machine learning algorithms are
being applied to improve the accuracy of the measurements as well as the efficiency and scalability of
the process [8–12].

A common approach to extracting a number of plant measurements from images first requires
binary images to be produced through the process of image segmentation. Methods such as frame
differencing [13], K-means [14, 15], and thresholding [16, 17] are frequently used. In [18], a neural
network model was trained to classify each pixel in a maize image into either the plant class or the
background class. It was demonstrated that the neural network segmentation is more accurate and
robust than the traditional methods mentioned above. However, such a segmentation method based on
a neural network is time consuming for high resolution images and the high-throughput phenotyping
systems that produce large numbers of plant images daily for experiments.

In recent years, convolutional neural networks have become a standard approach for many image
analysis tasks (see, for instance, [19–23]). They have achieved state-of-the-art results in a number of
challenging areas. The main advantage of CNNs over standard feed-foward neural networks for
image analysis is, by means of convolutional layers, CNNs can preserve local structural information.
Intuitively, pixels are not scattered independently throughout an image. In the case of plant images,
plant pixels are more likely to be next to or surrounded by other plant pixels while background pixels
are more likely to be surrounded by other background pixels. Because of the preservation of local
information, CNNs are thus able to learn to recognize quite complicated features with far fewer
parameters than would be required of a feed-forward network [24, 25].

There have been an increasing number of applications of deep neural networks to plant phenotype
extraction from images in recent years. Miao, et al. [26] employed a relatively shallow convolutional
neural network (CNN) for leaf counting of maize plants. Trained using a combination of real maize
images from a greenhouse and simulated maize images, this network learned to accurately count maize
leaves. Lu, et al. [27] used deeper CNN structures to count the number of tassels on maize plants
in an unconstrained field environment. Using 186 images for training and validation, several CNN
structures were adapted from well-known models and retrained to enable accurate tassel counts. A
multi-task CNN was trained in [28] to simultaneously identify wheat images containing spikes and
spikelets as well as to localize and thus count said spikes and spikelets. Their CNN architecture makes
use of residual blocks [29] and skip-training [30] to achieve near-perfect accuracy in spike and spikelet
counting. Aich, et al. [31] utilized CNNs for estimating emergence and biomass of wheat plants from
high-resolution aerial field images. The SegNet [32] architecture was used for soft segmentation as part
of extracting both emergence and biomass, and a CNN utilizing inception blocks [33] and inception-
residual blocks [34] was trained for each of their desired traits. In those works, CNNs with millions
of parameters were constructed and estimated on limited training data. However, such large networks
trained on a small amount of data may not be stable or accurate for trait prediction.

As a well-trained CNN requires a large amount of training data which may not be available in
many applications, transfer learning [35] borrows the structures of pre-trained networks to solve this
problem. In transfer learning, parts of a previously trained CNN are incorporated into a new network.
This allows portions of a model trained for a specific task, say object classification, to be used in a
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different model for a different task, say object localization. A number of the most well-known and
top-performing models for many image analysis tasks have been made publicly available [19, 20, 36].
Thus not only does transfer learning reduce the need for extensive computational resources, it can also
apply portions of the best CNNs to new tasks. Both the computational efficiency and improvement in
task performance resulting from transfer learning have been demonstrated in a number of cases across
various research domains [37–40].

This paper considers the implementation of CNNs with transfer learning to directly predict plant
trait measurements from greenhouse images without segmentation. The images considered here are
RGB images of soybean plants taken at the University of Nebraska-Lincoln Greenhouse Innovation
Center; see Figure 1 for examples of soybean plant images. As preparing training data with accurate
measurements for plant traits is both labor and time consuming, in this paper, we apply the idea of
transfer learning based on the model known as VGG16 [19], which is a deep CNN originally trained
for image classification on the ImageNet data set [41]. By borrowing the network structure and its
parameters from the pre-trained model, we reduce the number of parameters that must be estimated in
our model.

Table 1 describes the architecture of the original VGG16 model, which used 224 × 224 pixel RGB
images as input. We pass all the soybean images to the VGG16 network and obtain the flattened vector
of output from its 18th layer in Table 1. Those vectors of output are then treated as the input layer
for a fully connected neural network for predicting the soybean traits. The proposed approach can
be viewed as a neural network prediction method applied on the transferred images by the VGG16
model. Note that the layers 19–21 in VGG16 are not implemented in our model. More details on the
implementation of the proposed method are given in the Materials and Methods section.

It will be demonstrated that our approach using less than 2000 training images can accurately
produce plant trait measurements from greenhouse RGB images of soybean plants. Using available
hand-measured height data, we will also demonstrate the superiority of CNN height prediction to the
heights obtained from the method based on image segmentation. Those results indicate our transfer
learning approach successfully implements a large neural networks trained on a relatively small sets
of plant images. This advantage could be important to save time and labor in many plant phenotyping
research, as different training data need to be separately prepared for different plants and experiments.
With this use of transfer learning on greenhouse soybean images, our CNN method constitutes a novel
approach to trait extraction from high-throughput phenotyping systems.

(a) (b) (c) (d)

Figure 1. RGB Images of soybean plants in various stages of growth taken at the University
of Nebraska-Lincoln Greenhouse Innovation Center.
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In this study, the only hand-measurement we are able to access is the soybean plant height as
measured in inches. However, the main purpose of this paper is to demonstrate the utility of machine
learning to extract various trait measurements from these plant images. As such, we demonstrate
the ability of CNNs to accurately predict the height, width, and what we will refer to as the size
of a plant as obtained from the binary segmented images of soybean plants. These thus stand in as
proxies for actual trait measurements which a CNN could be trained to obtain given hand-measured
trait data. A description of how these measurements are obtained through image segmentation is given
in section 2.2. We also use the hand-measured height data to train a CNN solely for height prediction
to show that CNNs can be both more accurate and more efficient than the image segmentation-based
method.

In summary, this paper presents two related novel contributions. First, we make use of transfer
learning in training a CNN to directly extract phenotypic traits from soybean plants. That is, with no
image preprocessing other than resizing, our model takes raw RGB images and predicts the plant traits
on a standard measurement scale. Using this approach, we have outperformed previous state-of-the-
art results in the tasks considered. Second, by incorporating part of the VGG16 model into the first
layers of our model, we have been able to achieve our superior performance more efficiently relative to
other, similar work in image analysis. That is, we required relatively small amount of training images
and used less computation time to obtain our results. Thus this paper contributes to the field of plant
phenomics by providing an efficient and accurate means of plant trait extraction via deep learning
methods.

Table 1. Architecture of the original VGG16 convolutional neural network. VGG16 was
trained to recognize any of 1000 different objects in the ImageNet data set, hence the output
layer with 1000 units for the predicted probability of each class.

Layer Number Layer Type Details
1 Convolutional Layer 64 filters of size 3 × 3 × 3, stride of 1, ReLU activation
2 Convolutional Layer 64 filters of size 3 × 3 × 64, stride of 1, ReLU activation
3 Max Pooling Layer 2 × 2 kernel, stride of 2
4 Convolutional Layer 128 filters of size 3 × 3 × 64, stride of 1, ReLU activation
5 Convolutional Layer 128 filters of size 3 × 3 × 128, stride of 1, ReLU activation
6 Max Pooling Layer 2 × 2 kernel, stride of 2
7 Convolutional Layer 256 filters of size 3 × 3 × 128, stride of 1, ReLU activation
8 Convolutional Layer 256 filters of size 3 × 3 × 256, stride of 1, ReLU activation
9 Convolutional Layer 256 filters of size 3 × 3 × 256, stride of 1, ReLU activation
10 Max Pooling Layer 2 × 2 kernel, stride of 2
11 Convolutional Layer 512 filters of size 3 × 3 × 256, stride of 1, ReLU activation
12 Convolutional Layer 512 filters of size 3 × 3 × 512, stride of 1, ReLU activation
13 Convolutional Layer 512 filters of size 3 × 3 × 512, stride of 1, ReLU activation
14 Max Pooling Layer 2 × 2 kernel, stride of 2
15 Convolutional Layer 512 filters of size 3 × 3 × 512, stride of 1, ReLU activation
16 Convolutional Layer 512 filters of size 3 × 3 × 512, stride of 1, ReLU activation
17 Convolutional Layer 512 filters of size 3 × 3 × 512, stride of 1, ReLU activation
18 Max Pooling Layer 2 × 2 kernel, stride of 2

Flattening Flatten array resulting from layer 18 into 1-D vector
19 Fully-connected Layer 4096 units, ReLU activation, Dropout with dropout probability 0.5
20 Fully-connected Layer 4096 units, ReLU activation, Dropout with dropout probability 0.5
21 Fully-connected Layer Output layer, 1000 units, Softmax activation
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2. Materials and methods

2.1. Data sets

There are a total of 15,223 sets of images of soybean plants in this experiment, taken from January
to May 2018. Each image has a resolution of 2056 × 2454 pixels. There is also a subset of 2235
images for which hand-measured heights are available. The high-throughput imaging system also
records millimeter-per-pixel information for each image taken that allows for converting estimated
trait measurements from pixel scale to standard scales (e.g., inches in the case of height).

Of the total available image sets, two separate collections of image data were created for trait
extraction. The first collection consists of 2000 images sampled at random from the total 15,223
images. As hand-measured heights were not available for all of these images, the height, width, and
size measurements were obtained through segmentation (see the following subsection). This image
collection will be referred to as the segmentation-obtained, or SO, collection. To predict the plant
traits by CNN, this collection was split into training and testing sets. The SO training set consists of
1800 images while the SO testing set consists of the remaining 200 images from the SO collection.

The second image collection contains all 2235 images for which hand-measured heights are
available. As such, this collection will be referred to as the hand-measured, or HM, collection.
Similar to the SO collection, the HM collection was split into training and testing sets. The HM
training set contains 1938 images while the HM testing set contains the remaining 297 images.

All images in both collections were scaled down from their original size of 2056 × 2454 pixels to
1024 × 1227 pixels by the resize function from the OpenCV Python library. This was done to reduce
the amount of computation time needed for the methods employed.

2.2. Image segmentation and trait extraction

To obtain the height, width, and size measurements of plants via segmentation, the method of
obtaining training data for image segmentation by a combination of cropping and K-means as
described in [18] was employed. This process yielded a data set containing 9,325,817 total pixels as
observational units. Of these, 8,857,179 were labeled as background pixels and 468,368 were plant
pixels. A neural network with the same architecture as was employed for maize segmentation in [18]
was then trained on these data. Once the segmentation model was trained, all images in the SO
collection were segmented to binary images with 1 and 0 standing for plant and background pixels
respectively. To further reduce the background noise for better trait measurements, each binary image
was subjected to a morphological opening which employed the 5 × 5 diamond-shaped kernel
matrix [42, 43]. This was accomplished using the morphologyEx function from the OpenCV Python
library. The desired plant trait measurements could then be obtained from those segmented images.
Furthermore, the HM testing set images were also segmented. This was done to allow for comparison
of the segmented heights with the hand-measured heights. The Keras library in Python was used for
training and prediction of the segmentation model.

As the hand-measured height was taken from the top of the pot to the top of the plant, the
segmentation-obtained height in terms of pixels was calculated by taking the difference between the
top of the pot and the uppermost y-position of the plant in the image. Note that the location of the pot
is uniformly the same in all images under consideration. Similarly, the difference between the
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right-most and the left-most x-positions of a plant yields the pixel width of the plant. The
millimeter-per-pixel information of the images, which is available for both the x and y directions,
were then used to scale the height and width to inches. Finally the size of the plant was obtained by
simply summing the total number of plant pixels in each binary image. Again using
millimeter-per-pixel information, the measurement was then scaled to square inches.

All three traits under consideration serve a practical purpose. The different experimental lines and
exotic germplasm used in this study express their phenotypes along a spectrum of variation for a given
trait. In this experiment, we used a set of soybean germplasm rich in genetic diversity and thus, in
phenotypic variation. Of the traits under consideration, height is often used to reveal the plant growth
dynamic, and its association with genetic variation. In addition to growth dynamic, plant biologists are
also interested in plant architecture. In this scenario, plant width refers specifically to above-ground
plant horizontal architecture. This is related to differences in petiole length, branch length, branch size,
leaf length, overall plant size, among others. Similarly, plant size as measured by the millimeter-per-
pixel information of the images, is a proxy for above-ground plant biomass. Hand-measurements of
plant width (horizontal architecture) and size (a destructive measurement of above-ground biomass)
would not only be cumbersome, but also very difficult to obtain. Therefore, the two-dimensional
information provided by these measurements is significant for characterization of plant architecture.

2.3. CNN architecture and transfer learning

The Keras library in Python was used for training and prediction of the convolutional neural
network. In order to predict the height, width, and size from the SO images as well as the height from
the HM image collection, four separate networks were trained. These are referred to, respectively, as
CNN-HSO, CNN-WSO, CNN-SSO, and CNN-HHM. While the four models learn different
parameters during the training process, they all utilize the same network architecture.

As mentioned in the introduction, layers, including the pre-trained parameters, from the VGG16
model were implemented as part of our network architecture. Specifically, layers 1–18 from Table 1
served as the layers of our CNN architecture. The output from the 18th layer of the VGG16 portion of
our CNN architecture was a 32 × 38 × 512 array. This array was then flattened into a column vector
of 622,592 units which was then fed into a fully-connected neural network with 2 hidden layers of 64
units, both of which use the ReLU activation function [25,44]. Finally, the output layer consists of only
one unit and employs the linear activation function. As the plant traits are non-negative, the negative
predicted values from the proposed models were replaced by 0. This fully connected portion of our
neural network architecture contains 39,850,177 parameters that need to be trained for each of the four
CNNs.

In addition to having the same architecture, all four CNNs were trained using the same choices of
loss function, optimizer, etc. The loss function was the mean squared error, and the Adam optimizer
was used with learning rate α = 0.0008 and recommended exponential decay rates of β1 = 0.9 and β2 =

0.999 [44,45]. The models were each trained in batches of 128 images and ran for 100 epochs [25]. The
CNN-HSO, CNN-WSO, and CNN-SSO networks were trained on the 1800 images in the SO training
set and evaluated on the 200 images in the SO testing set. The CNN-HHM network was trained on
the 1938 images in the HM training set and evaluated on the 297 images in the HM testing set. Note
that the hyperparameters were tuned by randomly holding out 10% of the training observations as
validation data and finding values that minimized the loss on the validation set of images. Once the
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hyperparameters were selected, the models were retrained on the entire training data sets.

2.4. Computational time comparison

As computational time is an important consideration in image analysis tasks, the time needed to
extract plant trait measurements from a 1028 × 1227 pixel image was measured for all four CNNs as
well as for the height extraction based on segmentation. To accomplish this, one image was selected
at random from the SO image collection. This image served as the input for 100 runs of each of the
four CNNs. There were also 100 runs where a binary image was produced by the segmentation model
and the height was calculated as described in section 2.2. Note that only the time for height extraction
was calculated from the segmentation-based method as the computation time required for any of the
height, width, and size measurements from segmented images is negligible.

(a) (b) (c)

Figure 2. Panel (a) contains an RGB image of a soybean plant in the Nebraska Innovation
Greenhouse while panel (b) is the resulting binary image. In panel (c), the segmentation-
obtained heights are plotted against the hand-measured heights from the same images. The
45 degree line in the plots is where the heights from segmentation equal the hand-measured
heights.

3. Results

3.1. Segmentation and trait extraction

Panels (a) and (b) of Figure 2 show an RGB soybean image and the corresponding binary image
resulting from the proposed segmentation method. From visual inspection, our method appears to
produce a well-segmented binary image. Panel (c) of Figure 2 contains the heights obtained from the
binary images in the HM test set plotted against the hand-measured heights from those same images.
The closer a point is to the 45 degree line seen in the plot, the smaller the discrepancy between hand-
measured height and segmentation-obtained height for a given image. The mean absolute deviation
between hand-measured and segmentation-obtained heights for the HM test set is 0.83. That is, for
these images, the average discpreancy between measured and predicted height is only 0.83 inches.
This demonstrates that our image segmentation-based approach to height extraction is viable.
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3.2. CNN results

3.2.1. Results from segmentation-obtained traits

We first consider the results of the CNN-HSO, CNN-SSO, and CNN-WSO models. Figure 3(b)–(d)
contain, for each of these three models, the predicted traits plotted against the traits extracted from
the binary versions of the SO testing set images. Each of these plots contains a black 45 degree line
representing where the predicted and observed traits are equal. In panels (b) and (c), the blue dotted
lines represent deviations of 1 inch between predicted and observed heights and widths, respectively.
Similarly, the red dotted lines represent deviations of 2 inches for those traits. For the size plot in
panel (d), the blue dotted lines represent a deviation of 1 square inch while the red dotted lines represent
a deviation of 4 square inches.

Some basic measures to assess the quality of the predictions are found in Table 2. These are the
mean absolute deviation, the R2, and the proportions of absolute deviations falling into given regions.
For the CNN-HSO and CNN-WSO, region one is less than 1 inch, region two is at least 1 inch but
less than two inches, region three is at least 2 inches but less than 3 inches, and region four is at least
3 inches. As CNN-SSO predicts size, which is measured here in square inches, the regions change so
that region one contains deviations less than 1 square inch, region two is at least 1 square inch but less
than 4 square inches, region three is at least 4 square inches but less than 9 square inches, and region
four is at least 9 square inches.

Table 2. Measures relating to the quality of trait prediction by the various CNN models.
MAD represents the mean absolute deviation between predicted traits and segmentation-
obtained traits while R2 is the square of Pearson’s correlation between the predicted and
segmentation-obtained values. The Prop. Region rows represent the proportion of deviations
falling into each region as defined in section 3.2.1.

CNN-HSO CNN-WSO CNN-SSO
MAD 1.11 in. 0.8633 in. 1.51 sq in.
R2 0.9707 0.9444 0.9723
Prop. Region 1 0.610 0.665 0.565
Prop. Region 2 0.225 0.250 0.345
Prop. Region 3 0.080 0.050 0.075
Prop. Region 4 0.085 0.035 0.015

From Table 2, the average deviations between predicted and segmentation-obtained traits are small
and the R2 values are close to 1. Further, for each model, more than 83% of all deviations fall in regions
1 and 2. For CNN-WSO and CNN-SSO, over 91% of the deviations are in regions 1 and 2. Thus, from
each model, only a small proportion of the total images result in egregious deviations. Possible reasons
for these deviations will be explored in the Discussion section. Overall, these measures indicate that
all three models are capable of extracting the desired trait measurements accurately.

3.2.2. Results from hand-measured height

The CNN-HHM model was trained and evaluated on the HM image collection (using the HM
training and testing sets, respectively). Panel (a) of Figure 3 shows that the CNN-HHM predicted
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heights are quite close to the hand-measured heights on the testing data set. The lines in the plot
correspond to those seen in panels (b) and (c) of Figure 3. Recall that Panel (c) in Figure 2 plots the
height obtained from segmentation against the hand-measured heights for all 297 HM testing images.
We compare the accuracy of CNN-HHM prediction to the method based on segmentation.

(a) (b) (c) (d)

Figure 3. Plots of CNN-predicted traits from HM test images. Panel (a) contains the results
of CNN-HHM, CNN-HSO results are in panel (b), panel (c) contains CNN-WSO results, and
panel (d) has the predictions from CNN-SSO. The black lines in each plot are the 45 degree
lines representing equality of predictions and observations. The blue and red dotted lines
represent deviations of 1 and 2 inches respectively for panels (a), (b), and (c), and deviations
of 1 and 4 square inches respectively for panel (d).

Table 3. Measures relating to the quality of height extraction from segmentation as well as
CNN-HHM on the 297 HM testing images. See Table 2 and section 3.2.2 for explanations of
the measures contained in this table.

Segmentation-obtained CNN-HHM
MAD 0.8348 in. 0.5236 in.
R2 0.9758 0.9698
Prop. Region 1 0.7273 0.9057
Prop. Region 2 0.2290 0.0606
Prop. Region 3 0.0303 0.0135
Prop. Region 4 0.0134 0.0202

Table 3 contains the same measurements as those given in Table 2 for the segmentation-obtained
and CNN-HHM predicted heights on the 297 HM testing set images. The regions for Table 3 are
the same as those used for CNN-HSO and CNN-WSO. Here we notice that, on average, the CNN-
HHM predicted heights are just over half of an inch from the hand-measured heights. This is a big
improvement over the segmentation-obtained heights, whose mean absolute deviation is 0.8348 (which
is still a good result). The R2 values are comparable between the two methods with the segmentation-
obtained R2 just a little larger. The CNN-HHM also outperforms the segmentation heights in terms of
the proportion of deviations within an inch of the hand-measured height. Just over 90% of CNN-HHM
predictions lie within an inch of the actual height while the value is close to 73% for the segmentation-
obtained heights. The one area in which the segmentation-obtained heights appear to do better than
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the CNN-HHM predicted heights can be observed from the plot in Figure 3(a). It appears that even
though most of the deviations in this plot are smaller than the deviations in panel (c) of Figure 2
(i.e., they are more tightly clustered around the 45 degree line), there are some exceptionally large
deviations produced by the CNN-HHM predictions. As with the other three CNN models, only a small
percentage of images produce egregious deviations from the hand-measured heights. These will also be
investigated further in the Discussion section. Overall, it appears that CNN-HHM extracts the soybean
height more accurately than the segmentation method does.

3.3. Computational time results

In addition to accuracy in trait extraction, computational time is an important consideration when
comparing image analysis methods. As mentioned in the Materials and Methods, all five trait extraction
methods considered above were run 100 times on the same image, and completion time, as measured
in seconds, was recorded for each run. Table 4 contains the average times and standard deviations for
each method as well as 95% confidence intervals for the difference in average run time between each
of the CNN models and the segmentation method.

Table 4. Table of computational time results. The 95% t-intervals are for the average
difference between each of the CNN models and the segmentation-based method.

Method Mean Run Time Standard Deviation 95% t-Intervals
Segmentation 53.35 1.7641
CNN-HSO 4.67 0.4291 (48.32, 49.04)
CNN-WSO 4.71 0.4128 (48.29, 49.00)
CNN-SSO 4.86 0.3969 (48.14, 48.85)
CNN-HHM 4.85 0.4098 (48.15, 48.86)

It is clear from Table 4 that all of the CNN models extract plant traits much faster than the
segmentation method. This demonstrates another significant advantage that the CNN models have
over the segmentation approach to plant trait extraction. While trait extraction is not instantaneous for
any of the CNN models, an extraction time of approximately 5 s per image should be sufficiently fast
for most purposes.

4. Discussion

As mentioned in the Results section, the CNN models sometimes make predictions that are far
from the observed trait measurements. In particular, some of the height predictions from CNN-HHM
deviated especially far from the hand-measured height values. To investigate why this might be the
case, the six images producing discrepancies between predicted and actual height of at least 3 inches
are shown in Figure 4. The black line on the left of each image is the height as measured in the
greenhouse, and the red line on the right of the image is the height predicted by CNN-HHM. Listed
below each image is the absolute height discrepancy in inches between measured and predicted values.

Interestingly, the image in panel (a) of Figure 4 also produces the largest discrepancy between
measured height and segmentation-obtained height. While the segmentation-obtained height only
produces a discrepancy of 3.92 inches compared to the discrepancy of 9.6 inches produced by the
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CNN-HHM height, this image presents an instructive case. Observe that the plant in panel (a) of
Figure 4 is not standing erect but curves instead. This pattern is expected when growing soybean
plants under greenhouse conditions, but it is also undesirable. The vine-like growing pattern is
considered to be an artifact where temperature and light, both natural and artificial, play a role in
internode elongation of the main stem of the plant [46–48]. This is the reason that bamboo sticks are
seen in many of the images as the plants were attached to the sticks in an attempt to keep them as
upright as possible. So in panel (a) of Figure 4 the plant was made to stand erect when the height
measurement was taken. It can also be observed from this image that CNN-HHM appears to be
confused by the curve in the stem as it ends its height prediction at the point where the plant posture is
no longer erect. This could be due to not having enough examples of images such as this one in the
HM training set. This seems likely as most of the plants with fast elongating internodes were attached
to bamboo sticks before they elongated in excess, and thus there are not many examples of vine-like
growing plants this size that have not yet been straightened out.

The bamboo sticks themselves appear to be the primary cause of discrepancy in panels (b), (c)
and (e) of Figure 4. CNN-HHM is evidently confused about where the plant ends towards the top of
the bamboo sticks. As for panels (d) and (f) of Figure 4, if the mistakes are due to CNN-HHM, it is
difficult to see what those might be. It could actually be the case that the measurements were taken
improperly. In panel (d) of Figure 4, the measured height seems to be too tall. We believe the most
likely cause for the discrepancy in this image is simply a data-entry error. At least to the naked eye,
CNN-HHM appears to give the more accurate measurements in panels (d) and (f) of Figure 4.

Based on these large discrepancies, one potential means of reducing large errors made by the CNN
would be to ensure a consistent approach to measurement in difficult cases. Surely some cases, such
as panel (a) of Figure 4, will be too infrequent for sufficient examples to exist in the set of training
images. In other cases, inconsistency in measurement procedure can make training more difficult. If
similar plants are measured differently, the CNN may find some trivial way to distinguish between
them that it should not use in predicting the measurements.

In relation to the computation time results, it is important to note that the segmentation procedure
employed depends on a neural network, and this is the primary reason that extracting the height from a
single image takes so long. For more traditional approaches to segmentation such as those mentioned
in the introduction, the height extraction time would surely be much faster. It is likely that height
extraction time using frame differencing, K-means, or a thresholding procedure would be even shorter
than the approximately 5 s average time obtained by the four CNN models. However, the primary
reason this was not looked into further was our inability to obtain acceptable segmentation results on
the soybean images using any of these methods. The presence of bamboo sticks in many of the images
make finding a usable reference image for frame differencing difficult. We were also unable to find
configurations of K-means or thresholding methods that could distinguish the dark background from
the dark soybean plants.

The results presented here lead to the conclusion that convolutional neural networks and transfer
learning can be trained to efficiently and accurately extract plant height, width and size from images.
We have considered more sophisticated traits which also demonstrate the utility of the proposed
method. Miao, et al. [26] employs a CNN for obtaining leaf counts from maize images taken in the
same greenhouse as our soybean plant images. By using the same network architecture and
hyperparameter choices described for the CNNs in the materials and methods section (the sole
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exception is that the model was trained over 50 epochs rather than 100), we have been able to improve
on the maize leaf counting results presented in [26]. In addition to the deeper network architecture,
we also used a larger number of images for training. Comparing results between test sets, they
reported an R2 value of 0.74 and a root mean squared error (RMSE) of 1.33 while we obtained an R2

of 0.88 and RMSE of 1.10. This encouraging result supports the conclusion that CNNs and transfer
learning can be successfully applied to plant trait extraction for a variety of both plants and traits.

Additionally, though the CNN models given here were all trained on greenhouse images containing
only a single plant per image, some modifications could be made to allow for trait extraction from
images containing multiple plants. Building on the data collection and segmentation from [18, 49]
presents a method to isolate, segment, and compute (segmentation-based) heights for maize plants in
field images. In addition, techniques such as R-CNNs and the YOLO algorithm [50–52] have been
successful in identifying and localizing objects in images. Combined with a reliable method to isolate
plants in more varied images, a transfer learning CNN trait extraction algorithm would likely be much
more widely applicable based on labelled features from several hundreds of those separated field-
plant images as training data. This paper demonstrates the potential of CNNs, combined with transfer
learning, to successfully and efficiently extract phenotypic traits from plant images. It serves as a useful
starting point to building more sophisticated models that will allow for trait extraction from a greater
number of plant species in more varied settings.

(a) Discrepancy: 9.60 in. (b) Discrepancy: 4.73 in. (c) Discrepancy: 4.53 in.

(d) Discrepancy: 4.03 in. (e) Discrepancy: 3.20 in. (f) Discrepancy: 3.12 in.

Figure 4. Images with discrepancies (the number below each image) between hand-
measured and CNN-HHM predicted heights over 3 inches. The black line on the left side of
each image represents the hand-measured height while the red line represents the CNN-HHM
predicted height.
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