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Abstract. Text categorization is the fundamental bricks of other related re-
searches in NLP. Up to now, researchers have proposed many effective text

categorization methods and gained well performance. However, these methods

are generally based on the raw features or low level features, e.g., tf or tfidf,
while neglecting the semantic structures between words. Complex semantic

information can influence the precision of text categorization. In this paper,

we propose a new method to handle the semantic correlations between different
words and text features from the representations and the learning schemes. We

represent the document as multiple instances based on word2vec. Experiments

validate the effectiveness of proposed method compared with those state-of-
the-art text categorization methods.

1. Introduction. Nowadays, with the rapid growth of information on the Internet,
it has become more and more difficult for us to search the specific information we
need. Since most of the informations are text information, text categorization has
become one of the key techniques for handling and organizing these information.
Text categorization is a basic NLP task. It assigns a document to one or more
predefined categories. Researchers had proposed many approaches to deal with
text categorization and most of these approaches are relying on a simple document
representation in a word-based input space.

Traditional word-based document representations such as the well known VSM
and LSA are widely used for extracting representative features of documents. But
these traditional methods are all based on the frequency of words or tf-idf weighting.
They disregard semantic information of words. While the semantics of document
also plays a very important role in text categorization. Besides, with increase of
content of documents, the dimension of vectors will increase quickly and lead to
high computational-complexity.

In this paper, we propose a new method to represent a document as several
vectors based on the word2vec, and use Multiple-Instance learning model for the
final categorization operation[1]. Word2vec, introduced by Mikolov, is an efficient
method for learning highquality vector representations of words from large amounts
of unstructured text data. The learned vectors explicitly encode many linguistic
regularities and patterns. So it is considered as a perfect estimation of word repre-
sentations in vector space. It can also achieve large improvements in accuracy at
much lower computational cost. Multiple-Instance learning is an extension of the
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standard supervised learning settings. Multiple-Instance learning was coined by
Dietterich et al. in the context of drug activity prediction[5]. In Multiple-Instance
learning, the train set is composed by bags and each bag consists of one or more
instances. As we know, an article often contains several subtopics and each para-
graph will represent relatively independent subtopic. But not all these subtopics
are consistent with the topic of categorization, so these uncorrelated subtopics may
be the noise for text categorization. But the computer can’t distinguish whether
the subtopic of the paragraph in the article is helpful to categorization beforehand.
Fortunately, Multiple-Instance learning is exactly proposed under such situation.
So in our method, we represent each paragraph as a vector and each document is
represented as several vectors. Then we use mi-SVM for categorization.

The rest of this paper is organized as follows. In Section 2, we will discuss
word2vec and Multiple-Instances learning. In Section 3, we will introduce the de-
tail of our method for text categorization and the next section is our experiment.
Finally, the conclusion will be shown in Section 5.
2. Related work. In this paper, we propose a new method for text categorization.
In our method, we represent a document as several vector with the same dimension.
Then, we put these vectors into the Multiple-Instance learning model to train a
classifier and test the precision of the classifier.

Text categorization has experienced a long research history. But the task is still
facing some challenges. So far, researchers have proposed so many methods for text
representation such as n-gram, TF-IDF, LSA etc [3, 8, 7] and text categorization
such as Decision Trees, SVM, Bayesian Classifiers and Neural Network Classifiers[11,
6, 9]. All of these methods are able to obtain well performance in text categorization.
But, with the rapid growth of text on the Internet, if we still use the traditional
representation method, the dimension of the vector will be very large. Fortunately,
word2vec, an open source tool provided by Google, can help us solve the problem of
dimension disaster. Word2vec can represent word or phrase as a vector effectively
by predefining the dimension of the vector[12]. Besides, word2vec can represent
the semantic meaning of words or phrases which appear in documents. So in our
methods, instead of using word-based representation methods such as TFIDF, n-
gram etc, we use word2vec to representation documents.

Multiple instance learning was first proposed by Dietterich et al. to deal with
the problem of drug activity prediction[5]. Up to new researchers have done many
researches on Multiple-Instance learning and proposed many algorithms such as
Diverse Density[10], Citation-kNN[14], ID3-MI[4], BP-MIP[15][16], MI SVMs[2] to
solve problems about Multiple-Instance learning and gain well performance in re-
lated fields. However, there is little application of Multiple-Instance learning in text
categorization. Nowadays, the scale of text data is becoming bigger and bigger and
the semantic expression in the text becomes more and more complex. If we can sep-
arate the relevant and irrelevant contents according to the topic of categorization
in the text and take advantage of these relevant contents, we will achieve better
performance on text categorization.
3. Our method. In our method, we first represent each word as a K-dimensional
digital vector, then, we will represent the document as several vectors. After that,
we use mi-SVM to test the performance of our method.

3.1. Document segmentation. According to the assumption of Multiple-Instance
learning, we can know that the training set comprises labeled bags that are com-
posed of unlabeled instances and our task is to predict the label of unseen bags[5].
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Figure 1. The structure of Bag-of-Words and Skip-Gram

So, in our task, we should take some methods to represent each document in the
same form as bag so that we can predict the category of a document by predicting
the label of the bag corresponding to it. In order to represent the document as a
bag, the most important thing is document segmentation. By dividing the docu-
ment into several segments, our goal is to separate these contents that are relevant
to the topic of categorization from these irrelevant contents.

In this paper, we choose to segment the text by paragraph, which is more in
line with human writing habit. Depending on the experience of writing, we can
know that each paragraph in the text will express relatively consistent topic and
the topics of different paragraph are relatively independent to some extent. So we
think that segmenting the text based on the paragraph can be a simple but effective
way.

3.2. Document representation. Text is a more abstract way of expression, so
we want to classify the text in a way that is more similar to human thinking rather
than only using word-based features. Traditional word-based text representation
only reflects the features of word distribution, it overlooks the semantic features of
text. But the semantic features may be more important in text categorization.

In this paper, we choose to use word2vec to represent the text. Word2vec has two
novel model architectures for computing continuous vector representations of words
from very large datasets[13]. The first architecture is Continuous Bag-of-Words
Model(CBOW) which predicts the current word based on the context and the other
one is Continuous Skip-gram Model which predicts surrounding words given the
current word. Word2vec simplifies the context processing to vector processing in a
K-dimensional vector space. Structures of CBOW model and Continuous Skip-gram
Model are shown in the Fig1.

We choose the CBOW architecture to train the word embedding and the dimen-
sion we set for the vector is 300. After getting the pre-trained word embedding,
we can represent each word in the text as a 300 dimension vector and we can get
the representation of each paragraph by adding all the vectors which its related
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Figure 2. Pseudo-code for mi-SVM

word appears in the paragraph. Then, we can represent each paragraph as a vector
and these vectors are called “instance” mentioned above. So in our method, each
document will be represented as several vectors.

3.3. Document categorization. In our method, we represent each document as
several instances(vector) and these instances have no labels, only the bag(document)
has label. However, traditional supervised methods require each instance must have
a label, so we can’t use these traditional methods to train the model. mi − SVM
proposed in [2] is an extension of the Support Vector Machine(SVM).In Multiple-
Instance learning, we have an assumption that an example is positive if and only if
one or more of its instances are positive. According to the assumption of Multiple-
Instance learning and the describing in [2], we can describe the relation between
instance labels yi and bag labels YI as following form:∑

i∈I

yi + 1

2
≥ 1,∀I s.t. YI = 1, and yi = −1,∀I s.t. YI = −1 (1)

In our method, we will still use this assumption. And according to this assump-
tion, we can formulate our optimization goal as follows:

min
{yi}

min
ω,b,ε

1

2
|ω|2 + C

∑
i

εi

s.t. ∀i : yi(〈ω, xi〉+ b) ≥ 1− εi, εi ≥ 0, yi ∈ {−1, 1}, and (1) hold

(2)

Based on this optimization goal, we are looking for a separating linear discrimi-
nant such that there is at least one instance from every positive bag in the positive
halfspace, while all instances belonging to negative bags are in the negative halfs-
pace. So in our task, we are looking for a classification hyperplane such that if a
document belongs to label, at least one paragraph in this document can be classified
as this label.The pseudo-code of mi-SVM is given in Fig2[2].

4. Experiments. In this section, we will introduce in detail about our experi-
ments.

4.1. Datasets. In order to evaluate the performance of our method, we choose
the sougouC corpus and 20newsgroup as the dataset in our experiments. SougouC
corpus is a chinese corpus and 20newsgroup is an english corpus. We choose 5
categorys of SougouC as dataset and the dataset contains 40000 documents marked
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Table 1. Results of experiments on sougouC

Model car finance IT health sport

SVM + TF-IDF 0.8473 0.8420 0.8363 0.8326 0.8737
SVM + Word2vec 0.9303 0.8571 0.8755 0.9163 0.9828
mi-SVM + Word2vec 0.9599 0.8904 0.8943 0.9325 0.9842

with 5 categorys. These 5 categorys are car, finance, IT, health and sport. Each
category contains 8000 documents. 20newsgroup corpus contains 18828 documents
labeled with 20 labels. We use 10-fold cross-validation to test the precision of
method on both chinese and english corpora. These two corpora are enough to
evaluate the performance and obtain objective results.

4.2. Designs of experiments. In this section, we will introduce the detail of our
experimental design. In order to use sougouC corpus and 20newsgroup corpus to
train word2vec, we should first deal with the problem of word segmentation. In
our experiment, we use IKAnalyzer, a word segmentation toolkit in java, to deal
with the chinese word segmentation and use lucene to deal with the english word
segmentation. In the process of word segmentation, we get rid of those stop words.
After that, we organize these words in one document and all of words in the same
document are in the same line and the order of the words are not changed. Then we
put the document into word2vec toolkit to gain the map of words and vectors. In
this step, we use the Continuous Bag-of-words architecture. We set the dimension of
a vector as 300 and set the size of the window as 8. After about 8 hours, we can get
the map of words and vectors. In order to compare our method with the traditional
method, we should represent each document in corpus as one instance and multiple
instances. In our experiment, we just add all the vectors of words in the same group
to gain the representation vector. For the traditional method, a document is not
segmented to several segments so that each document is represented as one vector.
While in our method, each document will be divided into several segments, so, the
document will be represented as multiple instances.

To verify the performance of our method, we design two group text categoriza-
tion experiments on Chinese and english corpora. In each experiment group, we set
three groups of experiments. For traditional methods, we choose tf-idf and SVM
for experiments and the result of this experiment is seen as our baseline. In order
to compare performance of semantic representation, we repeat the experiment men-
tioned above, but instead of using tf-idf, we use word2vec to represent the text. For
our method, we separate each document into several segments and use word2vec to
represent these segments, then, mi-SVM will be used for text categorization. All
of these experiments are using the strategy of 10-fold cross-validation to get the
ultimate performance of each method. The results of traditional methods and our
method are presented in the next section.

4.3. Results. In our experiments, we contrast traditional methods and our method.
The experimental results are shown in Table 1 and Table 2.

Compared with pictures, text is a more abstract way of information expression
for human. So, the more important attribute of text may be semantics rather than
word frequency, tf-idf, etc. and classifying the text based on the semantics is more
similar to human thinking. For these reasons, we choose to use the word embedding
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Table 2. Results of experiments on 20newsgroup

Model SVM+tf-idf SVM+Word2vec mi-SVM+Word2vec

Average 0.8508 0.8421 0.8619

to represent text and verifying the performance of it through the experiment. From
the result of experiment, we can see that for Chinese corpus, the performances of
using word embedding on five categories are better than using tfidf. If we look at
the content of the document in Chinese corpus, we can also judge the category of
the document very easily. But for 20newsgroup, the performance of word embed-
ding doesn’t outperform tfidf, to find the cause of this situation, we choose some
documents in 20newsgroup randomly to check their contents. We find that every
document has headers and most of the documents contain lots of content which are
unrelated to category and we can see these contents as noises. All of these noises
will influence the performance of categorization. The results of our method also
support our opinion.

When we compare our method to traditional methods, the results of experiments
show that our method outperforms the traditional methods for most of the labels. It
shows that, in a certain degree, our method can separate the useful information and
noise. According to the assumption of Multiple-Instance learning, if one or more
of document’s instances are positive, we will label the document as positive. So if
document’s useful information and noise are separated, we will get a more accurate
result. For example, if a document is represented as 5 instances and 4 of them are
noises. In our method, classifier can still judge which label the document belongs
to accurately according the remaining instance. But if we encode these information
into only one instance, it will be difficult for classifier to judge document’s label
because most of the informations are noises.

5. Conclusion. In this paper, we propose a new method to represent a document
as several vectors and use Multiple-Instance learning method to get the accuracy
of categorization and evaluate the performance of categorization. Our datasets
are chinese corpus called sougouC and english corpus called 20newsgroup. We use
word2vec to get the document represents vectors. As we can see in our experiment,
our method can get higher accuracy in document categorization than other tradi-
tional method such as SVM. But, there are also some shortcomings in our method.
For example, the time we cost in training the mi-SVM model is too long. Besides,
the accuracy of text categorization is influenced by the result of word segmentation.

In the future, we will do more experiments on more datasets. And we should
also improve the method we represent the document rather than simply separate
the document by paragraph.
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