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Abstract. Based on a local-to-global proportional association measure pro-
posed by Huang, Shi and Wang [9], with cost and revenue information known,

an association measure is proposed to maximize the expected RoI. A descrip-

tive experiment with a synthetical data set is presented.

1. Introduction. Multi-nominal data are common in scientific and engineering re-
search such as biomedical research, customer behavior analysis, network analysis,
search engine marketing optimization, web mining etc. When the response variable
has more than two levels, the principle of mode-based or distribution-based pro-
portional prediction can be used to construct nonparametric nominal association
measure. For example, Goodman and Kruskal [3, 4] and others proposed some local-
to-global association measures towards optimal predictions. Both Monte Carlo and
discrete Markov chain methods are conceptually based on the proportional asso-
ciations. The association matrix, association vector and association measure were
proposed by the thought of proportional associations in [9]. If there is no ordering
to the response variable’s categories, or the ordering is not of interest, they will be
regarded as nominal in the proportional prediction model and the other association
statistics.

But in reality, different categories in the same response variable often are of
different values, sometimes much different. When selecting a model or selecting
explanatory variables, we want to choose the ones that can enhance the total rev-
enue, not just the accuracy rate. Similarly, when the explanatory variables with
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cost weight vector, they should be considered in the model too. The association
measure in [9], ωY |X , doesn’t consider the revenue weight vector in the response
variable, nor the cost weight in the explanatory variables, which may lead to less
profit in total. Thus certain adjustments must be made for a better decisionning.

To implement the previous adjustments, we need the following assumptions:

• X and Y are both multi-categorical variables where X is the explanatory
variable with domain {1, 2, ..., α} and Y is the response variable with domain
{1, 2, ..., β} respectively;

• the amount of data collected in this article is large enough to represent the
real distribution;

• the model in the article mainly is based on the proportional prediction;
• the relationship between X and Y is asymmetric;

It needs to be addressed that the second assumption is probably not always the
case. The law of large number suggests that the larger the sample size is, the closer
the expected value of a distribution is to the real value. The study of this subject
has been conducted for hundreds of years including how large the sample size is
enough to simulate the real distribution. Yet it is not the major subject of this
article. The purpose of this assumption is nothing but a simplification to a more
complicated discussion.

The article is organized as follows. Section 2 discusses the adjustment to the asso-
ciation measure when the response variable has a revenue weight; section 3 considers
the case where both the explanatory and the response variable have weights; how
the adjusted measure changes the existing feature selection framework is presented
in section 4. Conclusion and future works will be briefly discussed in the last section.

2. Response variable with revenue weight vector. Let’s first recall the asso-
ciation matrix {γs,t(Y |X)} and the association measure ωY |X and τY |X .

γs,t(Y |X) =
E(p(Y = s|X)p(Y = t|X))

p(Y = s)

=

α∑
i=1

p(X = i|Y = s)p(Y = t|X = i); s, t = 1, 2, .., β

τY |X =
ωY |X − Ep(Y )

1− Ep(Y )

ωY |X = EX(EY (p(Y |X)))

=

β∑
s=1

α∑
i=1

p(Y = s|X = i)2p(X = i) (1)

=

β∑
s=1

γssp(Y = s)

γst(Y |X) is the (s, t)-entry of the association matrix γ(Y |X) representing the
probability of assigning or predicting Y = t while the true value is in fact Y = s.
Given a representative train set, the diagonal entries, γss, are the expected accuracy
rates while the off-diagonal entries of each row are the expected first type error rates.
ωY |X is the association measure from the explanatory variable X to the response
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variable Y without a standardization. Further discussions to these metrics can be
found in [9].

Our discussion begins with only one response variable with revenue weight and
one explanatory variable without cost weight. Let R = (r1, r2, ..., rβ) to be the
revenue weight vector where rs is the possible revenue for Y = s. A model with
highest revenue in total is then the ideal solution in reality, not just a model with
highest accuracy. Therefore comes the extended form of ωY |X with weight in Y as
in 2:

Definition 2.1.

ω̂Y |X =

β∑
s=1

α∑
i=1

p(Y = s|X = i)2rsp(X = i) (2)

=

β∑
s=1

γssp(Y = s)rs

rs > 0, s = 1, 2, 3..., β

Please note that ωY |X is equivalent to τY |X for given X and Y in a given data
set. Thus the statistics of τY |X will not be discussed in this article.

It is easy to see that ω̂Y |X is the expected total revenue for correctly predicting Y .
Therefore one explanatory variable X1 with ω̂Y |X1 is preferred than another X2 if
ω̂Y |X1 ≥ ω̂Y |X2 . It is worth mentioning that ω̂Y |X is asymmetric,i.e., ω̂Y |X 6= ω̂X|Y

and that ωY |X = ω̂Y |X if r1 = r2 = ... = rβ = 1.

Example. Consider a simulated data motivated by a real situation. Suppose that
variable Y is the response variable indicating the different computer brands that
the customers bought; X1, as one explanatory variable, shows the customers’ ca-
reer and X2, as another explanatory variable, tells the customers’ age group. We
want to find a better explanatory variable to generate higher revenue by correctly
predicting the purchased computer’s brand. We further assume that X1 and X2

both contain 5 categories, Y has 4 brands and the total number of rows is 9150.
The contingency table is presented in 1.

Table 1. Contingency tables:X1 vs Y and X2 vs Y

X1|Y y1 y2 y3 y4 X2|Y y1 y2 y3 y4
x11 1000 100 500 400 x21 500 300 200 1500
x12 200 1500 500 300 x22 500 400 400 50
x13 400 50 500 500 x23 500 500 300 700
x14 300 700 500 400 x24 500 400 1000 100
x15 200 500 400 200 x25 200 400 500 200

Let us first consider the association matrix {γY |X}. Predicting Y with the in-
formation of X1, or X2 is given by the association matrix γ(Y |X1), or γ(Y |X2) as
in Table 2.

Please note that Y contains the true values while Ŷ is the guessed one. One can
see from this table that the accuracy rate of predicting y1 and y2 by X1 on the left
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Table 2. Association matrices:X1 vs Y and X2 vs Y

Y |Ŷ ŷ1|X1 ŷ2|X1 ŷ3|X1 ŷ4|X1 Y |Ŷ ŷ1|X2 ŷ2|X2 ŷ3|X2 ŷ4X2

y1 0.34 0.18 0.27 0.22 y1 0.26 0.22 0.27 0.25
y2 0.13 0.48 0.24 0.15 y2 0.25 0.24 0.29 0.23
y3 0.24 0.28 0.27 0.21 y3 0.25 0.24 0.36 0.15
y4 0.25 0.25 0.28 0.22 y4 0.22 0.18 0.14 0.46

are larger than that on the right. The cases of y3 and y4, on the other hand, are
opposite.

The correct prediction contingency tables of X1 and Y , denoted as W1, plus that
of X2 and Y , denoted as W2, can be simulated through Monte Carlo simulation as
in Table 3.

Table 3. Contingency table for correct predictions: W1 and W2

X1|Y y1 y2 y3 y4 X2|Y y1 y2 y3 y4
x11 471 6 121 83 x21 98 34 19 926
x12 101 746 159 107 x22 177 114 113 1
x13 130 1 167 157 x23 114 124 42 256
x14 44 243 145 85 x24 109 81 489 6
x15 21 210 114 32 x25 36 119 206 28

The total number of the correct predictions by X1 is 3142 while it is 3092 by
X2, meaning the model with X1 is better than X2 in terms of accurate prediction.
But it maybe not the case if each target class has different revenues. Assuming the
revenue weight vector of Y is R = (1, 1, 2, 2), we have the association measure of
ωY |X , and ω̂Y |X as in Table 4:

Table 4. Association measures: ωY |X , and ω̂Y |X

X ωY |X ω̂Y |X total revenue average revenue
X1 0.3406 0.456 4313 0.4714
X2 0.3391 0.564 5178 0.5659

Given that revenue =
∑
i,sW

i,s
k rs, i = 1, 2, ..., α, s = 1, 2, ..., β, k = 1, 2, we have

the revenue for W1 as 4313, and that for W2 as 5178. Divide the revenue by the
total sample size, 9150, we can obtain 0.4714 and 0.5659 respectively. Contrasting
these to ω̂Y |X1 and ω̂Y |X2 above, we believe that they are similar, which means
then ω̂Y |X is truly the expected revenue.

In summary, it is possible for an explanatory variable X with bigger ω̂Y |X , i.e,
the larger revenue, but with smaller ωY |X , i.e., the smaller association. When the
total revenue is of the interest, it should be the better variable to be selected, not
the one with larger association.

3. Explanatory variable with cost weight and response variable with rev-
enue weight. Let us further discuss the case with cost weight vector in predictors
in addition to the revenue weight vector in the dependent variable. The goal is to
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find a predictor with bigger profit in total. We hence define the new association
measure as in 3.

Definition 3.1.

ω̄Y |X =

α∑
i=1

β∑
s=1

p(Y = s|X = i)2
rs
ci
p(X = i) (3)

ci > 0, i = 1, 2, 3, ..., α, and rs > 0, s = 1, 2, ..., β.

ci indicates the cost weight of the ith category in the predictor and rs means the
same as in the previous section. ω̄Y |X is then the expected ratio of revenue and cost,
namely RoI. Thus a larger ω̄Y |X means a bigger profit in total. A better variable to
be selected then is the one with bigger ω̄Y |X . We can see that ω̄Y |X is an asymmetric
measure, meaning ω̄Y |X 6= ω̄Y |X . When c1 = c2 = ... = cα = 1, Equation 3 is
exactly Equation 2; when c1 = c2 = ... = cα = 1 and r1 = r2 = ... = rβ = 1,
equation 3 becomes the original equation 1.

Example. We first continue the example in the previous section with new cost
weight vectors for X1 and X2 respectively. Assuming C1 = (0.5, 0.4, 0.3, 0.2, 0.1),
C2 = (0.1, 0.2, 0.3, 0.4, 0.5) and R = (1, 1, 1, 1), we have the associations in Table 5.

Table 5. Association with/without cost vectors: X1 and X2

X ωY |X ω̂Y |X ω̄Y |X total profit average profit
X1 0.3406 0.3406 1.3057 12016.17 1.3132
X2 0.3391 0.3391 1.8546 17072.17 1.8658

By profit =
∑
i,sW

i,s
k

rs
Cki

, i = 1, 2, .., α; s = 1, 2, .., β and k = 1, 2 where Wk

is the corresponding prediction contingency table, we have the profit for X1 as
12016.17 and that of X2 as 17072.17. When both divided by the total sample
size 9150, they change to 1.3132 and 1.8658, similar to ω̄(Y |X1) and ω̄(Y |X2). It
indicates that ω̄Y |X is the expected RoI. In this example, X2 is the better variable
given the cost and the revenue vectors are of interest.

We then investigate how the change of cost weight affect the result. Suppose
the new weight vectors are: R = (1, 1, 1, 1), C1 = (0.1, 0.2, 0.3, 0.4, 0.5) and C2 =
(0.5, 0.4, 0.3, 0.2, 0.1), we have the new associations in Table 6.

Table 6. Association with/without new cost vectors: X1 and X2

X ωY |X ω̂Y |X ω̄Y |X total profit average profit
X1 0.3406 0.3406 1.7420 15938.17 1.7419
X2 0.3391 0.3391 1.3424 12268.17 1.3408

Hence ω̄Y |X1 > ω̄Y |X2 , on the contrary to the example with the old weight
vectors. Thus the right amount of weight is critical to define the better variable
regarding the profit in total.
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4. The impact on feature selection. By the updated association defined in the
previous section, we present the feature selection result in this section to a given data
set S with explanatory categorical variables V1, V2, .., Vn and a response variable Y .
The feature selection steps can be found in [9].

At first, consider a synthetic data set simulating the contribution factors to the
sales of certain commodity. In general, lots of factors could contribute differently
to the commodity sales: age, career, time, income, personal preference, credit, etc.
Each factor could have different cost vectors, each class in a variable could have
different cost as well. For example, collecting income information might be more
difficult than to know the customer’s career; determining a dinner waitress’ purchase
preference is easier than that of a high income lawyer. Therefore we just assume
that there are four potential predictors, V1, V2, V3, V4 within the data set with a
sample size of 10000 and get a feature selection result by monte carlo simulation in
Table 7.

Table 7. Simulated feature selection: one variable

X |Dmn(X)| ωY |X ω̄Y |X total profit average profit
V1 7 0.3906 3.5381 35390 3.5390
V2 4 0.3882 3.8433 38771 3.8771
V3 4 0.3250 4.8986 48678 4.8678
V4 8 0.3274 3.7050 36889 3.6889

The first variable to be selected is V1 using ωY |X as the criteria according to [9].
But it is V3 that needs to be selected as previously discussed if the total profit is of
interest. Further we assume that the two variable combinations satisfy the numbers
in Table 8 by, again, monte carlo simulation.

Table 8. Simulated feature selection: two variables

X1, X2 |Dmn(X1, X2)| ωY |(X1,X2) ω̄Y |(X1,X2) total profit average profit
V1, V2 28 0.4367 1.8682 18971 1.8971
V1, V3 28 0.4025 2.1106 20746 2.0746
V1, V4 56 0.4055 1.8055 17915 1.7915
V3, V2 16 0.4055 2.3585 24404 2.4404
V3, V4 32 0.3385 2.0145 19903 1.9903

As we can see, all ωY |(X1,X2) ≥ ωY |X1 , but it is not case for ω̄Y |(X1,X2) since the
cost gets larger with two variables thus the profit drops down. As in one variable
scenario, the better two variable combination with respect to ωY |(X1,X2) is (V1, V2)
while ω̄Y |(X1,X2) suggests (V3 ,V2) is the better choice.

In summary, the updated association with cost and revenue vector not only
changes the feature selection result by different profit expectations, it also reflects
a practical reality that collecting information for more variables costs more thus
reduces the overall profit, meaning more variables is not necessarily better on a
Return-Over-Invest basis.

5. Conclusions and remarks. We propose a new metrics, ¯ωY |X in this article to
improve the proportional prediction based association measure, ωY |X , to analyze
the cost and revenue factors in the categorical data. It provides a description to the



PROPORTIONAL ASSOCIATION BASED ROI MODEL 7

global-to-global association with practical RoI concerns, especially in a case where
response variables are multi-categorical.

The presented framework can also be applied to high dimensional cases as in
national survey, misclassification costs, association matrix and association vector [9].
It should be more helpful to identify the predictors’ quality with various response
variables.

Given the distinct character of this new statistics, we believe it brings us more
opportunities to further studies of finding the better decision for categorical data.
We are currently investigating the asymptotic properties of the proposed measures
and it also can be extended to symmetrical situation. Of course, the synthetical
nature of the experiments in this article brings also the question of how it affects
a real data set/application. It is also arguable that the improvements introduced
by the new measures probably come from the randomness. Thus we can use k-fold
cross-validation method to better support our argument in the future.
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