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ABSTRACT. Network robustness stands for the capability of networks in re-
sisting failures or attacks. Many robustness measures have been proposed to
evaluate the robustness of various types of networks, such as small-world and
scale-free networks. However, the robustness of biological networks is different
for their special structures related to the unique functionality. Cancer signaling
networks which show the information transformation of cancers in molecular
level always appear with robust complex structures which mean information
exchange in the networks do not depend on skimp pathways in which resulting
the low rate of cure, high rate of recurrence and especially, the short time in
survivability caused by constantly destruction of cancer. So a network metric
that shows significant changes when one node is removed, and further to corre-
late that metric with survival probabilities for patients who underwent cancer
chemotherapy is meaningful. Therefore, in this paper, the relationship between
14 typical cancer signaling networks robustness and those cancers patient sur-
vivability are studied. Several widely used robustness measures are included,
and we find that the natural connectivity, in which the redundant circles are
satisfied with the need of information exchange of cancer signaling networks,
is negatively correlated to cancer patient survivability. Furthermore, the top
three affected nodes measured by natural connectivity are obtained and the
analysis on these nodes degree, closeness centrality and betweenness centrality
are followed. The result shows that the node found are important so we believe
that natural connectivity will be a great help to cancer treatment.

1. Introduction. Network robustness describes networks performance when suf-
fering from failures on nodes or edges. According to nowadays investigations [1, 21,
7,8, 9, 24, 23, 29, 18, 27, 14], robust networks keep stable if the failures on nodes
or edges are not fatal even if large numbers of nodes or edges are removed. And
this situation may exist in the cancer signaling networks (CSNs), which makes these
cancers difficult to cure. CSNs are constructed based on the information exchange
of cancers in the molecular level [10, 25, 11], so the more robust a CSN is, the

2010 Mathematics Subject Classification. Primary: 37F20, 68U05; Secondary: 65Y20.

Key words and phrases. Network robustness, robustness measure, cancer signaling network,
cancer patient survivability.

The corresponding author is supported by NSF grant 61522311, 61773300, 61528205 and
2017JZ017.

* Corresponding author: Jing Liu.

87


http://dx.doi.org/10.3934/bdia.2017011

88 MINGXING ZHOU, JING LIU, SHUAI WANG AND SHAN HE

more difficult the cancer can be cured. Moreover, even if the cancer is cured in the
situation where the CSN is not collapsed, the cancer will recrudesce with a high
possibility. This is the reason why cancers are cured in low rate and recrudesce in
high rate.

Robust CSNs should result a short time for patients to survival; otherwise, a
longer time. As is known to all, canceration of cells happen every now and then, so
cancers may not fatal at the first stage. However, once the immune system cannot
clean cancercells in time, they will constantly strengthen themselves and weaken
human beings body. Even if a cancer is diagnosed, an effective method to control it
is of great importance; or, the cancer will quickly develop into fatal degree. Directly,
the more robust a CSN is, the more difficult to control the cancer. And in this case,
cancer patients will survival for a short time during which cancers quickly developed
to be a fatal one; otherwise will survival longer.

Dylan Breitkreutz et al. in [6] studied the relationship between CSNs degree-
entropy and cancer patient survivability, and the strong negative relationship is
obtained, furthermore, then analysis the betweenness centrality of nodes in CSNs
and think that the high betweenness nodes may hold the cancer to be alive. Inspired
by this, Kazuhiro Takemoto et al. in [26] discussed the relationship between modular
organization of CSNs and patient survivability, and they declared this relationship
is more reliable than the previous one. To be intuitionally, robustness including
errors and tolerance should be more useful in cure cancer.

Nowadays, many useful robustness measures have been proposed [8, 9, 24, 23,
29, 18, 27, 14], and different robustness measures always focus on different aspects
and suit for different networks such as small-world, scale-free networks. While CSN
is a special kind of networks, in which protein dependents on genes and protein
is renewable if gene works well, this system is born to be robust and can be fixed
by itself dynamically. No matter how robust the CSN is, we hope to destroy it
effectively, so a robustness measure which can properly evaluate the robustness of
CSN so as to destroy it easily is meaningful.

In this paper, the relationship between CSNs robustness and cancer patient sur-
vivability is studied. The measures used to analyze the networks robustness quanti-
fied are different and focused on different aspects of networks. That is to say, not all
robustness measures reflect the essence of CSNs; so several widely used robustness
measures are included and only one measure is found to be useful and according to
this measure, what is important to CSNs is analyzed.

The rest of this paper is organized as follows. The background information about
CSNs and patient survivability is introduced in Section II. Section IIT describes the
robustness measures studied. Next, the experiments and conclusion are given in
Sections IV and V, respectively.

2. Cancer signaling networks and patient survivability. Cancers are system
diseases constructed by genes, protein, and ramification with complex interaction.
Usually, the proto-oncogene is activated by radioactive rays, toxic substance or virus
infection and with the accumulation of proto-oncogenes, the compounded protein
and ramification from proto-oncogenes turn the normal interaction system into a
lesion one, and then normal cells turn into cancer cells. Immune system can clean
these cancer cells so as to keep us healthy; otherwise the cancer cell will infinitely
proliferate and develop into a tumor and diffuse to the whole body.

Recent technology on curing cancer is to disable the genes, protein or ramification
in the CSNs so a technological understanding of cell information exchange cycle
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malfunction during carcinogenesis, cancer progression, and response to treatment,
is crucial for optimum drug development and proper drug administration. Each cell
is a complex interaction system constructed by huge amount of molecular which are
not fully understood so far. Nonetheless, some insights on how genes, protein and
ramification interact with each other through reconstruction of regulation network
[13, 2, 22] and how specific drugs interact with their molecular targets in the cell
are beginning to be elucidated [20, 28].

Signaling pathways or metabolic pathways are reconstructed biochemical net-
works which are observed from the interactions in cells. These biochemical networks
basically contain the secret of life including information of cancer and potential way
to cure itand should directly relate to cancer patient survivability.

Large numbers of cancer sites system has been worked out with the moder-
ately detailed pathway, and 14 of these typical caner pathways are available from
http://wuw.genome. jp/kegg/, the Kyoto Encyclopedia of Genes and Genomes
(KEGG). The KEGG cancer pathways were downloaded as KGML files from the
KEGG PATHWAY database (http://www.genome. jp/kegg/pathway.html). And
generate a mathematical graph representation of the pathway through KEGGgraph
package downloaded from http://www.bioconductor.org/, the Bioconductor Web
site. In the KEGGgraph package, function parseKGML2Graph are used to generate
two types of networks, called CSN-EG and CSN-GO respectively, with two group of
parameters, genesOnly = FALSE, expandGenes = TRUE and genesOnly = TRUE,
expandGenes= FALSE. Here, we study the undirected and un-weighted networks
and the details of these networks are reported in Table 1.

TABLE 1. Cancer survival probabilities and network statistics for
CSN-EG and CSN-CO

CSN-EG CSN-GO

Cancer site 5[_)}']0%%3,1]1‘17%} Nodes  Edges Nodes  Edges
Acute myeloid leukemia 23.6% o7 152 32 39
Basal cell carcinoma 91.4% 47 304 13 11
Bladder cancer 78.1% 29 46 21 19
Chronic myeloid leukemia 55.2% 73 185 44 47
Colorectal cancer 63.6% 49 104 34 33
Endometrial cancer 68.6% 46 88 24 23
Glioma 33.4% 69 209 55 61
Melanoma 91.2% 70 282 22 23
Nonsmall-cell lung cancer 18.0% 73 183 36 43
Pancreatic cancer 5.5% 67 134 43 43
Prostate cancer 99.4% 99 333 40 45
Renal cell carcinoma 69.5% 57 104 36 33
Small cell lung cancer 6.2% 86 238 31 37
Thyroid cancer 97.2% 28 49 18 14

In addition to the cancer pathways from KEGG, the 5-year survival statistics
is collected from the Surveillance Epidemiology and End Results (SEER) Program
database (http://seer.cancer.gov/), which is a resource for epidemiological data
compiled by the National Cancer Institute as a service to researchers and physicians.
Thanks to KEGG and SEER, the connection between cancer network structure and
patient survivability can be investigated.
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3. Robust measures. The early research on a category of robustness measures
mainly based on connectivity which can be traced back to 1970 [15, 3, 17]. After
that, several analytically studies on network robustness from the viewpoint of ran-
dom graph theory are proposed [8, 9, 24]. Taking the critical fraction of attacks
and realistic cases, widely used robustness measures based on percolation theory is
proposed [23, 29, 18]. Another remarkable kind of robustness measures are designed
based on the eigenvalue of network matrix citel0,11,25.

Measures based on connectivity basically consider the connectivity of networks,
so it is not interesting now, but the next three categories analyzing the breaking
down network, isolating network nodes and redundant circles seem to be useful.
So 6 widely used measures, 2 for each category and excavating the different aspect
of networks, including robustness R related to nodes proposed in [23], robustness
R; related to edges proposed in [29], critical fraction removal when suffering from
random attack p? or targeted attack pf proposed in [8] and [9], natural connectivity
A proposed in [27] and algebraic connectivity a(G) proposed in [14], are selected
and studied in detail.

Robustness R mainly considers sizes of the largest connected sub-graph during
the network suffering from high degree preference attack on nodes. That is, the
largest degree node is removed sequentially and during each attack process, the size
of largest connected sub-graph is accumulated until the network is collapsed and
the definition in [23] is described as:

1 N
R = NQ;S(Q) (1)

where N is the number of nodes in the network and s(Q) is the fraction of nodes
in the largest connected cluster after removing @) = ¢/N nodes. The normalization
factor 1/N ensures that the robustness of networks with different sizes can be com-
pared. And the range of possible R values is between 1/N and 0.5, where these
limits correspond, respectively, to a star network and a fully connected graph.

The definition of R; is the same to R, in which robustness R; also takes the
size of largest sub-graph into consideration and also uses the sequentially malicious
attack while the attack target is changed to be edge with betweenness centrality to
evaluate the importance of edges. The details in [29] are described as:

1
R, = i Z s(P) (2)
P=1
where M is the total number of links, s(P) is the fraction of nodes in the largest
connected cluster after removing P = p X M edges. This measure captures the
network response to any fraction of link removal. Apparently, if a network is robust
against link attack, its R; should be relatively large.
The critical fraction under random attack is marked as p!, which measures the
number of nodes needed to be removed when the nodes is removed randomly. Ac-
cording to [8], the p. for any degree distribution P(k), is calculated as

1
Hofl

(3)

where kg = (k)/(k?), the k is the degree of nodes in original network before attack.
According to this, the larger the p. of a network is, the more robust the network
is and if the degree distribution and each nodal degree are unchanged, the kg =

pe=1-

c
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(k)/(k?) will not change. The critical fraction under random attack is easy, while
thing becomes different when network faced with targeted attack.

In [9], the critical fraction under targeted attack p' is defined when network suf-
fering from high degree preference attack on nodes. And because of this operation,
the degree distribution is affected a lot after each removal of the node with largest
nodal degree so the re-calculation of degree distribution is needed. It is not too
difficult when the degree distribution of original network is given, but what if the
degree distribution is not given.

In fact, according to the definition in [9], we can calculate the p! for graph
with any degree distribution through simulation the process. Attack the node of
a network with highest degree and check the condition of the network, repeat this
process until the left network is disconnected, then p’, is obtained. So p!, of network
with unknown degree distribution can be calculated. Being the same to p , the
larger the value of p’. of a network is, the more robust the network is.

Algebraic connectivity is the second smallest eigenvalue of the Laplacian matrix.
Fiedler [14] showed that the magnitude of the algebraic connectivity reflects how
well connected the overall graph is and Merris in [19] gave a survey of the vast
literature on algebraic connectivity.

a(G) =X, M <X < A3 < <Ay (4)

Wu et al. [27] introduce the concept of natural connectivity, which characterizes
the redundancy of alternative routes in a network by quantifying the weighed num-
ber of closed walks of all lengths. The natural connectivity can be regarded as an
average eigenvalue that changes strictly monotonically with the addition or deletion
of edges.

- 1 N

A_mNgk) (5)
where )\; is the ith eigenvalue of the graph adjacency matrix. According the defi-
nition and has been proved in [13], the robustness measure follows that, given the
number of vertices N, the empty graph has the minimum natural connectivity and
the complete graph has the maximum natural connectivity. So the lager the value
of X is, the more robust the network is.

4. Experiments. In this section, the relationships between CSNs robustness and
5-year survival rate are reported first, and then interesting CSN-GOs are analyzed
in detail. Robustness of CSNs including CSN-EG and CSN-GO related to 5-year
survival rate are analyzed according to the Pearson’s correlation coefficient which

is defined as:
_ > (@i —2)(yi — ) (6)
Vi (@i —2)2 3 (i — 9)?
where the T is the average of the vector x and g is the average of the y vector.
Here, the value of this coefficient lies in the range of [-1, 1], positive value means

the relation between the tested two items is positively correlated, and vice versa. If
the value is equal to 0, then the relation is uncorrelated.

Yy

4.1. CSNs related to 5-year survival rate. In this part, the results of the
vector of 14 CSNs, including CSN-EG and CSN-GO, robustness are calculated and
the Pearsons correlation coefficient is reported in Table 2.
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TABLE 2. Pearsons correlation coefficient between CSN robustness
and 5-year survival rate are showed.

CSN \y R R oL pL a(G) A
CSN-EG 0.31 0.28 0.11 0.34 0.049 0.24
CSN-GO 0.18 0.17 -0.56 0.36 0.21 -0.60

From the results, we can find that relationship between robustness and 5-year
survival rate are not strongly correlated in group of CSN-EG, while in CSN-GO, p.
and )\ are strongly correlated to 5-year survival rate. These means that the p” and
A somehow catch the important structure of the CSNs. Taking the meaning of pr.
and \ into consideration for further, the pr. thinks all nodes in network have equal
possibility to be attacked which are not satisfied with real situations, so next we
just analyze how the A catch the important part of CSN-GO.

4.2. Analysis on CSN-GO and natural connectivity. In this part, the degree-
entropy H used in [6] and modularity @ in [26] are calculated and then, the top
three nodes that most affected network measured by X are selected and their degree,
closeness centrality [4, 16] and betweenness centrality [5, 12] are analyzed.

TABLE 3. Pearsons correlation coefficient between the network pa-
rameters of CSN-GO and 5-year survival rate is showed.

Network parameters H Q A
5 -0.62 -0.21 -0.60

From the table 3, we can see that the natural connectivity is same to the result
of degree-entropy H showed in [6] and modularity @ in [26]. Natural connectivity
takes the redundant circles into consideration which is well matched with the un-
derstanding that more pathways the CSN has, the more difficult to cure the cancer.
Furthermore, different from betweenness centrality, natural connectivity considers
all the circles instead of the shortest path which tell us that the cancers may pass
through their information through any possible pathway.

Next, three of the most effected nodes measured by natural connectivity are
obtained through attack. For each attached node, the more affected the natural
connectivity is, the more important the node is. After obtaining the top three
affected nodes, the degree, closeness centrality and betweenness centrality of these
nodes are analyzed. The results are given in Table 4 and Table 5.

Table 4 and Table 5 give the degree, closeness centrality and betweenness cen-
trality of the top three effected nodes measured by natural connectivity and the
averaged values of the networks. From Table IV, we find only few number of close-
ness and betweenness lower than the average level. That to say, the nodes found are
important and we think that the natural connectivity is suitable for measuring the
robustness of CSNs and we believe that these information will be a great help to
cancer treatment. The further investigation will be carried on with the cooperation
of biologist.

5. Conclusion. In this paper, a comparative study of robustness measures for
CSNs is given by studying six different robustness measures with two kinds of
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TABLE 4. Degree, closeness centrality and betweenness centrality
of important nodes measured by natural connectivity for each can-
cer site part 1.

Cancer site Degree Closeness Betweenness
Top 1 6.00 14.92 545.00
. . Top 2 7.00 12.55 269.83
Acute myeloid leukemia Top 3 5.00 14.45 500.17
Average 2.43 10.17 98.00
Top 1 5.00 6.45 60.00
Basal cell carcinoma Top 2 2.00 528 50.00
Top 3 2.00 4.92 48.00
Average 1.82 4.46 22.73
Top 1 3.00 5.17 38.00
Top 2 3.00 4.83 26.00
Bladder cancer Top 3 3.00 4.67 26.00
Average 1.78 3.99 13.33
Top 1 7.00 12.38 217.00
. . . Top 2 5.00 12.09 303.00
Chronic myeloid leukemia Top 3 5.00 11.67 318.00
Average 2.15 8.44 78.85
Top 1 5.00 8.59 188.00
Colorectal cancer Top 2 4.00 7.71 147.00
Top 3 4.00 8.74 274.00
Average 2.09 6.73 91.39
Top 1 5.00 7.30 85.00
. Top 2 3.00 6.88 121.00
Endometrial cancer Top 3 3.00 6.88 142.00
Average 2.00 5.62 57.65
Top 1 5.00 9.70 78.00
Glioma Top 2 4.00 10.25 141.17
Top 3 4.00 9.15 36.17
Average 2.42 7.61 36.74

CSNs, i.e. CSN-EG and CSN-GO. CSN-EG and CSN-GO are two kind networks
obtained from the same KGML in which the protein, ramification are included or
not, respectively. In fact, the CSNs can repair themselves dynamically, so attack
on reproducible protein may not mortal to CSNs. For CSN-EG, large numbers of
protein are included, so the natural connectivity is affected and lost its works on
them. From the study, the p_ and A are found to be strongly negative to the 5-year
survival rate among CSN-GOs. The p! thinks all nodes in the network have the
same possibility to be attacked which is not satisfied with the real world situation
so we only think the A\ may suitable for CSNs in measuring their robustness.
Furthermore, the top three affected nodes measured by natural connectivity are
obtained and the degree, closeness centrality and betweenness centrality of these
nodes are given. From the results, we find the nodes found according to natural
connectivity are important, that is to say the natural connectivity catch the es-
sentials of CSN-GO. Otherwise, the natural connectivity describes the redundancy
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TABLE 5. Degree, closeness centrality and betweenness centrality
of important nodes measured by natural connectivity for each can-
cer site part 2.

Cancer site Degree Closeness Betweenness

Top 1 3.00 6.58 73.00

Melanoma Top 2 3.00 6.50 58.00
Top 3 3.00 6.06 43.00

Average 2.00 5.15 26.77

Top 1 5.00 12.45 346.73

Top 2 5.00 11.42 91.67

Nonsmall-cell lung cancer Top 3 5.00 11.42 91.67

Average 2.45 9.25 110.19

Top 1 5.00 6.95 45.00

Pancreatic cancer Top 2 4.00 6.78 61.00
Top 2 3.00 5.95 7.00

Average 2.33 5.24 22.17

Top 1 12.00 18.07 850.67

Prostate cancer Top 2 3.00 13.16 546.00
Top 3 4.00 8.33 93.00

Average 2.29 9.92 156.29

Top 1 5.00 9.08 160.00

Renal cell carcinoma Top 2 3.00 7.20 28.00
Top 3 3.00 7.20 28.00

Average 2.00 6.06 34.38

Top 1 7.00 8.75 126.00

Top 2 3.00 5.78 67.00

Small cell lung cancer Top 3 2.00 6.65 98.00
Average 2.00 5.65 38.80

Top 1 3.00 4.17 18.00

. Top 2 3.00 4.17 18.00
Thyroid cancer Top 3 2.00 4.00 18.00
Average 1.71 3.38 7.71

of routes between vertices which is directly related to the information exchange or
communication of CSN.

Through analysis on CSNs in complex network theory method, the conclusion
that the natural connectivity is suitable for measuring the robustness of CSNs is ob-
tained, and we believe that this information will be a great help to cancer treatment.
The further investigation will be carried on with the cooperation of biologist.
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