
Big Data and Information Analytics doi:10.3934/bdia.2017005
c©American Institute of Mathematical Sciences
Volume 2, Number 1, January 2017 pp. 1–21

SELECTIVE FURTHER LEARNING OF HYBRID ENSEMBLE

FOR CLASS IMBALANCED INCREMENT LEARNING

Minlong Lin∗ and Ke Tang∗

School of Computer Science and Technology

University of Science and Technology of China

HeFei, AnHui 230027, China
Springfield, MO 65801-2604, USA

Abstract. Incremental learning has been investigated by many researchers.
However, only few works have considered the situation where class imbalance

occurs. In this paper, class imbalanced incremental learning was investigated

and an ensemble-based method, named Selective Further Learning (SFL) was
proposed. In SFL, a hybrid ensemble of Naive Bayes (NB) and Multilayer

Perceptrons (MLPs) were employed. For the ensemble of MLPs, parts of the

MLPs were selected to learning from the new data set. Negative Correlation
Learning (NCL) with Dynamic Sampling (DyS) for handling class imbalance

was used as the basic training method. Besides, as an additive model, Naive

Bayes was employed as an individual of the ensemble to learn the data sets
incrementally. A group of weights (with the number of the classes as the length)

are updated for every individual of the ensemble to indicate the confidence of

the individual learning about the classes. The ensemble combines all of the
individuals by weighted average according to the weights. Experiments on 3

synthetic data sets and 10 real world data sets showed that SFL was able to

handle class imbalance incremental learning and outperform a recently related
approach.

1. Introduction. Normal machine learning problems require learning model to
learn information from all the achieved data and all the data are stored. However, in
practice, the data are usually updated all the time and new information is necessary
to be learned from the new data [19]. It is usually time consuming to learn new
information with accessing to the previous data and storing the learned data is
also expensive. In this situation, the learning model is required to have the ability
of learning new information from new data and preserving the previously learned
information without accessing the previous data. This learning model is called
incremental learning [8],[21].

In incremental learning, the whole data set is not available in a lump. In another
word, we can only get a part of the whole data set every time. We suppose that
the whole data set S is divided into T subsets, i.e., S1, S2, , ST . The rules (e.g.,
classification boundaries in classification problems) of S and St are denoted as R
and Rt respectively. The aim of the learning model is to learn R by learning Rt

from St respectively. The main difficulty is that the previously learned rules may
be forgotten when the model learns new rules from new data subsets, especially

2010 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Incremental learning, class imbalance, Naive Bayes, Multilayer Per-

ceptrons, Dynamic Sampling.

1

http://dx.doi.org/10.3934/bdia.2017005


2 MINLONG LIN AND KE TANG

when the rules of different data subsets are different. This phenomenon was called
catastrophic forgetting. If R1 = R2 = ... = RT , the learning model can learn
R1 form S1 and R1 will not be forgotten when new data subsets are learned. In
this case, incremental learning is not real challenging. However, in practice, Rt are
usually different between different data subsets, so the catastrophic forgetting may
happen.

In our assumption, even though the rules are different between different data
subsets, the target rules (i.e., R) are not changed. This phenomenon was also called
virtual concept drift [28] and it is different from real concept drift, in which the
target concept is changed when new data subsets are available. Virtual concept
drift was called sampling shift in [22] and it will be referred to in this paper. There
are some additive models that can be easily adopted to learn incrementally when
sampling shift occurs. For example, in Bayes Decision Theory, the rules can be
represented by some parameters and the parameters of the whole data set can be
combined by those of all the data subsets. In this way, the models can learn the data
subsets respectively to form a same learner of learning the whole data set. However,
these kinds of methods often require assumptions about the data distribution and
the decision boundaries are always simple. Neural networks have strong abilities
to learn complex classification boundary. Unfortunately, they are not additive. By
training with new data subsets, the model tends to perform well on the new data
subsets but poorly on the previous ones [8]. In other words, the model forgets the
previously learned rules. Therefore, it is a challenge to employ neural networks to
learn incrementally in this situation.

To exploit neural networks for incremental learning, some ensemble based ap-
proaches have been proposed. In our previous work, i.e., Selective Negative Corre-
lation Learning (SNCL) [26], selective ensemble method was employed to pre-vent
the model from forgetting previously learned information. There are also other
ensemble based methods for incremental learning, such as Fixed Size Negative Cor-
relation Learning (FSNCL), Growing Negative Correlation Learning (GNCL) [15],
and Learn++ methods [21], [17], [5]. In SNCL and FSNCL (size-fixed methods),
the model was able to learn new information from new data subsets with the size of
the model fixed. How-ever, the ability of preserving previously learned information
was not as good as Learn++ methods and GNCL (size-grown methods), in which
the sizes of the models grown larger as new data subsets were learned. Since the
new data subsets always become available all the time in practice, the sizes of the
models will become too large in Learn++ methods and GNCL. Therefore, it is wor-
thy to design a method with the benefits of both size-fixed methods and size-grown
methods.

Besides sampling shift, there is another issue in incremental learning, i.e., class
imbalance. In normal learning model, class imbalance problem has been studied
by many researchers and there are plenty of literatures addressing class imbalance
problems [11], [4], [9]. Class imbalance problems may also occur in incremental
learning and this kind of issue has also been investigated [5], [6]. There are mainly
two cases for class imbalance incremental learning:
(1)If the class distribution of the whole data set S is imbalanced, the class distribu-
tion of data subset St will usually be imbalanced. Furthermore, it will be common
that samples of the minority classes may be lost in some data subsets.



SELECTIVE FURTHER LEARNING OF HYBRID ENSEMBLE 3

(2)Even though the class distribution of S is balanced, St may also be class im-
balanced. In typical case, all of the partial sets St are class imbalanced but the
combined data set S is class balanced.

In this paper, we focus on class imbalance cases, in which sampling shift also
occurs. Specifically, when sampling shift occurs, new classes may come up in the
new data subset and some previous classes may be lost in the new data subset.
When class distribution of the whole data set is imbalanced, this phenomenon will
be more likely to happen to the minority classes. This is also the main issue in this
paper.

The rest of the paper is organized as follows. In Section II, we will briefly
review some existing methods for incremental learning. Our methods, i.e., Selective
Further Learning (SFL) will be described in Section III. Then in Section IV, the
experimental studies will be presented. Finally, we will conclude this paper and
discuss the future work in Section V.

2. Related work. Some neural network based methods, such as the Adaptive
Resonance Theory modules map (ARTMAP) [3] , [23], [29], [2] and Evolving Fuzzy
Neural Network (EFuNN) [12] have been proposed for incremental learning. Both
ARTMAP and EFuNN can learn new rules by changing the architecture of the
models, such as self-organize new clusters (in ARTMAP) and create new neurons
(in EFuNN) when new data are sufficiently different from previous ones. However,
it is usually a non-trivial task to estimate the difference between new data and
previous ones. Moreover, both of them are very sensitive to the parameters of the
algorithms.

Researches have shown the good performance of ART-MAP and EFuNN in in-
cremental learning. However, their abili-ties of learning incrementally in class im-
balance situation have not been well investigated. In [5], where Learn++.UDNC
was proposed for class imbalance incremental learning, fuzzy ARTMAP [2] was
presented with poor performance when class imbalance occurs. Learn++.UDNC
is an ensemble based method. It is one of the Learn++ series methods [21], [20]
which were based on AdaBoost [7]. Besides Learn++.UDNC, many versions of
Learn++ methods have been proposed, such as Learn++.MT [16], Learn++.MT2
[16], Learn++.NC [18] and Learn++.SMOTE [6]. In these versions, Learn++.MT
and Learn++.NC was proposed for handling the problem of out-voting when learn-
ing new classes. Learn++.MT2 was pro-posed for handling the imbalance of ex-
amples between data subsets. These versions did not consider class imbalance sit-
uations. Class imbalance in incremental learning was addressed only in Learn++.
UDNC and Learn++.SMOTE. In Learn++.UDNC, it was assumed that no real
concept drift will happen, while in Learn++.SMOTE, real concept drift in class
imbalanced data was investigated. Therefore, the former matches the issue in this
paper but the later dose not.

Besides Learn++, another type of ensemble based methods, i.e., methods based
on Negative Correlation Learning (NCL) [14], have also been proposed for incre-
mental learning [26], [15]. NCL is a method to construct neural networks ensemble.
It is capable of improving the generalization performance of the ensemble by de-
creasing the error of every neural network and increasing the diversities between
neural networks simultaneously. In [15], tow NCL-based methods, i.e., FSNCL and
GNCL were proposed. In FSNCL, the size of the ensemble is fixed and all of the
neural networks are trained when new data subsets become available. In GNCL,
the size of the ensemble grows as the data sets are incrementally learned and only



4 MINLONG LIN AND KE TANG

new added neural networks are trained when new data subsets become available.
In our previous work [26], SNCL was proposed. In SNCL, new neural networks
are added and trained when new data subsets become available and then a pruning
method was employed to prune the ensemble to make the size of the ensemble fixed.
Comparing to Learn++ methods and GNCL, FSNCL and SNCL can make the size
of the ensemble fixed as more and more data sets come up while their abilities of
preserving previously learned information are poorer than Learn++ and GNCL.

There are also some other methods with ability of incremental learning. Self-
Organizing Neural Grove (SONG) [10] is an ensemble based method with Self-
Generating Neural Net-works (SGNNs) [27] as the individual learners. Incremental
Backpropagation Learning Networks (IBPLN) [8] employed neural networks for in-
cremental learning by making the weights of the neural network bounded and adding
new nodes. However, they did not consider the class imbalance in incremental learn-
ing.

Figure 1. The Pseudo-Code For SFL

3. Our method.

3.1. Framework. In this paper, class imbalance is considered in incremental learn-
ing. In the existing work, Learn++.UDNC [5] was pro-posed for addressing this



SELECTIVE FURTHER LEARNING OF HYBRID ENSEMBLE 5

issue and it has been shown more effective than other incremental learning meth-
ods which did not consider class imbalance situation. However, as a size-grown
method, the size of the ensemble in Learn++.UDNC increases all the way as new
data sets become available. The size of the ensemble may become too large. In our
method, ensemble based method is also considered and at the same time, we aim
at controlling the size of ensemble at an acceptable level.

In our previous work, i.e., SNCL [26], selective ensemble was used to keep the size
of the ensemble fixed. When new data subset comes up, it is used to train the copy of
the previous ensemble. The two ensembles are combined and half of the individuals
in the ensemble are pruned to keep the size of the ensemble fixed. However, in this
model, previous information loss may easily occur due to the pruning process based
on the latest data subset. The ensemble will be biased to the latest data subset.
Furthermore, if the rules of the latest data subset is quite different from that of the
previous data subset, i.e., high sampling shift occurs, all of the individuals of the
previous ensemble might be pruned. On the other hand, since SNCL was designed
without considering class imbalance situation, it might not be good at handling
class imbalance incremental problems.

To overcome the above drawbacks, we propose a new en-semble based approach
for incremental learning, i.e., Selective Further Learning (SFL). In SFL, a hybrid
ensemble with two kinds of base classifiers was used. First of all, a group of Multi-
Layer Perceptrons (MLPs) are used. When new data subsets become available,
half of the MLPs in the current ensemble are selected to be trained with the new
data subsets. After training, the selected MLPs are laid back to the ensemble. No
pruning process will be executed so that the risk of previous information forgetting
is reduced. At the same time, as an additive model, Naive Bayes (NB) is used as a
component of the ensemble to incrementally learn from new data subsets. In this
way, the strong incremental learning ability of NB will help the ensemble to preserve
the previous information if high sampling shift occurs.

In addition, a group of weights (namely impact weights) are constructed for
every individual (including MLPs and NB). The weights and the outputs of the ith
individual are denoted as {wik|k = 1, 2, ..., C} and {oikk = 1, 2, ..., C}, respectively,
where C is the number of the classes. The impact weight wik is designed to indicate
the confidence of the output produced by the ith individual on class k. At the testing
stage, for an example, the output of the ensemble is calculated by the weighted
average of all individuals:

yk =

M∑
i=1

wikoik/

M∑
i=1

wik, k = 1, 2, ..., C, (1)

where yk is the kth output of the ensemble and indicates the probability that the
example belonging to class k, M is the number of the individuals in the ensemble.
Equation (1) is used only at the testing stage. At the training stage, the output of
the ensemble is calculated by the arithmetical average of the individuals.
wik is initialized as 0 at the initial stage and updated during learning every new

data subset. When updating wik, two issues should be considered.
On one hand, the grade that the ith individual learn about the kth class is

considered, i.e., the recall of the ith individual on class k and the precision of the
ith individual on class k. wik should be high when both the recall and precision are
high. To this end, the definition of F-measure for multi-class [24] is introduced:



6 MINLONG LIN AND KE TANG

Fik =
2RikPik

Rik + Pik
(2)

where Fik, Rik and Pik is the F-measure, recall and the precision of the ith individual
on class k, respectively. According to [24], Rik and Pik are defined as

Rik =
N

(i)
kk∑C

m=1N
(i)
km

(3)

and

Pik =
N

(i)
kk∑C

m=1N
(i)
mk

(4)

where N
(i)
km is the number of the examples of class k that were classified as class m

by the ith individual.
On the other hand, since MLPs could be easily biased to the latest data subset,

if some classes in the previous data subsets do not come up in the new data subset,
the output of the MLPs that are selected to be trained with the new data subset
should be suspectable. Therefore, a coefficient µi is defined for every individual i
to degrade the impact weights:

µi =
nt

nc
, (5)

where nt is the number of classes that are contained in the new data subset, nc is
the number of classes in all the coming up data subsets.

By considering both of the above issues, wik is updated as:

wik = Fikµi. (6)

For the model of NB, µi always equals to 1 since NB will not be biased to the latest
data subset. For MLPs, µi is updated once the MLP is selected to be trained. For
the MLPs which were not selected to be trained and the model of NB, Nkm from
the new data subset can be accumulated to the previous one to update Rk and Pk

and then update wik. In this way, wik is updated not according to the current data
subsets only and it would be helpful for preserving previous information.

The pseudo-code for the approach is presented in Fig. 1. In the pseudo-code,
Select is the selecting process for selecting MLPs from the ensemble to be trained
with the new data sub-set, MLPs-Training and NB-Training were the training pro-
cess for training the MLPs and NB in the ensemble. The details of these processes
are described in the following subsection.

3.2. Some details inside SFL.

3.2.1. Selecting Process. The selecting process is based on the current data subset
St. The individuals are added to Enssel one by one by greedy strategy. Every time,
every MLP in Ensres is temporarily added to Enssel to estimate the performance
(i.e., the arithmetical mean F-measures of all classes) on the current data subset.
The MLPs in Enssel are tested one by one and the MLP that makes Enssel perform
the worst will be finally added to Enssel

If the current data subset does not contain some classes that have appeared
in the previous data subsets, the selection process should ensure that not all the
MLPs that have been trained with the data of the lost classes are added to Enssel.



SELECTIVE FURTHER LEARNING OF HYBRID ENSEMBLE 7

Therefore, when an MLP is added to Enssel, the following constraint should be
satisfied for the MLPs in Enssel:

Πk∈L(
∑
i

wik) 6= 0. (7)

where L = {k|“class k is not contained in St”}. If there is no MLP that can be
added to Enssel, a new initialized MLP will be generated and added to Enssel.

In this way, the MLPs that are not well trained are selected to be further trained.
Besides, the MLPs that are reserved in Ensres could preserve the previously learned
information.

3.2.2. Training the model of Naive Bayes. According to Bayes Decision Theory, the
probability of an testing example x = {xi|i = 1, 2, ..., d} belonging to class k is

P(k|x) =
P(x|k)P(k)

P(x)
=

P(x|k)P(k)∑C
k=1 P(x|k)P(k)

(8)

where P(kx) is the posterior probability of an examples x belonging to class k,
C is the number of classes and P(k) is the prior probabilities of class k. In class
imbalance situation, we assume that P(k) are equal for all of the classes. Besides,
all the features of the examples are assumed to be independent to each other.
Therefore, the probability of (8) becomes

P(k|x) =
Πd

i=1P(xi|k)∑C
k=1 Πd

i=1P(xi|k)
. (9)

In incremental learning mode, P(xi|k) is updated as every new data subset comes
up.P(xi|k) can be estimated in the form of n(xik)/n(k), where n(xik) is the number
of examples that belongs to class k and the value of its ith feature is xi, n(k) is the
number of examples that belongs to class k. Both n(xik) and n(k) can be estimated
in each data subset and then accumulated to estimate P(xi|k). In this way, NB can
learn from new data subsets without any loss of previous information.

The estimation of P(kx) in (9) requires the values of features to be discrete.
Specifically, for the features with continuous values, average partition is used to
discretize the features for calculating P(xi|k).

3.2.3. Training the ensemble of MLPs. We have proposed a Dynamic Sampling
(DyS) method for class imbalance problems [13], which can be used for training the
ensemble of MLPs. Similarly to the approach proposed in [13], the main process of
DyS for an ensemble is presented as follows (in one epoch):
step1. Randomly fetch an example x from the training set;
step2. Estimate the probability p that the example should be used for updating
the ensemble.
step3. Generate a uniform random real number µ between 0 and 1.
step4. If µ < p, then use x to update the ensemble using Negative Correlation
Learning (NCL) [23] to make every MLP negatively correlated to other individuals
(including the MLPs in Ensres and the model of NB).
step5. Repeat steps 1 to 3 until there is no example in the training set.

The above steps will be repeated until stop criterion is satisfied. The following
shows the method for estimating p, which was the main issue in DyS.

In a problem with nc classes, we set nc output nodes for all of the MLPs and
for an example belonging to class k, we set the target output of the example as
t = {ti|tk = 1, t(j|6=k) = 0}. The real output of the example is denoted as y =



8 MINLONG LIN AND KE TANG

{yi|i = 1, 2, ..., nc}, so the node with the highest output designates the class. Both
the hidden node functions and the output node functions of all MLPs are set as the
logistic function ϕ(x) = 1/(1 + e−x), so that yi ∈ (0, 1).

The same to [13], the probability that an example belonging to class k will be
used to update the ensemble is estimated as:

p=

{
1, if δ < 0,

e
−δrk

mini{ri} , otherwise
(10)

where δ = yk − maxi 6=k{yi} is the confidence of the current ensemble correctly
classifying the example. For more details of DyS, please refer to [13].

By employing DyS, the MLPs in the ensemble are able to accommodate to class
imbalance situations.

3.3. The reason for the success of SFL. In general, there are several essentials
inside SFL that would make SFL successful, including the selective training of
MLPs, the use of NB, the setting of impact weights for comb-ing the individuals in
the ensemble, and the consideration of class imbalance in training process.

To analyze the reason for the success of SFL, two especial cases in incremental
learning are considered, i.e., new classes in the new data subsets and the loss of
previous classes in the new data subsets. The ensemble are divided into three parts:
MLPa,MLPb and NB, where MLPa is the MLPs that are selected for learning the
new data subset and MLPb is the rest MLPs.

After learning a new data subset which contains new classes, MLPa and NB have
learnt the new classes while MLPb have not. In SFL, the impact weights for MLPb

is updated by accumulating the performance of MLPb on previous data subsets and
the current data subset. The examples of the new classes will be misclassified as
other classes by MLPb. This will cause the degradation of precision of MLPb on
those classes and finally degrade the impact weights of MLPb on those classes. In
this way, the wrong prediction of MLPb on a testing example of new classes would
impact less on the prediction of the whole ensemble. Therefore, MLPa and NB
which have learnt the new classes will play a leading role in the ensemble when
predicting the examples of new classes.

After learning a new data subset which loses some previous classes, MLPa will
be biased to the classes that are contained in the current data subset. However,
the impact weights of MLPa will be degraded by a coefficient according to (5).
Therefore, NB and the MLPs which is recently trained with the new classes will
play a leading role in the ensemble when making the prediction.

Besides, as we discuss before, NB is able to learn incrementally without forget-
ting previous information. The use of NB will help to prevent the ensemble from
catastrophic forgetting. Furthermore, in the training of NB and MLPs, the situ-
ation of class imbalance is considered. Therefore, SFL is able to deal with class
imbalance in the new data subsets.

4. Experimental study. To assess the performance of SFL, some synthetic data
sets and real-world data sets were used to conduct the experiments. First of all,
three types of synthetic data sets were generated to simulate the incremental learn-
ing process. Then, 5 real-world data sets with imbalanced class distributions from
UCI repository [1] were used to simulate incremental learn-ing by randomly dividing
the data sets. Finally, another 5 real-world data sets from UCI repository, including
3 class imbalanced data sets and 2 class balanced data sets, were used to simulate



SELECTIVE FURTHER LEARNING OF HYBRID ENSEMBLE 9

the incremental learning process by dividing the data sets. In this part, the divid-
ing of the data sets considered new classes and the loss of previous classes in the
new data subsets. The purpose of this part of experiment is to assess the ability
of SFL learning form new classes and preserving previous in-formation when some
classes are lost in the new data subsets. As a recently proposed approach which
also addressed for class imbalanced incremental learning, Learn++.UDNC [5] was
used for the comparison. Besides, in order to find out the efficiency of MLPs and
NB to SFL, the model of ensembles with only MLPs (referred as SFL.MLP) and
the model of NB are also compared with SFL. The recall of every class and the
arithmetic mean values over recalls of all classes are used as the metric.

Figure 2. This is Table 1

4.1. Experiments on synthetic data sets. The synthetic data were generated
as follows. Data of four 2-dimensional Normal Distributions were generated for four
classes. The means were µ1 = (0, 0), µ2 = (0, 1), µ3 = (1, 1)andµ4 = (1, 0), the two
features are independent with variances σ1 = σ2 = σ3 = σ4 = 0.2. Three types
of synthetic data sets were generated. TABLE I presents the class distributions
of every data subset for the three types. In Type A, there are three majority
classes (class 1 to 3) and one minority class (class 4). Class 4 comes up as a new
class in S2. Class 1 to 3 appears to be another minority class in training subsets
S3 to S5, respectively. This experiment was conducted to see the performance of
SFL on problems with multi majority classes (which appear to be minority classes
sometimes) and single minority class (also comes up as new class). In Type B, there
are one majority class and three minority classes. Class 2 comes up at the beginning
but is lost in the last two training subsets. Class 3 comes up as a new class in S2

and is lost in the last training subset. Class 4 comes up as a new class in S3. This
experiment was conducted to see the performance of SFL on problems with single
majority class and multi minority classes, some of which come up as new classes
and are lost in some data subsets. In Type C, the class distribution of the whole
training set (i.e., the union of all the training subsets) is balanced. However, the
training subsets are class imbalanced and every training subset contains only two
classes. This experiment was conducted to see the performance of SFL on problems
whose class distributions are balanced in total but imbalanced in data subsets. The
distributions are quite different between the data subsets in all the three types.

10 MLPs with 20 hidden nodes of every MLP was used in SFL and SFL.MLP.
The training stop error was 0.05 and the coefficient of the penalty term of NCL
(referred as λ) was 0.5. The data sets were generated 30 times independently,
and the means and standard deviations over 30 executions of the three types of
data sets are presented in TABLE II, TABLE III and TABLE IV, respectively.



10 MINLONG LIN AND KE TANG

Figure 3. This is table2

Figure 4. This is table3

Wilcoxon signed-rank test with the level of significance α = 0.05 was employed for
the comparison between SFL and other methods. In the results of other methods,
the values with underline (or bold) denote that SFL performed significantly better
(or worse) than them on those values and the values with normal type denote that
there are no significant differences. The results on Type A data set are presented in
TABLE II. Comparing to Learn++.UDNC, SFL gets better overall recalls (i.e., the
average of the recalls of all classes). The recalls of SFL on class 1 to class 3, which are



SELECTIVE FURTHER LEARNING OF HYBRID ENSEMBLE 11

Figure 5. This is table4

Figure 6. This is table5

majority classes, are not as good as Learn++.UDNC. However, Learn++.UDNC
is biased too much to the majority classes and performs very poor on the only
minority class while SFL performs more balanced over all the classes. Therefore,
SFL outperforms Learn++.UDNC in this data set. Comparing to SFL.MLP and
NB, there is few statistical difference on average recalls, especially after training
with S3, S4 and S5. After training with S2, where class 4 comes up as a new class,
SFL learns better of class 4 than SFL.MLP and as good as NB. At the same time,
SFL does not degrade as much performance on class 1 as NB does. Although SFL
degrades more performance on class 1 and class 3 than SFL.MLP, it performs better
than SFL.MLP on class 2. Therefore, after training with S2, SFL performs better
than both SFL.MLP and NB on the average recall. This observation indicates that
SFL is capable of combining the advantages of both MLPs and NB to make a better
model.

The results on Type B data set are presented in TABLE III. When comparing
to Learn++.UDNC, the similar observations can be made and we can also con-
clude that SFL outperforms Learn++.UDNC in this data set. When comparing to
SFL.MLP and NB, some values of SFL are between the values of SFL.MLP and NB
(always closer to the larger ones), some values of SFL are significantly larger than
both SFL.MLP and NB. Observing the results on Type C data set in TABLE IV,



12 MINLONG LIN AND KE TANG

Figure 7. This is table6

the similar observations can be made. All these results show that SFL outperforms
Learn++.UDNC and is capable of combining the advantages of both MLPs and NB
to make a better model.

4.2. Experiments on real-world data sets. The experiments on real-world data
sets include three parts. First of all, 5 class imbalanced data sets were divided
randomly to simulate the incremental learning process. Secondly, 3 class imbalanced
data sets were divided with considering new classes and the loss of classes in the
new data subsets. Finally, 2 class balanced data sets were divided into some class
imbalanced subsets to simulate the incremental learning process. The situations of
new classes and the loss of classes in the new data subsets were also considered.

The class distributions of the 5 class imbalanced data sets that were randomly
divided are presented in TABLE V. Each one of these data sets was firstly stratified
divided into training set (80%) and testing set (20%) and then the training set was
randomly divided into 5 training subsets. The other real-world data sets, including
3 class imbalanced data sets and 2 class balanced data sets were divided according
to predefined data distributions. The data distributions of all training subsets and
testing sets were presented in TABLE VI. It can be observed from TABLE VI that
for all the data sets, the data distributions between different training subsets are
quite different and the situations of new classes and the loss of classes in the new
data subsets occur in some training subsets.

For all the data sets, 10 MLPs with 20 hidden nodes of every MLP was used in
SFL and the coefficient λ of NCL was 0.5. An independent execution was imple-
mented for every data set to set the stop criterion for training MLPs to ensure the
convergence of the training process. All the data sets were divided 30 times inde-
pendently and for every time, all the comparing methods were executed once. The
means and standard deviations of the overall recalls after every coming up of data
subset over 30 executions of all the real-world data sets are presented in TABLE
VII. Wilcoxon signed-rank test with the level of significance α = 0.05 was employed



SELECTIVE FURTHER LEARNING OF HYBRID ENSEMBLE 13

Figure 8. This is table7

for the comparison between SFL and other methods. In the results of other meth-
ods, the values with underline (or bold) denote that SFL performed significantly
better (or worse) than them on those values and the values with normal type denote
that there are no significant differences.

It can be observed form TABLE VII that SFL can outperform Learn++.UDNC
on most of the data sets, including Soybean, Splice, Thyroid-allrep, Car, Nursery,
Optdigits and Vehicle. On the other data sets, SFL also does not perform sig-
nificantly worse than Learn++.UDNC. When comparing with SFL.MLP and NB,
the performance of SFL usually leans to the better one of SFL.MLP and NB and
sometimes SFL outperforms both of them, such as the performance on Soybean,
Nursery, Optdigits and Vehicle. These observations go a step further to support



14 MINLONG LIN AND KE TANG

Figure 9. This is table8

Figure 10. This is table9

that SFL is capable of combing the advantages of both MLPs and NB to make a
better model.

On Car, Nursery, Page-blocks, Optdigits and Vehicle, the data sets were divided
according the distribution presented in TABLE VI, where coming up new classes or
losing previous classes usually occurs in the new data subsets. It will be worthy to



SELECTIVE FURTHER LEARNING OF HYBRID ENSEMBLE 15

Figure 11. This is table10

see the detailed results of each class on these data sets. Therefore, the detailed re-
sults on two of them, i.e., Nursery (class imbalanced) and Optdigits (class balanced)
were further presented.

The means and standard deviations over 30 executions of Nursery are presented
in TABLE VIII. Wilcoxon signed-rank test with the level of significance α = 0.05
was employed for the comparison between SFL and other methods. In the results
of other methods, the values with underline (or bold) denote that SFL performed
significantly better (or worse) than them on those values and the values with normal
type denote that there are no significant differences. It can be observed from TABLE
VIII that, the performance of Learn++.UDNC on class 3 is much worse than that
of SFL. Class 3 is a minority class. It comes up in S2 as a new class and is lost
in S4. The observations indicate that SFL could handle this kind of problems. To
see the effect of MLPs and NB in SFL, we pay more attentions to the comparison
to SFL.MLP and NB. It can be observed that, MLPs could learn better than NB
if there is not any class loss. However, when class 3 is lost in S4, MLPs degrades
much more recall on class 3 than NB. As the combination of MLPs and NB, SFL
does not degrade too much recall on class 3 and at the same time, SFL learns better
than NB on other classes, which leads to the better overall recalls. Therefore, in
this data set, MLPs help SFL to learn better and NB helps SFL to preserve the
previously learned information especially when class loss occurs.

The means and standard deviations over 30 executions of Optdigits are presented
in TABLE IX. Wilcoxon signed-rank test with the level of significance α = 0.05
was employed for the comparison between SFL and other methods. In the results
of other methods, the values with underline (or bold) denote that SFL performed
significantly better (or worse) than them on those values and the values with normal
type denote that there are no significant differences. In S2, class 4 first comes up
as a minority class, class 8 first comes up as a majority class, class 1, class 6 and
class 10 are lost. After learning from S2, the recall of class 4 of SFL is larger than
those of Learn++.UDNC and NB, but not as large as SFL.MLP; the recall of class
8 of SFL is the best of all others. At the same time, the degradation of class 1,
class 6 and class 10 of SFL is much less than Learn++.UDNC and SFL.MLP and a
bit more than NB. This observation indicates SFL can learn new classes with little
performance degradation of other lost classes. Even though SFL.MLP can perform



16 MINLONG LIN AND KE TANG

Figure 12. This is table11



SELECTIVE FURTHER LEARNING OF HYBRID ENSEMBLE 17

Figure 13. This is table12



18 MINLONG LIN AND KE TANG

better on class 2 and class 4 when they first come up, it degrades much more on
other classes. Therefore, it is not surprising that SFL gets the best overall recalls.

The experimental results indicate that the performance of Learn++.UDNC usu-
ally leans to majority classes. Even though it sometimes performs better on minority
classes, the performance on other classes are usually degraded too much. On con-
trary, SFL can usually get more balanced performance on different classes and get
better overall performance. This is because of the different processing methods of
SFL and Learn++.UDNC for handling class imbalance problems. In SFL, class
imbalance is considered when training the model. The method for training MLPs
has been shown to be effective for class imbalance problems. In Learn++.UDNC,
the training process did not consider class imbalance and a transfer function with
consideration of class imbalance was applied to the outputs. The effectiveness of the
method has not been well proved. Even in the results presented in [5], the perfor-
mance on minority classes was much worse than that of majority classes. Therefore,
it is not surprising that SFL can outperform Learn++.UDNC on most of the data
sets.

4.3. Computational time. The computational time of SFL and Learn++.UDNC
on all the data sets is presented in TABLE X. It can be observed from TABLE
X that SFL usually takes less computational time than Learn++.UDNC. In the
experiments, the structures of MLPs were the same for SFL and Learn++.UDNC
and the stop criterion were also the same. However, more MLPs were trained
for Learn++.UDNC for every new data subset. On the other hand, the training
process of SFL usually meet the stop criterion earlier than that of Learn++.UDNC.
Therefore, SFL is usually faster than Learn++.UDNC.

4.4. Analyses about the components of SFL. In SFL, two kinds of base clas-
sifiers, i.e., MLPs and NB, are employed to construct the ensemble. The results
have shown that SFL is capable of outperforming the models with only MLPs and
the models with only NB. To find out the reason, the differences of SFL and its
components (MLPs and NB) and the influences of the differences are investigated
in detail.

After every data subset is learned, four numbers are estimated on testing data
set: the number of the examples that are correctly classified by only MLPs(#1) or
NB (#2), the number of the examples that are correctly classified by only MLPs or
NB and correctly classified by SFL (#3). Then four ratios are estimated:

ρ1 = (#1 + #2)/#t

ρ2 = #1/(#1 + #2)

ρ3 = #2/(#1 + #2)

ρ4 = #3/(#1 + #2)

(11)

where #t is the number of examples in testing data set. The ratios are estimated for
all the data sets and the average values over 30 executions are presented in TABLE
XI. ρ1 indecates the diversity (on making correct classification decisions) between
MLPs and NB. ρ4 indecates the benefits that SFL gets from the difference between
MLPs and NB. It can be observed from TABLE XI that the values of ρ4 are always
closer to the larger one of rho2 and rho3 and sometimes exceed both of them. The
observations partially show the reason that SFL always performs toward the better
one of MLPs and NB and sometimes exceeds both of them.



SELECTIVE FURTHER LEARNING OF HYBRID ENSEMBLE 19

4.5. Analyses of parameters. There are some parameters in SFL, including the
number of MLPs, the number of hidden nodes in every MLP, the stop criterion for
training MLPs and the coefficient λ in NCL. In our experimental studies, the number
of MLPs and the number of hidden nodes in every MLP were set by experience. An
independent execution was implemented for every data set to set the stop criterion
to ensure the convergence of the training process. The coefficient λ in NCL is a
parameter for controlling the diversities between the individuals in the ensemble
(larger λ will lead to larger diversities). In the study of NCL[14], λ was suggested
to be between 0 and 1. In our experimental studies, it was set to 0.5 for all the data
sets. Since diversity is a very important issue for the success of ensemble learning
methods [25], it is worthy to see the difference performance of SFL with different
λ.

Extra executions of SFL with λ = 0, 0.25, 0.75 and 1 were conducted for all
the used data sets. Wilcoxon signed-rank test with the level of significance α =
0.05 was employed for comparing the overall recalls after training with each data
subset. The results of every setting of λ were compared with the results of the other
four settings of λ and the number of windraw-lose was counted and presented in
TABLE XII. It can be observed from TABLE XII that λ affects the performance
on most data sets. On some data sets, we can also observe the trend that the
performance becomes better as λ decreases, such as Synthetic Type A, Synthetic
Type B, Nursery, Page-blocks, Optdigits and Vehicle. In SFL, λ is not the only
factor for encourage diversities. On one hand, the model built by NB may be quite
different from the MLPs. On the other hand, in incremental learning, different
MLPs may be trained with different data subsets, which will also result in diversities,
especially when the data subsets are quite different. Therefore,large λ (such as 1)
may emphasize too much to produce diversities so that the performance may be
degraded.

5. Conclusions and future work. This paper investigates incremental learning
in class imbalance situation. An ensemble-based method, i.e., SFL, which is a hybrid
of MLPs and NB, was proposed. A group of impact weights (with the number of
the classes as the length) was updated for every individual of the ensemble to
indicate the confidence of the individual learning about the classes. The weights
affect the outputs of the ensemble by weighted aver-age of all individuals outputs.
The training of MLPs and NB considered class imbalance so that the ensemble can
adapt the situation of class imbalance.

The experimental studies on 3 synthetic data sets and 10 real-world data sets
have shown that the performance of SFL was better than that of a recently proposed
approach for class imbalance incremental learning, i.e. Learn++.UDNC[9]. The
experimental results have also shown that SFL can combine the advantages of both
MLPs and NB to make a better model.

SFL has successfully combined MLPs and NB. The experimental studies have
shown that combining additive models can make progress in incremental learning.
However, this is just an ordinary trial. Other additive models, such as parame-ter
estimation model might also help to improve SFL. This would be a direction of our
future work.

REFERENCES

[1] A. Asuncion and D. Newman, Uci machine learning repository, 2007.



20 MINLONG LIN AND KE TANG

[2] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds and D. B. Rosen, Fuzzy artmap:
A neural network architecture for incremental supervised learning of analog multidimensional

maps, IEEE Transactions on Neural Networks, 3 (1992), 698–713.

[3] G. A. Carpenter, S. Grossberg and J. H. Reynolds, ARTMAP: Supervised Real-Time Learn-
ing and Classification of Nonstationary Data by a Self-Organizing Neural Network , Elsevier

Science Ltd., 1991.
[4] N. V. Chawla, N. Japkowicz and A. Kotcz, Editorial: Special issue on learning from imbal-

anced data sets, Acm Sigkdd Explorations Newsletter, 6 (2004), 1–6.

[5] G. Ditzler, M. D. Muhlbaier and R. Polikar, Incremental learning of new classes in unbal-
anced datasets: Learn?+?+?.UDNC, International Workshop on Multiple Classifier Systems,

Multiple Classifier Systems, (2010), 33–42.

[6] G. Ditzler, R. Polikar and N. Chawla, An incremental learning algorithm for non-stationary
environments and class imbalance, In International Conference on Pattern Recognition,

(2010), 2997–3000.

[7] Y. Freund and R. E. Schapire, A short introduction to boosting, Journal of Japanese Society
for Artificial Intelligence, 14 (1999), 771–780.

[8] L. Fu, H.-H. Hsu and J. C. Principe, Incremental backpropagation learning networks, IEEE

Transactions on Neural Networks, 7 (1996), 757–761.
[9] H. He and E. A. Garcia, Learning from imbalanced data, IEEE Transactions on Knowledge

and Data Engineering, 21 (2009), 1263–1284.
[10] H. Inoue and H. Narihisa, Self-organizing neural grove and its applications, In IEEE Inter-

national Joint Conference on Neural Networks, 2 (2005), 1205–1210.

[11] N. Japkowicz and S. Stephen, The Class Imbalance Problem: A Systematic Study, IOS Press,
2002.

[12] N. Kasabov, Evolving fuzzy neural networks for supervised/unsupervised online knowledge-

based learning, IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A
Publication of the IEEE Systems Man & Cybernetics Society, 31 (2001), 902–918.

[13] M. Lin, K. Tang and X. Yao, Dynamic sampling approach to training neural networks for

multiclass imbalance classification, IEEE Transactions on Neural Networks and Learning
Systems, 24 (2013), 647–660.

[14] Y. Liu and X. Yao, Simultaneous training of negatively correlated neural networks in an en-

semble, IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication
of the IEEE Systems Man & Cybernetics Society, 29 (1999), 716–725.

[15] F. L. Minku, H. Inoue and X. Yao, Negative correlation in incremental learning, Natural
Computing, 8 (2009), 289–320.

[16] M. Muhlbaier, A. Topalis and R. Polikar, Incremental learning from unbalanced data, In

Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, IEEE,
2 (2004), 1057–1062.

[17] M. Muhlbaier, A. Topalis and R. Polikar, Learn++.mt: A new approach to incremental
learning, Lecture Notes in Computer Science, 3077 (2004), 52–61.

[18] M. D. Muhlbaier, A. Topalis and R. Polikar, Learn ++.nc: combining ensemble of classifiers

with dynamically weighted consult-and-vote for efficient incremental learning of new classes,

IEEE Transactions on Neural Networks, 20 (2009), p152.
[19] S Ozawa, S. Pang and N. Kasabov, Incremental learning of chunk data for online pattern

classification systems, IEEE Trans Neural Netw , 19 (2008), 1061–1074.
[20] R. Polikar, J. Byorick, S. Krause and A. Marino, Learn++: A classifier independent incre-

mental learning algorithm for supervised neural networks, In International Joint Conference

on Neural Networks, (2002), 1742–1747.

[21] R. Polikar, L. Upda, S. S. Upda and V. Honavar, Learn++: an incremental learning algorithm
for supervised neural networks, IEEE Transactions on Systems Man & Cybernetics Part C ,

31 (2001), 497–508.
[22] M. Salganicoff, Tolerating concept and sampling shift in lazy learning using prediction error

context switching, Artificial Intelligence Review , 11 (1997), 133–155.

[23] M. C. Su, J. Lee and K. L. Hsieh, A new artmap-based neural network for incremental
learning, Neurocomputing, 69 (2006), 2284–2300.

[24] Y. Sun, M. S. Kamel and Y. Wang, Boosting for learning multiple classes with imbalanced

class distribution, In Data Mining, 2006. ICDM’06. Sixth International Conference on, IEEE,
(2006), 592–602.

http://dx.doi.org/10.1109/72.159059
http://dx.doi.org/10.1109/72.159059
http://dx.doi.org/10.1109/72.159059
http://dx.doi.org/10.1109/ICNN.1991.163370
http://dx.doi.org/10.1109/ICNN.1991.163370
http://dx.doi.org/10.1007/978-3-642-12127-2_4
http://dx.doi.org/10.1007/978-3-642-12127-2_4
http://dx.doi.org/10.1109/ICPR.2010.734
http://dx.doi.org/10.1109/ICPR.2010.734
http://dx.doi.org/10.1109/IJCNN.2005.1556025
http://dx.doi.org/10.1109/3477.969494
http://dx.doi.org/10.1109/3477.969494
http://www.ams.org/mathscinet-getitem?mr=MR2505752&return=pdf
http://dx.doi.org/10.1007/s11047-007-9063-7
http://dx.doi.org/10.1109/IJCNN.2004.1380080
http://dx.doi.org/10.1007/978-3-540-25966-4_5
http://dx.doi.org/10.1007/978-3-540-25966-4_5
http://dx.doi.org/10.1109/TNN.2007.2000059
http://dx.doi.org/10.1109/TNN.2007.2000059
http://dx.doi.org/10.1109/IJCNN.2002.1007781
http://dx.doi.org/10.1109/IJCNN.2002.1007781
http://dx.doi.org/10.1109/5326.983933
http://dx.doi.org/10.1109/5326.983933
http://dx.doi.org/10.1007/978-94-017-2053-3_5
http://dx.doi.org/10.1007/978-94-017-2053-3_5
http://dx.doi.org/10.1016/j.neucom.2005.06.020
http://dx.doi.org/10.1016/j.neucom.2005.06.020
http://dx.doi.org/10.1109/ICDM.2006.29
http://dx.doi.org/10.1109/ICDM.2006.29


SELECTIVE FURTHER LEARNING OF HYBRID ENSEMBLE 21

[25] E. K. Tang, P. N. Suganthan and X. Yao, An analysis of diversity measures, Machine Learn-
ing, 65 (2006), 247–271.

[26] K. Tang, M. Lin, F. L. Minku and X. Yao, Selective negative correlation learning approach

to incremental learning, Neurocomputing, 72 (2009), 2796–2805.
[27] W. X. Wen, H. Liu and A. Jennings, Self-generating neural networks, In International Joint

Conference on Neural Networks, 4 (2002), 850–855.
[28] G. Widmer and M. Kubat, Effective learning in dynamic environments by explicit context

tracking, In Machine learning: ECML-93 , Springer, 667 (1993), 227–243.

[29] J. R. Williamson, Gaussian artmap: A neural network for fast incremental learning of noisy
multidimensional maps, Neural Networks, 9 (1996), 881–897.

E-mail address: sunnyboy@mail.ustc.edu.cn

E-mail address: ketang@ustc.edu.cn

http://dx.doi.org/10.1007/s10994-006-9449-2
http://dx.doi.org/10.1016/j.neucom.2008.09.022
http://dx.doi.org/10.1016/j.neucom.2008.09.022
http://dx.doi.org/10.1007/3-540-56602-3_139
http://dx.doi.org/10.1007/3-540-56602-3_139
http://dx.doi.org/10.1016/0893-6080(95)00115-8
http://dx.doi.org/10.1016/0893-6080(95)00115-8
mailto:sunnyboy@mail.ustc.edu.cn
mailto:ketang@ustc.edu.cn

	1. Introduction
	2. Related work
	3. Our method
	3.1. Framework
	3.2. Some details inside SFL
	3.3. The reason for the success of SFL

	4. Experimental study
	4.1. Experiments on synthetic data sets
	4.2. Experiments on real-world data sets
	4.3. Computational time
	4.4. Analyses about the components of SFL
	4.5. Analyses of parameters

	5. Conclusions and future work
	REFERENCES

