
Big Data and Information Analytics doi:10.3934/bdia.2017006
c©American Institute of Mathematical Sciences
Volume 2, Number 1, January 2017 pp. 23–37

AN EVOLUTIONARY MULTIOBJECTIVE METHOD FOR

LOW-RANK AND SPARSE MATRIX DECOMPOSITION

Tao Wu∗, Yu Lei, Jiao Shi and Maoguo Gong

School of Electronics and Information

Northwestern Polytechnical University

127 West Youyi Road, Xi’an Shaanxi, 710072, China

Abstract. This paper addresses the problem of finding the low-rank and

sparse components of a given matrix. The problem involves two conflicting ob-

jective functions, reducing the rank and sparsity of each part simultaneously.
Previous methods combine two objectives into a single objective penalty func-

tion to solve with traditional numerical optimization approaches. The main

contribution of this paper is to put forward a multiobjective method to de-
compose the given matrix into low-rank component and sparse part. We op-

timize two objective functions with an evolutionary multiobjective algorithm
MOEA/D. Another contribution of this paper, a modified low-rank and sparse

matrix model is proposed, which simplifying the variable of objective functions

and improving the efficiency of multiobjective optimization. The proposed
method obtains a set of solutions with different trade-off between low-rank

and sparse objectives, and decision makers can choose one or more satisfied

decomposed results according to different requirements directly. Experiments
conducted on artificial datasets and nature images, show that the proposed

method always obtains satisfied results, and the convergence, stability and

robustness of the proposed method is acceptable.

1. Introduction. Matrix decomposition can catch some characteristic information
of matrix, in which low- rank and sparse components are two of the most interesting.
In the past decades, the theory of matrix decomposition has been developed rapidly,
especially low-rank or sparse matrix decomposition have been used for many popu-
lar research areas, such as machine learning, image/signal processing and network
analysis etc [19,20,22,24]. The problem of low-rank and sparse matrix decomposi-
tion (LRSMD) is highlighted and intensively studied recently in [4,6], especially in
robust principle component analysis (PCA).

As described in the literature [4], we present a matrix D ∈ Rm×n with m ≤ n,
and know that it can be decomposed as

D = L0 + S0, (1)

where L0 ∈ Rm×n has low rank and S0 ∈ Rm×n is sparse. We need to get the
low-rank matrix L0 and sparse matrix S0 without prior knowledge about rank in-
formation and sparse pattern, and let both the rank of L0 and the sparsity of S0
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as smaller as possible. We can model the LRSMD problem as a two objectives
optimization problem:

minimize (rank(L0), card(S0))
subject to L0 + S0 = D.

(2)

It is known that the LRSMD problem is in general ill-posed and NP-hard [4], and
the easiest way is finding a convex optimization problem to approximate original
problem. The heuristics of using the l1-norm as the proxy of sparsity and the nuclear
norm as the surrogate of low-rank are widely used in many areas (see e.g. [5,10,17]).
The authors of [4] proposed the model that converting the NP-hard problem into
convex optimization problem:

minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = D,

(3)

where ‖L‖∗ denotes the nuclear norm of the matrix L, that is, the sum of the
singular value of L, and ‖S‖1 denotes the l1-norm of S seen as a long vector in
Rm×n.

Nowadays, many methods based on different strategies have been proposed. It-
erative thresholding (IT) algorithms [1,2] regularize the problem (3) and construct
a Lagrange function, and then two objective variables are updated alternately. The
iterative form of IT algorithms is simple and convergent, but the rate of convergence
is slow and it is difficult to select the appropriate length of step. Accelerated prox-
imal gradient (APG) algorithm [12] is another iterative approach, which building
partial quadratic approximation by using Lipschitz gradient to solve the Lagrange
function, iterating and getting solution. Although it is similar as IT algorithms, it
reduces the number of iterations greatly. The dual method [12] is proposed because
the nuclear norm is dual to spectral norm, the dual problem of problem (3) is easier
to solve. Compared with APG algorithm, it has better scalability because it do
not need complete singular decomposition in each iteration. One of the most influ-
ential method is augmented Lagrange multipliers (ALM) method [13]. The ALM
method constructs augmented Lagrange function firstly, and then using alternating
iteration method to optimize the problem. It is called EALM when using an exact
augmented Lagrange multipliers while it is named IALM with inexact multipliers.
IALM is also known as alternating direction methods (ADM) [21]. ALM method
is more efficient than APG method, and can achieve higher accuracy with lower
storage space.

For low-rank and sparse matrix decomposition problem, most of methods con-
sider the ratio of low-rank degree and sparsity as a certain parameter, however dif-
ferent given matrices or requirements are always with different parameter λ. There
are some related works that use multiobjective evolutionary algorithms to directly
optimize two objectives of some machine learning problems [15, 16]. In this paper,
we model low-rank and sparse matrix decomposition as a multiobjective problem
(MOP), and modify the multiobjective LRSMD (MOLRSMD), which has simple
structure and is easy to optimize. In MOLRSMD, on the one hand, the measure
of low-rank degree and sparsity are still used as the two objective functions, which
ensure the results of decomposition are feasible. On the other hand, the optimized
efficiency is improved by modifying the optimization function. We use the evolution-
ary multiobjective algorithms to optimize the MOLRSMD which obtain trade-off
solutions in various situations. The decision maker only need to select the solution
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from Pareto optimal set, and it is easy to select because the quality of solutions in
Pareto optimal set can be judged directly.

The remainder of this paper is organized as follows. Section 2 introduces the
related background and motivation about the proposed method. In Section 3, the
proposed model and algorithm are presented in detail. Experimental study is de-
scribed in Section 4. Finally, concluding remarks are given in Section 5.

2. Related background and motivation. In this section, in order to make it
easier to understand the proposed method, we will give a brief introduction to
multiobjective optimization. Then we will describe the motivation of multiobjective
low-rank and sparse matrix decomposition.

2.1. Multiobjective optimization. In general, it will be called multiobjective
optimization (MOO), when the number of objective function is more than one and
need to optimize simultaneously [7, 8, 14]. A MOP can be stated as:

min F (x) = (f1(x), · · · , fm(x))
T

subject to x ∈ Ω,
(4)

where Ω is the decision(variable) space, F : Ω→ Rm consists of m real-value objec-
tive functions and Rm is called the objective space. The objectives are conflicting
with each other in the most of time, it means no solution in Ω minimizes all the
objectives simultaneously. The best trade-off among the objectives can be defined
in terms of Pareto optimality.

Let xA, xB ∈ Ω, xA is said to dominate xB if and only if

∀i = 1, 2, · · · ,m fi(xA) ≤ fi(xB)
∃j = 1, 2, · · · ,m fj(xA) < fj(xB),

(5)

and mark it as xA � xB . A solution x∗ ∈ Ω is Pareto optimal if there is no
solution x ∈ Ω such that x � x∗. The set of all the Pareto optimal solutions is
called the Pareto set and the set of all the Pareto optimal objective vectors which
corresponding to all Pareto optimal solution is the Pareto front. In order to illustrate
the concepts of nondominated, dominated and Pareto front, we take a two objective
optimization as example in Figure 1.

In practical applications, most objective functions have many or even infinite
solutions, and we can not get all of them [23]. The purpose of multiobjective opti-
mization is that finding a uniformly distributed Pareto front under a certain amount,
which can represent the whole Pareto front. Evolutionary algorithm is one of the
most popular methods for solving multiobjective optimization [9,11,18,23,25], such
as VEGA [18], SPEA-II [25], NSGA-II [9] and MOEA/D [23]. Zhang and Li [23]
proposed the MOEA/D which has a good performance in MOPs. MOEA/D de-
composes the MOPs into a series scalar optimization subproblems with different
weights. Due to the solution of each subproblem is similar to neighboring subprob-
lems, the solution can be optimized by neighboring subproblems information. In
this paper, due to the problem can be decomposed naturally with different param-
eter λ, we use MOEA/D to handling multiobjective low-rank and sparse matrix
decomposition.

2.2. Motivation. For matrix decomposition with constraints of rank and sparsity,
as described in problem 2, most of methods convert NP-hard problem into convex
optimization. However these algorithms have to set a value of parameter λ for
trade-off between reducing the rank of low-rank component and making sparse part
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Figure 1. The distributions of nondominated solutions, domi-
nated solutions and Pareto front in the objective space of the two
objectives problem.

sparse as far as possible. Although [4] suggests λ = 1/
√

max(m,n), it is clear that
different choices for λ in problem (3) will yield different optimal solutions and it is
not easy to know the optimal λ, which will result in best decomposition of the given
matrix. Figure 2 show a simple experiment to demonstrate how the parameter λ
affects the result of sparse component recovering with ADM method. In Figure
2, the horizontal axis represents different possible choices of parameter λ, and the
vertical axis means the error of recovering sparse matrix with different λ. We know
that the best solution with the smallest error while parameter λ is about 0.22,
and we can not recover a satisfied sparse component when λ is too small. The
experiment emphasizes how important to choose a suitable parameter λ.

Multiobjective optimization is a popular way to avoiding the difficulty of param-
eter λ selection. Compared with traditional single objective penalty methods, mul-
tiobjective optimization takes apparent advantages on optimizing multi-objectives
simultaneously and selecting solutions easily [3, 23]. Especially in solutions selec-
tion, MOO provides a set of trade-off solutions for decision maker while single
objective methods have to try different parameters to find suitable solutions. In the
most of time, single objective methods can not make a best decision without prior
knowledge, even sometimes with prior knowledge, it is also.

For LRSMD, we focus on a more original problem, which thinks LRSMD as a
multiobjective problem. The essence of the MOO is to optimize several conflicting
objectives simultaneously. As described in problem (2), there are two existing con-
flicting objectives, which represent low-rank degree and sparsity respectively. We
can obtain different solutions by a evolutionary multiobjective algorithm, such as
MOEA/D. And each solution in the Pareto front represents a trade-off between
reducing rank of low-rank component and decreasing the sparsity of sparse part,
which can satisfy different requirements of decision makers.
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Figure 2. Error of sparse component recovering by the ADM
method for LRSMD with different choices of the parameter λ

3. The proposed method. First of all, we introduce the model of multiobjective
low-rank and sparse matrix decomposition based on matrix singular value decom-
position. Then details of multiobjective low-rank and sparse matrix decomposition
algorithm will be described, which show how the MOO approach is applied in matrix
decomposition.

3.1. Modified multiobjective Low-rank and sparse matrix decomposition.
As is mentioned in Section 1, problem (2) is a standard multiobjective problem,
however it is hard to optimize even with evolutionary algorithm. The reasons can
summary as follow: 1) both two objective functions are NP-hard and the low-rank
component and sparse component are tightly correlative. 2) the decision variable
of problem (2) is complex whatever it is low-rank component L0 or sparse part
S0, it is difficult to obtain the optimal solution even if evolutionary algorithms are
used, especially for the recovery of the low-rank component. A new multiobjective
low-rank and sparse matrix decomposition model is modified by problem (2) and
based on matrix singular value decomposition.

Let the singular value vector x as decision variable, f1 represents the rank degree
of low rank component, it is defined as

f1(x) =

n∑
i=1

|xi|. (6)

Similarly, sparsity of sparse component is defined as

f2(x) =

m∑
i=1

n∑
j=1

|Sij(x)|, (7)

where x ∈ Rn, and S(x) = D − UΣ(x)V T , D ∈ Rm×n is the given matrix and
Σ(x) is the diagonal matrix consisting of x. Both U ∈ Rm×m and V ∈ Rn×n are
orthogonal matrix and they are fixed in the proposed method.
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At this point, the two objective functions can be combined into a MOP. It has
the following form:

min
x
F (x) = min

x
(f1, f2)

subject to x ∈ Ω.
(8)

For low rank component, it is hard to measure and optimize, but the singular
value vector can approximate it. When U and V is suitable and fixed, every different
low-rank matrix have only one singular value vector from the SVD theorem. The
difficulty of sparse optimization is lower than low-rank, meanwhile, the complexity
of sparse component as variable is harder than singular value vector. Based on
the above mentioned, set the singular value vector as the variable of MOLRSMD
is recommendable. The process of multiobjective LRSMD model is summarized in
Algorithm 1.

Algorithm 1 Multiobjective LRSMD Model

Input: Dm×n: matrix data.
Output: L, S: set of all possible decomposed results.
1: Step 1) [U,Σ, V ]← svd(D)
2: Step 2) Generate a set of nondominated solutions (X) for problem (8) using

Algorithm 2.
3: Step 3) Recovery L and S.
4: for i = 1, 2, ..., N do
5: Step 3.1) Σi ←− X(i)
6: Step 3.2) Li ← UΣiV

T

7: Step 3.2) Si ← D − Li

8: end for

3.2. Procedure of MOLRSMD based on MOEA/D. In this paper, the frame-
work of MOEA/D [23] is applied in MOLRSMD because of the characteristic of
MOEA/D which decomposing the MOP into several scalar optimization subprob-
lems. In MOLRSMD we use Tchebycheff approach to decompose the multiobjective
optimization problem (8), and the scalar optimization subproblem is in the form

min gte(x|w) = max{w1|f1 − z∗1 |, w2|f2 − z∗2 |}
subject to x ∈ Ω,

(9)

where w = (w1, w2)T is a weight vector with w1, w2 > 0 and w1 + w2 = 1, and
z∗ = (z∗1 , z

∗
2)T is the reference point, i.e., z∗1 = min{f1(x)|x ∈ Ω}. We can obtain a

set of subproblems like (9) by selecting different weight vector w. Each subproblem
with different weight vector represents a certain trade-off between two objectives.

The procedure of the proposed algorithm for low-rank and sparse matrix decom-
position is given in Algorithm 2. The MOLRSMD problem can be decomposed
into N scalar optimization subproblems by (9). Therefore we defined a series of
weight vectors w1, w2, · · · , wN with uniform spread and calculate the Euclidean
distance between any two weight vectors, and then work out the T closest weight
vectors to each weight vector. The neighborhood of each subproblem consists of all
the subproblems with T closest weight vectors. The initial population of N indi-
viduals x1, x2, · · · , xN ∈ Ω is randomly generated, where xi is singular value vector
of i-th low-rank component. During iteration, some specific genetic operators and
problem specific heuristic are used to generate and improve new individuals. The
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Algorithm 2 Procedure of MOLRSMD based on MOEA/D

Input: stopping criterion: tmax is the maximum number of generations; N : the
number of subproblems; T : the size of neighborhood; pc: the probability of
crossover; pd: the differential multiplier; pm: the the probability of mutation;
ps: the probability of mutation strategies selection.

Output: Pareto front solution; matrix decomposition results.
1: Step 1) Initialization
2: Step 1.1) Generate a uniform distributed of N weight vectors w1, w2, ..., wN

and computer the Euclidean distances between any two weight vectors and
then work out the T closest weight vectors to each weight vector. For each
i = 1, ..., N , set B(i) = {i1, ..., iT }, where wi1 , ..., wiT are the T closest weight
vector to wi.

3: Step 1.2) Generate an initial population x1, x2, ..., xN randomly.
4: Step 1.3) Initialize two reference points zl = (zl1, z

l
2)T and zu = (zu1 , z

u
2 )T

represent the best and the worst values of each objective function in objective
space respectively.

5: Step 1.4) For each i = 1, ..., N , calculate f1, f2 and gte(xj |wj , zl, zu).
6: Step 2) Set iter = 0.
7: Step 3) Update
8: for i = 1, 2, ..., N, do
9: Step 3.1) Randomly select two indexes k, l from B(i), and then generate a

new individual solution y from xi, xk and xl by using genetic operator with
pc, pd, pm and ps.

10: Step 3.2) Apply a thresholding method to improve y.
11: Step 3.3) For each j = 1, 2, if zlj > fj(y), then set zlj = fj(y); and if

zuj < fj(y), then set zuj = fj(y).

12: Step 3.4) For each index j ∈ B(i),calculate gte(y|wj , zl, zu), if
gte(y|wj , zl, zu) ≤ gte(xj |wj , zl, zu), then set xj = y and gte(xj |wj , zl, zu) =
gte(y|wj , zl, zu).

13: end for
14: Step 4) Stopping criteria: If iter < tmax, then iter = iter + 1 and go to

Step 3, otherwise, stop the algorithm and output.

neighboring solutions are updated by gte(x|w) with each subproblem. Finally, we
get a set of solutions with different trade-off relationship between the low-rank
degree and sparsity of each component.

In this algorithm, some ideas of Tchebycheff decomposition and genetic operators
are used which make solutions distribute more uniform and algorithm convergence
faster. Next, some details about these ideas will be introduced.

3.2.1. Objective function normalization. In this paper, due to the difference of or-
ders of magnitude between two objective functions value, the strategy of objective
functions normalization is employed. In general, the value of objective function
is large especially the range of two objectives have a huge difference, which make
Pareto front is not uniform and most of points cluster in corner. A simple function
normalization method formed as follow

f i =
fi − zli
zui − zli

(10)
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where i = 1, 2, zl = (zl1, z
l
2)T is the lowest point and zu = (zu1 , z

u
2 )T is the high-

est point in objective space. For scalar optimization subproblems, the objective
function of Tchebycheff decomposition is

gws(x|w, zl, zu) = max{w1|f1 − z∗1 |, w2|f2 − z∗2 |}
= max{w1|f1 − z∗1|, w2|f2 − z∗2|}

= max{w1|
f1 − zl1
zu1 − zl1

|, w2|
f2 − zl2
zu2 − zl2

|},

(11)

3.2.2. Genetic operator. Genetic operator is the key of evolutionary algorithm, with
genetic operator combined characteristic of optimization problem, the convergence
speed of algorithm can be improved. In this paper, we use a difference strategy and
double local mutation method to speed up algorithm.

In crossover operator, difference optimization strategy is applied. We select two
individuals randomly from the neighborhood of xi, noted as xk and xl, and new
individual can generate by

yj =

{
xij + F (xkj − xlj) if r < pc

xij otherwise
(12)

where xj , yj mean the j-th value of x and y and j = 1, 2, ..., N .
We apply a scale controllable mutation with two different mutations to balance

diversity and precision of population. In the paper, we select Gauss mutation and
polynomial mutation. Gauss mutation is simple than polynomial mutation and
well done in global searching. Polynomial mutation for local search can improve
the quality of solution. Therefore, if a random number r < pm, do

y′ =

{
Gauss(y, σ) if rand < ps

Polynomial(y) otherwise
(13)

where Gauss(y, σ) is a Gauss function with y, σ, and Polynomial(y) is a polynomial
function with variable y.

In this section, setting singular value vector as decision variable, makes problem
simpler and easier to optimize. On the one hand, the complexity of variable is
O(n) while traditional method with O(mn). On the other hand, there are few SVD
process in multiobjective LRSMD model while most traditional penalty methods
need more SVD process, and the most of time cost in iteration spend on SVD
process. Furthermore, multiobjective LRSMD model can obtain a set of trade-off
solutions which can be chosen directly by decision makers with requirements.

4. Experimental study. In this section, we will represent experiments on arti-
ficial generated datasets and some nature images to evaluate the performance of
the proposed method. The experiment focus on how the multiobjective low-rank
and sparse matrix decomposition algorithm works with different type test data, and
analyzing the performance with the convergence, stability and robustness.

4.1. Experimental datasets and experimental setting. Let D = L∗ + S∗ be
the available data, where L∗ and S∗ are, the original low-rank and sparse matri-
ces,respectively, that need to be recovered. The datasets of experiment are gen-
erated with different combinations of the rank of L∗ and the sparsity of S∗. In
addition, the size of original matrix is also different in experiment and all matrices
are generated by Gauss random number. We also have experiments on datasets
with noise to evaluate the robustness of the proposed method. The experimental
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datasets are not only artificial generated datasets as described above but also some
nature images. The nature images are consisted of Lena and some images from
orl-faces datasets.

In order to illustrate the result of experiment intuitively, we define some indexes
to measure results and the performance of the proposed method. The relative error
to the original low-rank matrix L∗ is defined by

ErrLR :=
||L− L∗||F
||L∗||F

. (14)

Similarly, the relative error to the original sparse matrix S∗ is defined by

ErrSP :=
||S − S∗||F
||S∗||F

. (15)

The total error to original matrix is

ErrT :=
||L+ S −D∗||F
||D∗||F

. (16)

Due to the characteristic of multiobjective matrix decomposition method, there
are many different decomposition results and some results are widely different with
original matrices. On the one hand, in order to analysis the accuracy of matrix
decomposition in artificial datasets, we just focus on solution with smallest recov-
ery error and the distribute of Pareto front. On the other hand, we could select
solution with actual demand when all decomposed solutions would be represented
with images in nature images.

The parameters in the proposed method are given in Table 1.

Table 1. The Parameters in the MOLRSMD used in the Experiments

Parameter Meaning Value
N The number of subproblems 100
T The number of neighbors 20
tmax The maximum of generations 300
pc The probability of crossover 0.8
pd The differential multiplier 0.5
pm The probability of mutation 0.2
ps The probability of mutation selection 0.85

4.2. Experimental results.

4.2.1. Artificial datasets. For artificial generated datasets, we select three different
size test matrices, which the sizes are 20× 20, 50× 50 and 100× 100, respectively.
In addition, the rank and sparsity are also different. From Figure 3, it illustrates
the results with three different sizes and represents MOLRSMD work well in this
datasets. The first column is three Pareto front for MOLRSMD in different data,
which the biggest different is matrix size. The Pareto front is with approximate
uniform distribution for all of three different data, which means MOLRSMD has
a good convergence. Each figure in the second column of Figure 3 is two objec-
tion functions corresponding to the solutions. The blue points represent low-rank
function values while the red points represent sparse function value. The value of
low-rank function is always in a small range compared with sparse function. The
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last column is three box-plot about ErrLR and ErrSP by running 30 times inde-
pendent experiments. The box-plot shows the statistical results of the change of
ErrLR and ErrSP . From box-plot we can see that low-rank recovering error is
lower than sparse and do not change appreciably with different times running. It
means the proposed method has a great stability.
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Figure 3. The Pareto front, two objective functions correspond-
ing to the solutions and box-plot for ErrLR and ErrSP by running
30 times independent experiments. Three rows represent exper-
iment on the data with size:20 × 20, rank: 5, sparsity: 0.2, size:
50×50, rank: 5, sparsity: 0.2 and size: 100×100, rank: 5, sparsity:
0.5 respectively.

Furthermore, we also do experiments on some data with noise to test the robust-
ness of the proposed method. For data with size: 20 × 20, rank: 1 and sparsity:
0.1, we add Gauss noise randomly. The types of noise determined by two factors
and can be described as follow: number of noise points can choose from 20 and 50;
σ of Gauss noise: 1, 5 and 15. We randomly combine two factors of noise and test
all of them except 50 points, σ = 1.
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Figure 4. Box-plot about ErrLR and ErrSP for data with dif-
ferent noise. (a): number of noise points is 20, σ = 1. (b): number
of noise points is 20, σ = 5. (c): number of noise points is 20,
σ = 15. (d): number of noise points is 50, σ = 5. (e): number of
noise points is 50, σ = 15.

0 0.5 1 1.5 2 2.5 3 3.5

||S|| 1 10
4

0

1000

2000

3000

4000

5000

6000

||
L

||
*

(a)

0 10 20 30 40 50 60 70 80 90 100

Serial number of solutions

0

0.5

1

1.5

2

2.5

3

3.5

O
b
je

c
ti

v
e

 f
u

n
c

ti
o

n
 v

a
lu

e

10
4

The value of sparse

The value of low-rank

(b)

Figure 5. The Pareto front and two objective functions corre-
sponding to the solutions for noise data. Noise type: number of
noise points is 50 and σ = 15.

Figure 4 displays the box-plot of recovering error in five noisy situations, which
is described as above. We can know that not only the error of low-rank recovering
but also sparse recovering is changed in a small range with different types noise.
With the improved of number of noise points or σ of Gauss function, the changed
range of error is improved. However, the range of difference between different noise
is reasonable. In a word, the robustness of the proposed method is acceptable.
Figure 5 shows that the Pareto front is also smooth and uniform distribution with
the worst noise, which number of noise points is 50 and σ of Gauss function is 15.
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(a) (b)

Figure 6. The Pareto front and decomposed results with image
lena. (a) is Pareto front of MOLRSMD and (b) is three different
decomposed results selected form Pareto front, and they locate at
the top, middle and bottom of Pareto front, respectively.

(a) (b)

Figure 7. The Pareto front and decomposed results with image
face. (a) is Pareto front of MOLRSMD and (b) is three different
decomposed results selected form Pareto front, and they locate at
the top, middle and bottom of Pareto front, respectively.

4.2.2. Nature Datasets. In the nature images, the proposed method also works well.
The images that we used is consisted of Lena and orl-faces datasets. Due to no
standard decomposed results of datasets, we just analysis the Pareto front and
practical results to evaluate performance of the proposed method. Some results are
displayed in Figure 6 and Figure 7. Figure 6 is about image Lena and Figure 7 is
result in one random face image from orl-faces. We can see that the Pareto front of
the proposed method is smooth and equally distributed, which means the method
converges to PF stably. The (b) of Figure 6 and 7 show three different decomposed
results with different locations in the PF. The first row of part (b) means sparse
component has an absolute advantages, on the contrary, the third row shows low-
rank part with more advantage. The middle one is a balance between low-rank and
sparse components.
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4.2.3. Comparison Study. The performance of the proposed MOLRSMD have been
examined in the previous subsection. In this subsection, simple comparison with
some advanced LRSMD algorithms is tested on artificial datasets. ADM [21] and
ALM [13] are two mainstream and efficient algorithms in exiting research. Both of
them need set parameter λ as prior information which balances low-rank and sparse
components. For all the algorithms, the parameter λ is varied from 0 to 1, with
a step size of 0.01 in order to compare with MOLRSMD fairly. The results of the
proposed MOLRSMD as compared with ADM and ALM are presented in Figure 8
and Table. 2.

Each row of Figure 8 presents the Pareto front by different algorithms. The
Pareto front of MOLRSMD is complete and smooth as compared with ADM and
ALM. The results of ADM and ALM are with uneven distribution, most of Pareto
optimal solutions cluster in low sparsity region even the region with sparsity close
to zero. In particular, from the second row of Figure 8, solutions of ADM and ALM
with a sudden change and most of solutions cluster in two regions (the value of two
objective functions are about 7500, 2500 and 4500, 0 respectively) while solutions of
the proposed MOLRSMD with uniform and smooth distribution. Table 2 represents
the smallest recovery error from 100 solutions of the proposed MOLRSMD, ADM
and ALM on artificial datasets (size: 50× 50, rank: 5, sparsity: 0.2). We can see
that errors of three algorithms are similar. We have a discovery from above all,
the influence of parameter λ is nonlinear and hard to described. Sometimes it is
hard to find a suitable parameter λ. For example, if the solution in region with low
rank and high sparsity in this case, the difficulty of find suitable λ is very hard even
impossible. In contrary, the proposed MOLRSMD avoids the selection of parameter
λ. It is easier to find optimal solution compared with ADM and ALM.

MOLRSMD ADM ALM

Figure 8. Results of the proposed MOLRSMD compared with
ADM and ALM. The test dataset size is 50×50, rank equals 5 and
sparsity is 0.2.
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Table 2. Errors of the proposed MOLRSMD compared with ADM
and ALM.

Methods ErrLR ErrSP ErrT
MOLRSMD 0.0100 0.1986 0

ADM 0.0299 0.1331 1.9135e-17
ALM 0.0148 0.0661 2.2412e-10

5. Conclusion. In this paper, an evolutionary multiobjective low-rank and sparse
matrix decomposition method has been proposed, for finding optimal trade-off so-
lutions between the rank of low-rank component and the sparsity of sparse part.
We focus on more original problem of low-rank and sparse matrix decomposition,
with the theorem of matrix singular value decomposition, modifying the model by
replacing decision variable with singular value vector. We have experiments on dif-
ferent type datasets, including artificial datasets, datasets with noise and nature
images, to indicate that the proposed MOLRSMD is always with good convergence,
reliable stability and acceptable robustness. It also show that it can be applied to
some practical problem.

Future work will be attention on decreasing the accuracy of recovering. In the
proposed method, the orthogonal matrices U and V is fixed, however different
matrix with different orthogonal matrices in the most of time. Fixed orthogonal
matrices is always increasing the error. Next, we will explore how to find the best
U and V while singular value vector changed.

REFERENCES

[1] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM Journal on Imaging Sciences, 2 (2009), 183–202.

[2] J.-F. Cai, E. J. Candès and Z. Shen, A singular value thresholding algorithm for matrix
completion, SIAM Journal on Optimization, 20 (2010), 1956–1982.

[3] Z. Cai and Y. Wang, A multiobjective optimization-based evolutionary algorithm for con-

strained optimization, IEEE Transactions on Evolutionary Computation, 10 (2006), 658–
675.

[4] E. J. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, Journal of

the ACM (JACM), 58 (2011), Art. 11, 37 pp.
[5] E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations

of Computational Mathematics, 9 (2009), 717–772.
[6] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo and A. S. Willsky, Rank-sparsity incoherence

for matrix decomposition, SIAM Journal on Optimization, 21 (2011), 572–596.

[7] C. A. C. Coello, D. A. Van Veldhuizen and G. B. Lamont, Evolutionary Algorithms for

Solving Multi-Objective Problems, Genetic Algorithms and Evolutionary Computation, 5.
Kluwer Academic/Plenum Publishers, New York, 2002.

[8] K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, John Wiley & Sons,
Ltd., Chichester, 2001.

[9] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic

algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002), 182–197.
[10] M. Fazel, H. Hindi and S. P. Boyd, A rank minimization heuristic with application to minimum

order system approximation, in Proceedings of the American Control Conference, IEEE, 6

(2001), 4734–4739.
[11] M. Gong, L. Jiao, H. Du and L. Bo, Multiobjective immune algorithm with nondominated

neighbor-based selection, Evolutionary Computation, 16 (2008), 225–255.

[12] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, Fast convex optimization algorithms
for exact recovery of a corrupted low-rank matrix, Computational Advances in Multi-Sensor

Adaptive Processing (CAMSAP), vol. 61, 2009.

http://www.ams.org/mathscinet-getitem?mr=MR2486527&return=pdf
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1137/080716542
http://www.ams.org/mathscinet-getitem?mr=MR2600248&return=pdf
http://dx.doi.org/10.1137/080738970
http://dx.doi.org/10.1137/080738970
http://dx.doi.org/10.1109/TEVC.2006.872344
http://dx.doi.org/10.1109/TEVC.2006.872344
http://www.ams.org/mathscinet-getitem?mr=MR2811000&return=pdf
http://dx.doi.org/10.1145/1970392.1970395
http://www.ams.org/mathscinet-getitem?mr=MR2565240&return=pdf
http://dx.doi.org/10.1007/s10208-009-9045-5
http://www.ams.org/mathscinet-getitem?mr=MR2817479&return=pdf
http://dx.doi.org/10.1137/090761793
http://dx.doi.org/10.1137/090761793
http://www.ams.org/mathscinet-getitem?mr=MR2011496&return=pdf
http://dx.doi.org/10.1007/978-1-4757-5184-0
http://dx.doi.org/10.1007/978-1-4757-5184-0
http://www.ams.org/mathscinet-getitem?mr=MR1840619&return=pdf
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/ACC.2001.945730
http://dx.doi.org/10.1109/ACC.2001.945730
http://dx.doi.org/10.1162/evco.2008.16.2.225
http://dx.doi.org/10.1162/evco.2008.16.2.225


AN EVOLUTIONARY MULTIOBJECTIVE METHOD FOR LRSMD 37

[13] Z. Lin, M. Chen and Y. Ma, The augmented lagrange multiplier method for exact recovery
of corrupted low-rank matrices, arXiv preprint, arXiv:1009.5055, 2010.

[14] K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston,

MA, 1999.
[15] C. Qian, Y. Yu and Z.-H. Zhou, Pareto ensemble pruning, in AAAI, (2015), 2935–2941.

[16] ——, Subset selection by pareto optimization, in Advances in Neural Information Processing
Systems, (2015), 1774–1782.

[17] B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix

equations via nuclear norm minimization, SIAM Review , 52 (2010), 471–501.
[18] J. D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, in

Proceedings of the 1st international Conference on Genetic Algorithms. L. Erlbaum Asso-

ciates Inc., (1985), 93–100.
[19] J. L. Starck, M. Elad and D. L. Donoho, Image decomposition via the combination of sparse

representations and a variational approach, IEEE Transactions on Image Processing, 14

(2005), 1570–1582.
[20] J. Yan, J. Liu, Y. Li, Z. Niu and Y. Liu, Visual saliency detection via rank-sparsity decom-

position, in IEEE International Conference on Image Processing, IEEE, (2010), 1089–1092.

[21] X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction
methods, Pacific Journal of Optimization, 9 (2013), 167–180.

[22] C. Zhang, J. Liu, Q. Tian, C. Xu, H. Lu, and S. Ma, Image classification by non-negative
sparse coding, low-rank and sparse decomposition, in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), (2011), 1673–1680.

[23] Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decompo-
sition, IEEE Transactions on Evolutionary Computation, 11 (2007), 712–731.

[24] M. Zibulevsky and B. A. Pearlmutter, Blind source separation by sparse decomposition in a

signal dictionary, Neural Computation, 13 (2001), 863–882.
[25] E. Zitzler, M. Laumanns and L. Thiele et al., SPEA2: Improving the strength pareto evolu-

tionary algorithm, in Eurogen, 3242 (2001), 95–100.

E-mail address: tao woe@mail.nwpu.edu.cn

E-mail address: leiy@nwpu.edu.cn

E-mail address: Jiaoshi@nwpu.edu.cn

E-mail address: gong@ieee.org

http://www.ams.org/mathscinet-getitem?mr=MR1784937&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2680543&return=pdf
http://dx.doi.org/10.1137/070697835
http://dx.doi.org/10.1137/070697835
http://www.ams.org/mathscinet-getitem?mr=MR2483314&return=pdf
http://dx.doi.org/10.1109/TIP.2005.852206
http://dx.doi.org/10.1109/TIP.2005.852206
http://dx.doi.org/10.1109/ICIP.2010.5652280
http://dx.doi.org/10.1109/ICIP.2010.5652280
http://www.ams.org/mathscinet-getitem?mr=MR3230690&return=pdf
http://dx.doi.org/10.1109/CVPR.2011.5995484
http://dx.doi.org/10.1109/CVPR.2011.5995484
mailto:tao_woe@mail.nwpu.edu.cn
mailto:leiy@nwpu.edu.cn
mailto:Jiaoshi@nwpu.edu.cn
mailto:gong@ieee.org

	1. Introduction
	2. Related background and motivation
	2.1. Multiobjective optimization
	2.2. Motivation

	3. The proposed method
	3.1. Modified multiobjective Low-rank and sparse matrix decomposition
	3.2. Procedure of MOLRSMD based on MOEA/D

	4. Experimental study
	4.1. Experimental datasets and experimental setting
	4.2. Experimental results

	5. Conclusion
	REFERENCES

