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Abstract: The first cases of COVID-19 appeared in Bolivia on March 10. Since then and until 

September 24, 132,618 people have been infected, 7765 have died, and 92,101 have recovered; the 

virus has spread throughout the country, but the departments of Santa Cruz, La Paz, and Cochabamba 

account for the overwhelming percentage of infected, recovered and dead. We analyze the spread of 

the virus utilizing a SIR model. We find that a maximum fraction of infected individuals occurs on 

June 17, when around 28% of the population is infected; when the epidemic begins to subside, 54% 

of the population is in the recovered category, indicating that more than half of the population will 

have been infected by COVID-19 during some period of the epidemic. There is an uptick in the 

number of susceptible individuals after July 1, highlighting that the relaxing of mitigation measures 

might have happened too soon. 
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1. Introduction  

In Bolivia, the first reported cases of COVID-19 appeared on March 10 in the cities Santa Cruz 

and Oruro. Since then and until September 24, 132,618 people have been infected throughout the 

country. Though reliable data is always an issue with epidemics of this magnitude
1
, certain aspects 

are becoming clearer. At the time of writing, 7765 people have died and 92,101 have recovered; the 

virus has spread throughout the country, but the departments of Santa Cruz, La Paz, and Cochabamba, 

account for around 68% of infected cases; 80% of recovered; and 77% of the dead
2
. There is no 

reliable information on whether the virus affects certain groups more than others—i.e., men and 

                                                             
1 This problem is compounded in developing countries like Bolivia 
2 Bolivia is divided into 9 Departments: La Paz, Cochabamba, Santa Cruz, Oruro, Chuquisaca, Pando, Tarija, Beni, and Potosí 
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women; old and young; urban and rural; healthy and sick—but anecdotal evidence seems to suggest 

that, as in other countries, the virus is particularly prevalent in older enclaves and in people with 

underlying health conditions. The government of Bolivia began applying mitigation measures, 

including a strict quarantine order, on March 22, earlier than most other countries in Latin America; 

it closed its borders to international travel on March 21 and severely restricted domestic travel as 

well. On June 1 it began relaxing some of these measures, and at the time of writing was considering 

implementing them once again after an uptick in new infections and deaths.  

Although not explicitly analyzed here, it is important to note that the healthcare system in the 

country has been completely overwhelmed by the epidemic, both in terms of providing adequate and 

opportune testing that might help in containing the virus; and in providing basic healthcare services 

to people infected by the virus. Unfortunately, as is often the case in countries like Bolivia, people 

who are in greatest need of the system—the uninsured, the poor, and more generally, anyone living 

outside the principal urban centers—are suffering the most and are paying the consequences of the 

mismanagement, underfunding, and corruption that have afflicted the public health system in the 

country for generations.  

An additional complicating factor in the spread of the virus is the political situation. The present 

government—headed by Jeanine Añez and in power since November 2019—is a transitional 

administration tasked with organizing democratic elections in 2020. Given its transitional nature and 

the story of Bolivian politics, the current government is inherently fragile and limited in its ability to 

impose and enforce proper mitigation measures. 

We analyze the projected spread of COVID-19 at the national and departmental levels utilizing 

the Susceptible-Infective-Recovered (SIR) model
3

. Though several assumptions are made, 

particularly in terms of transmission and recovery rates and the number of contacts between infected 

and susceptible individuals, we find that our predicted model fits the data well. Further, the model 

allows us to make predictions regarding the impact of public interventions—including the 

establishment of quarantines and the introduction of effective antiviral treatments—on the trajectory 

of the virus. 

A summary of findings is this: on its current path and at the national level, a maximum 

fraction of infected individuals occurs around June 17, when approximately 28% of the 

population (3.2 million) is infected by the virus; when the epidemic begins to subside, about 54 % 

of the population (6.3 million) is in the recovered group, indicating that more than half of the 

population will have been infected by COVID-19 during some period of the epidemic. There is an 

uptick in the number of susceptible individuals after July 1, highlighting that the relaxing of 

mitigation measures might have happened too soon.  

The rest of the paper is organized as follows. Section 2 presents a short review of the literature; 

section 3 analyzes the data and the methodology; section 4 reports the principal results, and section 5 

concludes. 

2. Literature review 

Predictive mathematical models for epidemics are fundamental to understand the trajectory of 

an epidemic and to plan effective control strategies to contain it. Developed by Kermack and 

                                                             
3 In the SIR model, ‘Recovered’ includes those individuals that recover naturally or through medication from the disease and those 

that die (i.e., are removed) because of the disease. We did not choose a more detailed model due to lack of reliable data. 
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McKendrick [1], the SIR model for human-to-human transmission of a disease is a commonly used 

methodology that describes the flow of individuals through three mutually exclusive stages of 

infection: Susceptible, infected, and recovered.  

There have been many extensions to the SIR model and its utilization to describe the COVID-19 

epidemic. Lin, et al. [2] for instance, utilize an SEIR (susceptible, exposed, infectious, removed) model 

considering risk perception and a cumulative number of cases; Anastassopoulou, et al. [3] analyze a 

discrete-time SIR model that includes dead individuals; Casella [4] develops a control-oriented SIR 

model that stresses the effects of delays and compares the outcomes of different containment policies; 

Giordano, et al. [5] compare simulation results with real data from Italy utilizing a novel SIDARTHE 

(susceptible, infected, diagnosed, ailing, recognized, threatened, healed, and extinct) model; Wu, et al. [6] 

use transmission dynamics to estimate the clinical severity of COVID-19; and Tam, et al. [7], 

utilizing a SIR model but adding the number of quarantined people, analyze the projected spread of 

COVID-19 in Louisiana without including the effects of the stay-at-home order. Some authors have 

also considered stochastic transmission models, including Hellewell, et al. [8] and Kucharski, et al. [9].  

For the specific case of Bolivia, a handful of working papers, reports, and policy briefs have 

been developed on the theme of COVID-19. Utilizing an SEIR
4
 model and with national data only, 

Birbuet and López [10] present an analysis of the spread of the virus before and after the 

establishment of a quarantine. A report from the MRC Centre for Global Infectious Disease Analysis
5
 

focuses on back-calculating an ‘inferred number of COVID-19 infections’ to estimate the number of 

people that have been infected and to make short-term projections for future healthcare needs; two 

additional documents—a report from the World Bank
6

 and a policy brief from United 

Nations
7
—focus on the impact of COVID 19 on the economic, social, and political performance of 

countries in Latin America and the Caribbean, but neither analyzes the evolution of the virus in each 

country.  

As the preceding review makes clear, there is a gap concerning a formal analysis of COVID-19 

in Bolivia, particularly at the departmental level. The contribution of this paper rests on filling this 

gap by presenting a mathematical model that describes the evolution of the epidemic from its 

inception point in early March of 2020 to its eventual decline, including how the trajectory of the 

virus might be altered if mitigation policies are put into place to control the spread of the virus. 

3. Data and methodology 

3.1. Data 

The primary source of data for the number of infections, dead, and recovered is the government 

of Bolivia. It has set up an official website—Bolivia Segura
8
—where all statistical data is placed 

daily. The website also serves to inform the public on all matters related to the epidemic. A second 

                                                             
4
 We are not comfortable utilizing a latency number to predict the number of exposed individuals; we feel that an SIR model is more 

accurate in describing the spread of COVID-19 in Bolivia. If we had included a latent state in addition to the susceptible, infected, and 

recovered states, we would have to utilize two additional parameters – i.e., time it takes for an infected person to become infectious; 

and the average time during which an infected person is able to transmit the disease – which may not add significantly to the basic 

findings since, as it is the case with all parameters, much is still uncertain about COVID-19 
5 Imperial College, London. Available at: https://mrc-ide.github.io/global-lmic-reports/BOL/ 
6 Available at: https://openknowledge.worldbank.org/handle/10986/33555 
7 Available at: https://www.un.org/sites/un2.un.org/files/sg_policy_brief_covid_lac.pdf 
8 https://www.boliviasegura.gob.bo/ 
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webpage built by a group of university students—COVID Bolivia
9
—processes the data collected in 

Bolivia Segura and cross-references it with other private sources of data to control for the reliability 

of government-produced statistics. The data utilized here comes from Bolivia Segura but it is 

continually cross-referenced with data from COVID Bolivia
10

. 

3.2. Methodology 

The SIR dynamical system consists of three ordinary difference equations describing the 

evolution of the population in each state over time
11

: 

 𝑠𝑡+1 = 𝑠𝑡 − 𝛼𝛾𝑠𝑡𝑖𝑡 + 𝑛 − 𝑚𝑠𝑡        (1) 

𝑖𝑡+1 = 𝑖𝑡 + 𝛼𝛾𝑠𝑡𝑖𝑡 − 𝑘𝑖𝑡 − 𝑚𝑖𝑡 

𝑖𝑡+1 = (1 + 𝛼𝛾𝑠𝑡 − 𝑘 − 𝑚)𝑖𝑡          (2) 

𝑟𝑡+1 = 𝑟𝑡 + 𝑘𝑖𝑡 − 𝑚𝑟𝑡          (3) 

where s(t), i(t), and r(t) represent fractions of the total population, per time, in the susceptible, 

infected, and recovered states (or categories), respectively. The parameters are defined as follows: 

 α denotes the percent of contacts resulting in an infection; also known as the transmission rate 

 γ represents the number of non-infected people contacted by each infected person 

 k represents the fraction of the population that recovers from the disease each period; also known 

as the recovery rate 

 and n and m denote the birth and death rates, respectively 

If we let β = αγ, Eqs (1)–(3) can be restated as: 

𝑠𝑡+1 = 𝑠𝑡 − 𝛽𝑠𝑡𝑖𝑡 + 𝑛 − 𝑚𝑠𝑡         (4) 

𝑖𝑡+1 = (1 + 𝛽𝑠𝑡 − 𝑘 − 𝑚)𝑖𝑡         (5) 

𝑟𝑡+1 = 𝑟𝑡 + 𝑘𝑖𝑡 − 𝑚𝑟𝑡          (6) 

The SIR models (4)–(6) are a bilinear system with three difference equations. The system is 

positive: All the state variables take non-negative values for t ≥ 0 if initialized at time 0 with 

non-negative values. Additionally, it assumes a constant population, hence n = m. The system is 

compartmental, and therefore the sum of the states (total population) is constant. Because the 

variables denote population fractions, we assume 

st+1 + it+1 + rt+1 = st + it + rt = 1         (7) 

Note that we are above the epidemic threshold whenever it+1 > it; from Eq (5), this inequality is 

equivalent to βst > k – m, which implies that whenever this inequality holds we will be above the 

                                                             
9 https://www.covid-bolivia.com/ 
10 At the onset of the epidemic, there were small discrepancies between these sources of data, but as time elapsed these discrepancies 

have almost disappeared. 
11 The SIR model presented is based on the description by Tassier [11] 
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epidemic threshold and the number of infected individuals in the population will increase. 

Alternatively, if 
𝛽𝑠𝑡

𝑘−𝑚
> 1, the level of infected individuals increases; if 

𝛽𝑠𝑡

𝑘−𝑚
< 1, the level of 

infected individuals decreases. 

Since at the beginning of the epidemic st ≈ 1, 
𝛽𝑠𝑡

𝑘−𝑚
≈

𝛽

𝑘−𝑚
. The latter fraction is known as the 

Reproduction Number (R0) and it denotes the average number of people who will contract a 

contagious disease from one person with that disease. It specifically applies to a population of people 

who were previously free of infection and have not been vaccinated, hence this number is 

particularly relevant at the beginning of an epidemic. 

Finally, note that, from Eq (5), if 1 + 𝛽𝑠𝑡 − 𝑘 − 𝑚 < 1, the epidemic never materializes. 

Rearranging, the epidemic will disappear if 𝑠𝑡 <
𝑘+𝑚

𝛽
 . Thus, herd immunity is achieved if 1 −

𝑘+𝑚

𝛽
 

of the population are recovered and immune. 

4. Empirical results 

The parameters for the baseline SIR model are set at α = 0.03; γ = 10; k = 0.10; and n = m = 

0.025
12

. The resulting basic reproduction number is R0 = 4, a clear indication that an epidemic is set 

to take off. Figure 1 shows the model evolution at the national level for the period March 10 to 

September 24, 2020. 

 

Figure 1. Bolivia: susceptible, infected, and recovered populations. 

                                                             
12 The values for α, γ, and k are estimates based on available information. The transmission rate (α) remains highly uncertain and the 

value utilized here represents a lower bound in two comparable studies: one by Munayco, et al. [12] on Peru and the other one by 

Birbuet and López [10] on Bolivia. The recovery rate (k) also represents a lower bound value based on the number of daily and 

accumulated number of recovered individuals with respect to daily and accumulated infected individuals in Bolivia. The birth rate (n) 

was obtained from the World Bank (https://data.worldbank.org/indicator/SP.DYN.CBRT.IN?locations=BO). 
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As illustrated in Figure 1, with the baseline parameters the epidemic peaks on June 17, when 

approximately 28% of the population (3.2 million) becomes infected. Subsequent to the peak, the 

share of infected individuals decreases until around August 4, when 9% of the population are 

infected, but it gradually increases after that, breaking the 12% mark on September 16. On July 12, 

54% of the population (6.3 million) are part of the recovered population, implying that more than 

half of the people in the country become infected with COVID-19 at some point during the epidemic. 

Beginning on July 13, the share of recovered individuals starts decreasing gradually but stabilizes at 

around 45% after September 10. The share of susceptible individuals also experiences an uneven 

evolution: after reaching a low of 29% on July 1, it begins to increase on July 2 reaching a level of 

44% in August 28 when it once again retakes its downward trend. These fluctuations in the fractions 

of recovered and susceptible individuals highlight that the loosening of mitigation measures—which 

began on June 1—might have caused some recovered individuals to become susceptible again, 

denting the progress made in terms of preventing susceptible individuals from coming into contact 

with people carrying the disease
13

. Either way, the duration of the epidemic is likely to be extended 

by fluctuations in the number of susceptible individuals
14

. On present trends, about 58% of the 

population (1 −
0.10+0.03

0.30
= 0.58) will have to be immunized to achieve herd immunity. 

Figure 2 illustrates the impact of loosening and tightening quarantine restrictions on the share of 

infected individuals at the national level. 

 

Figure 2. Bolivia: infected with higher and lower number of contacts. 

                                                             
13 It is also possible that fluctuations in the number of recovered individuals is the result of inexact testing; that is, infected individuals 

that eventually tested negative for the virus might have not recovered. 
14 An alternative explanation for the fluctuation in susceptible individuals is that, with new births, the number of people in state S will 

always rise once the reproduction number falls below 1. Then, as S increases, the reproduction number rises and the number of 

infections increase as well. The result being a new peak of infections and a continuation of the disease dynamics in a cyclical pattern. 

Absent a permanent cure (i.e., the introduction of an effective vaccine), the process generates a steady state (endemic) level of 

infections over time. 
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If quarantine restrictions were tightened and the number of contacts between infected and 

susceptible individuals decreases by a single person (from a baseline value γ = 10 to γ = 9), a lower 

fraction of the population becomes infected (from a baseline peak of 28% on June 17 to a lower high 

peak of 24% on July 5); likewise, if quarantine restrictions are loosened and the number of contacts 

increases by 1 (from γ = 10 to γ = 11), a larger percentage of the population becomes infected (32% 

on June 4), highlighting that quarantine restrictions can help control the spread of the virus and 

reduce the level of infections, though at the cost of extending the duration of the epidemic. A similar 

exercise can be done with the recovery rate. If an effective treatment is found and k increases—say, 

from k = 0.10 to k = 0.15—so that individuals recover more quickly, the peak level of infections 

decreases to approximately 14% of the population (1.58 million) and the number of total infections 

decreases
15

. The behavioral pattern of the epidemic becomes more apparent if changes to γ and k are 

more significant than those reported here. 

Figure 3 illustrates the evolution of COVID-19 in Santa Cruz and La Paz, two of the 

departments most affected by it. The parameters are equal to the baseline parameters utilized at the 

national level with the only difference being the number of contacts γ; the value of γ is a function of 

the level of unrest in each department.  

 

 

Figure 3. Evolution of COVID-19 in Santa Cruz and La Paz. 

                                                             
15 The graphs showing how the trajectory of the virus changes with varying values of k are available upon request. 
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Public demonstrations against mitigation measures have been particularly prevalent in La Paz
16

.
 

Additionally, demands for national elections, which the current government has postponed until 

October 18 due to concerns for greater propagation of the virus, have also been more visible and 

widespread in La Paz. As both types of public manifestations require large gatherings of people, we 

assume that the number of contacts with infected individuals is likely higher in this department than 

in relatively more peaceful Santa Cruz. If γ = 11 in La Paz and γ = 8 in Santa Cruz, we observe that 

in La Paz the virus is likely to infect a larger share of the population but will last a shorter period of 

time. Conversely, in relatively more peaceful Santa Cruz, a smaller fraction of the population is 

infected, with the epidemic lasting longer. 

Figure 4 illustrates the evolution of the recovered state utilizing actual data (i.e., the share of 

recovered individuals in the population) and the predicted values of the SIR model (i.e., the share of 

recovered individuals as reflected in Eq (6)) for the departments of Santa Cruz and La Paz. The 

parameters are those utilized for describing the evolution of the virus in Figure 3. 

 

 

Figure 4. Actual and predicted values for share of recovered individuals. 

                                                             
16 Social unrest has also occurred in other departments, but La Paz, as the administrative capital of the country, is where public 

demonstrations have been fiercest. 
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As is evident, the pattern of behavior for the predicted value of the recovered share of the 

population mimics the evolution of the actual share of recovered individuals in both departments. 

The correlation coefficient between both variables in Santa Cruz is +0.95 and +0.39 in La Paz, and 

though there seems to be lag between the variables—especially in La Paz, where the predicted 

increase in recovered cases lags by almost 3 months the actual increase in cases—the model does 

seem to describe the actual evolution of the share of recovered individuals relatively well
17

. 

Finally, it has been noted that the virus has spread throughout the country. Summary statistics 

for all departments are shown in Table 1. 

Table 1. Summary statistics by department. 

Department 
Infections started 

on: 

Infections 

predicted to 

peak on: 

Share of 

Infections 

(%) 

Share of 

Recovered 

(%) 

Share of Dead 

(%) 

Santa Cruz March 10 July 27 31.95 41.59 50.02 

La Paz March 19 June 9 25.77 26.88 12.80 

Cochabamba March 13 June 1 10.17 11.58 14.11 

Oruro March 10 June 2 4.28 2.94 3.80 

Potosi March 26 June 22 6.04 2.45 3.08 

Pando March 28 July 16 1.78 0.54 2.11 

Tarija March 30 June 23 9.57 7.46 3.76 

Chuquisaca March 27 June 20 5.22 4.56 6.17 

Beni April 20 August 12 5.36 2.50 4.55 

Notes: 1. Date for peak on infections based on baseline parameters and levels of unrest. 2. Share of infections as a 

percentage of total infections. 3. Share of recovered as a percentage of total recovered. 4. Share of dead as a 

percentage of total dead. 5. Infections, recovered, and dead figures as of September 24, 2020. 

As Table 1 illustrates, though the brunt of the epidemic is being felt in Santa Cruz, La Paz and 

Cochabamba, it has become a national epidemic. There has been a constant increase in the number of 

dead in all departments, and this increase has become particularly visible in Chuquisaca and Beni. 

Additionally, the share of infections is increasing everywhere, being especially evident in the 

departments of Potosí and Tarija. As the preceding analysis makes clear, the epidemic in Bolivia is 

nowhere near being contained, and mitigation measures—particularly the mandatory quarantine in 

place until June 1—were lifted too soon. 

5. Conclusions and policy implications 

The first two cases of COVID-19 appeared in Bolivia on March 10 of 2020. Since then, the 

virus has spread throughout the country and has overwhelmed an already weak public health system. 

The SIR model presented here accurately describes the trajectory of the virus, both at the national 

and departmental level, and also demonstrates that this trajectory could readily be altered by 

mitigation measures, particularly mandatory quarantines, that aim to reduce the number of contacts 

between infected and susceptible individuals. The model also shows that in the absence of effective 

mitigation measures the epidemic could become more widespread and last longer. 
                                                             
17 Similar comparisons were made between predicted and actual values for the susceptible and infected states and the model 

accurately describes the actual evolution of the data in all departments. These graphical comparisons are available upon request. 
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The principal conclusions are these: Nationally and at present trends, the virus peaks in 

mid-June when around 28% of the population becomes infected; as the epidemic begins to subside in 

July, more than half of the population belongs to the ‘recovered’ group, implying that more than 50% 

of Bolivians will have become infected with COVID-19 at some point during the epidemic. 

Beginning in July, there has been a fluctuation in the share of susceptible and recovered individuals, 

highlighting that the epidemic is nowhere near being contained. The pattern of behavior at the 

departmental level is similar than at the national level. The date when each department peaks in 

terms of infection shares varies, as does the timing when the epidemic begins to subside, but in all 

cases the evidence and the model show that the epidemic is far from over. 

A key policy recommendation is that a mandatory quarantine throughout the country should 

once again be established to contain the latest uptick in infections. Though difficult because of the 

inherent weakness of the public health sector and the fragility of the current government, trying to 

isolate those infected with the disease and preventing contact with susceptible individuals seems to 

be the only current alternative to containing the epidemic. An additional recommendation concerns 

the state of government entities in charge of managing public health crises. The epidemic has laid 

bare the limitations of the public sector to deal with crises like the one unfolding now. Of critical 

importance when the Bolivian government finally addresses the fragility of these institutions is their 

capacity to collect—and make public—periodic, reliable data that allows the design of proper policy 

responses, and, from the perspective of this work, the development of more thorough 

epidemiological models that describe the spread of a disease. 
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