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Abstract: Allergic responses are defined by hypersensitive reactions against foreign antigens that
activate immune cell interactions, leading B lymphocytes to produce IgE. This results in tissue mast
cells and circulating basophil cells releasing leukotrienes and histamine, which causes an early
inflammatory response; in the late phase, immune cells release chemokines and cytokines. Ferroptosis
is an iron-dependently regulated cell death process in which excessive production of reactive oxygen
species (ROS) causes massive lipid peroxidation—-mediated membrane damage. Allergens, IgE
regulation, inflammatory cytokines, and lipid metabolism from an allergic response can induce
ferroptosis, which can then enhance the allergic response. This review summarizes the mechanism of
ferroptosis and its key regulators. We particularly focus on the potential roles of allergen triggers, IgE
regulation, inflammatory cytokines, and lipid metabolism in ferroptosis. We also describe recent
research progress regarding ferroptosis in allergic asthma, allergic rhinitis, and allergic dermatitis.
Further research on the process of ferroptosis in allergic responses and diseases can aid potential novel
therapeutic tools.
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1. Introduction

The term “allergy” was introduced by Dr. Clemens von Pirquet, an Austrian pediatrician, in a
paper published in the Journal Minchener Medizinische Wochenschrift in 1906 [1]. It originally
described a change in the reactivity of the organism regarding time, quality, and quantity. Today, the
term allergy defines specific reactions of immunologic hypersensitivity against harmless foreign
allergens. Common human allergens include house dust mites, nuts, pollens, and fungal spores, among
others. The immune system of allergic individuals identifies these allergens as a threat and produces
an allergic response. Such response is distinguished into two phases. The sensitization phase begins
when antigen-presenting cells display allergen fragments to T lymphocytes. In a process that involves
the secretion of cytokine IL-4 by T lymphocytes, B lymphocytes are activated and matured into plasma
cells that produce allergen-specific IgE antibodies through immunoglobulin class switching
recombination [2]. IgE antibodies then bind to receptors on tissue mast cells and circulating basophils,
which activates enzyme cascades in the cell membrane involving protein kinase C, tyrosine kinase,
phospholipase A2, phospholipase C, and an influx of calcium ions. This leads to the release of
histamine, leukotrienes, and prostaglandins in the early-phase response. The late-phase allergic
response is characterized by the migration of inflammatory cells from circulation. Recruitment effector
cells are T2 lymphocytes, eosinophils, and basophils, which release inflammatory cytokines and
chemokines. Allergic responses can result in relatively minor syndromes such as localized itching but
can also be potentially fatal in more severe cases, such as anaphylaxis, a condition leading to upper
respiratory obstruction and collapse [3].

Programmed cell death includes apoptosis, necroptosis, pyroptosis, and ferroptosis. It is
controlled by a variety of extracellular and intracellular signals. The programmed cell death maintains
tissue homeostasis and regulates the number of cells in multicellular organisms. Specific caspases
mediate apoptosis, which is tightly regulated by several executioner and regulatory molecules,
resulting in the condensation of chromatin, fragmentation of DNA, cell shrinkage, dynamic membrane
blebbing, and loss of adhesion to extracellular matrices. Necroptosis is a form of regulated necrotic
cell death mediated by the receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting
protein kinase 3 (RIPK3). Pyroptosis is a programmed cell necrosis mediated by the gasdermin protein
family, in which the N terminals of proteins are cleaved and form pores on the cell membrane, causing
cell death. Apoptosis, necroptosis, and pyroptosis have been reported to be involved with allergic
diseases [4-6]; their mechanisms regarding allergic diseases have been reviewed extensively
elsewhere.

Ferroptosis is another programmed cell death process, defined by an interaction between iron,
oxygen, and oxidizable phospholipids. Ferroptosis is uniquely characterized by an accumulation of
phospholipid peroxides [7]. Ferrous iron mediates the Fenton reaction and contributes to the generation
of reactive oxygen species (ROS) [8]. Excessive oxygen radicals can further cause an accumulation of
lipid peroxidation products, including PL-hydroperoxide (PLOOH), malonaldehyde (MDA), and 4-
hydroxynonenal (4-HNE) [9]. Lipid peroxidation leads to the rupture of the plasma membrane, causing
cell death. Recent research has shown that ferroptosis is involved in many diseases, from cancers to
autoimmune diseases [10]. The relationship between ferroptosis and allergy has been less discussed.
Allergic disorders, such as allergic asthma, allergic rhinitis, and allergic dermatitis, are mediated by
oxidative stress. Excessive exposure to ROS is the hallmark of oxidative stress, leading to damage to
proteins, lipids, and DNA. Oxidative stress occurs not only as a result of inflammation but also from
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environmental exposure to air pollution and cigarette smoke [11]. In this review, we briefly introduce
the molecular mechanisms of ferroptosis and some key regulators in the process. We focus on how the
allergic response may lead to ferroptosis in cells, particularly for allergen triggers, IgE regulation,
inflammatory cytokines, and lipid metabolism. We will then update the current research on ferroptosis
in the contexts of allergic asthma, allergic rhinitis, and allergic dermatitis. Finally, we will briefly
discuss future research on ferroptosis in allergic response and allergic diseases.

2. Mechanism of ferroptosis and key regulators

Landmark studies in the 1950’s have established that cystines are required for the survival and
proliferation of mammalian cells grown in culture conditions [12]. Afterward, it was found that the
death of mammalian cells deprived of extracellular cystine coincided with the loss of intracellular
glutathione (GSH) [10,13]. GSH peroxidase 4 (GPX4) can efficiently reduce lipid hydroperoxides to
lipid alcohols in the lipid bilayer [14]. In 2012, the term “ferroptosis” was coined to describe a form
of non-apoptotic cell death driven by iron-dependent lipid peroxidation [15]. Ferroptosis lacks the
characteristic biochemical and genetic executioners of apoptosis but also plays a role in cellular
development [16]. Ferroptosis has emerged as an important mechanism in many physiological and
pathological processes in cells, leading to significant therapeutic advancements for many diseases.

Ferroptosis occurs through regulations in three key components. These include iron regulation,
ROS generation, and lipid peroxidation [17]. This is an iron-dependent form of cell death with iron
overload as the hallmark of cell death [18]. Iron participates in oxygen transport, ATP generation, and
DNA biosynthesis to maintain cellular homeostasis [19]. Excessive ROS causes increased lipid
peroxidation. When excessive ROS cannot be neutralized efficiently, it accumulates and disrupts
plasma membrane integrity, and cells succumb to death [20]. The detailed mechanisms of ferroptosis
have been discussed elsewhere [10,21], and many proteins and molecules have been reported to be
able to regulate the three components above, promoting or inhibiting ferroptosis. Some key regulators
are discussed below.

2.1. Iron regulation

Iron metabolism is regulated at both the systemic and cellular levels. The efflux of iron from
duodenal enterocytes and macrophages is regulated by the liver peptide hormone hepcidin, which
induces the degradation of the iron exporter ferroportin (FPN) [10]. Iron is a powerful immune system
modulator. Excess iron causes a hyperactive immune system, which can attack undigested food peptides.
Chemicals released during these intense allergic reactions can damage surrounding tissues [22].

If the capacity of transferrin to bind iron is exceeded, a potentially toxic form of iron will appear,
namely non-transferrin-bound iron (NTBI). NTBI is taken up in an uncontrolled manner via NTBI
importers such as ZIP14 and CD44. Iron uptake enlarges the iron pool. Through the generation of
hydroxyl or hydroperoxyl by the Fenton reaction, free and redox-active iron can trigger lipid
peroxidation to cause ferroptosis. Iron is imported by extracellular transferrin that binds to the
transferrin receptor (TFR) on the cell membrane and is exported by ferroprotein [23]. The regulation
of iron abundance through the action of the iron-storage protein ferritin (via ferritinophagy) dictates
the sensitivity to ferroptosis [24,25]. Ferroptosis can be induced by TFR1 and nuclear receptor
coactivator 4 (NCOA4), which is a selective cargo receptor that mediates the autophagic degradation
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of ferritin, the cytosolic iron storage complex, in ferritinophagy [26]. Heme oxygenase 1 (HMOX1),
also called heat shock protein 32, is ubiquitously expressed in human tissues. HMOX1 can metabolize
heme into ferrous iron, carbon monoxide, and biliverdin/bilirubin [27]. Ferroptosis can be inhibited by
FPN, a transmembrane protein that is the sole iron exporter in vertebrate species, responsible for
exporting cellular iron to maintain iron homeostasis [28]. The process can also be inhibited by ferritin
heavy chain 1 (FTH1) and ferritin light chain (FTL), both of which function by storing iron [29].

2.2. ROS generation

Iron can directly generate excessive ROS through the Fenton reaction, thereby increasing
oxidative damage. ROS are free radicals generated by redox reactions during the regulation of cell
survival. Small synthetic molecules can induce ROS levels. Erastin is a small synthetic molecule that
induces ferroptosis [15] through a variety of molecules, including the cystine-glutamate transport
receptor, the voltage-dependent anion channel (VDAC), and p53 [30]. Ras-selective lethal small
molecule (RSL3) inhibits the antioxidant system as it increases intracellular iron accumulation. RSL3
inhibits the activity of GPX4, thus inducing ferroptosis [31]. Ferroptosis suppressor protein 1 (FSP1)
is a glutathione-independent molecule that exerts a ferroptosis inhibition role parallel to the
glutathione-dependent lipid GPX4 [32]. Dihydroorotate dehydrogenase (DHODH) is an enzyme
localized on the outer face of the mitochondrial inner membrane that can inhibit mitochondrial
ferroptosis [33]. Ferrostatin-1 (Fer-1) has been proven to inhibit erastin-induced ferroptosis [34].

The antioxidant defense is a key system in cells to inhibit ferroptosis. The key players are the
cystine transporter solute carrier family 7 member 11 (SLC7Al11l) and GPX4. SLC7A1l is an
antiporter and biomarker that regulates tumor cell metabolism in the tumor microenvironment (TME).
Drugs blocking the SLC7A11 pathway can induce ferroptosis. Most cancer cells mainly rely on
SLC7A11 to import extracellular cystine; once imported into the cytosol, cystine is reduced to cysteine,
which is subsequently used to synthesize GSH for antioxidant defense [35]. GPX4 has been identified as
the second mammalian glutathione peroxidase [14] and the key upstream regulator of ferroptosis [36,37].
GPX4 has the unique function of reducing complex hydroperoxides, including phospholipid
hydroperoxides and cholesterol hydroperoxides, to their corresponding counterparts, thereby
interrupting the lipid peroxidation chain reaction [38]. GPX4 catalyzes GSH, oxidizes GSH to glutathione
disulfide (GSSG), and removes cellular lipid peroxides. Other antioxidant elements include ferroptosis
suppressor protein-1 (FSP1) [39], coenzyme Q10 (coQ10) [40], GTP cyclohydrolase | (GCH1) [41], and
tetrahydrobiopterin (BH4) [42].

2.3. Lipid peroxidation

The generation of reactive oxygen species and subsequent hydroxyl radical (OH)-mediated lipid
peroxidation in the plasma membrane causes damage and is the core event leading to ferroptosis. These
processes are inhibited by integrated antioxidant or membrane repair systems. Acyl-CoA synthetase
long-chain family member 4 (ACSL4) is an essential agent for ferroptosis execution [43].
Lysophosphatidylcholine acyltransferase 3 (LPCAT3) is primarily responsible for esterifying
arachidonic acid (AA) into lysoPLs [44]. Lipoxygenases (LOXs) are not essential for the execution of
ferroptosis but may play a role in its initiation by contributing to the cellular pool of lipid
hydroperoxides that promote lipid autoxidation [45]. 5-LOX selectively catalyzes PE-AA oxidation
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and executes ferroptotic cell death. Polyunsaturated fatty acids (PUFAS) are the substrate of LOX [46].
Steroyl-CoA desaturase 1 (SCD1) is a fatty enzyme that converts saturated fatty acids into
monounsaturated fatty acids, being a critical modulator of the fatty acid metabolic pathway and
ferroptosis [47]. Its role in mitochondrial dysfunction through mitochondrial membrane potential or
mtROS accumulation still needs to be investigated [33]. On the other hand, elevated levels of SCD1
protect cancer cells against ferroptosis [48].

The activation of acyl-CoA synthetase long-chain family member 3 (ACSL3) converts
monounsaturated fatty acids (MUFAS) to acyl coenzyme A esters that bind to membrane phospholipids,
providing protection against ferroptosis [49]. Liproxstatin-1 not only inhibits mitochondrial lipid
peroxidation but also restores the expression of GSH, GPX4, and ferroptosis suppressor protein 1 [50].

The major regulators of iron regulation, ROS generation, and lipid peroxidation in ferroptosis are
listed in Table 1.

3. Allergic reaction and ferroptosis
3.1. Allergenic triggers in allergy and ferroptosis

Allergens not only cause allergic response but may also induce cell ferroptosis. The most studied
allergens are house dust mites (HDMs) and pollen.

Dust mite allergy is an IgE-mediated type 1 hypersensitivity reaction to dust mite allergens,
commonly found in household dust [51]. Inhalation of HDMs can increase ROS and decrease GSH
levels in mouse lungs [52]. HDM inhalation induces dysmorphic small mitochondria with decreased
crista, as well as condensed, ruptured outer membranes. The activities of GPX4 and SLC7A11 are
significantly decreased, and protein expression levels of ACSL4 and LOX1 are upregulated, compared
with mice in the control group. These results indicate that HDMs can induce airway
hyperresponsiveness (AHR) through airway inflammation and ferroptosis through lipid peroxidation
and ROS levels [52].

Pollen allergies affect more than 10% of the global population; up to one-third of the affected
individuals having hay fever symptoms will later develop allergic asthma [53]. Normally, pollen
cannot enter the thoracic regions of the respiratory tract due to its large size but can affect the
nasopharyngeal mucous membrane [54]. Birch pollen can be ruptured and released as an aerosol
from 30 nm to 4 um. It primarily contains Bet v1 allergen, a prominent elicitor of allergic sensitization
and asthma [55]. Bet v1 was found to increase ROS levels and enhance inflammation independently
of pollen-derived intrinsic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. It
can induce ferroptosis underlaid T2 and Tn17 hybrid asthma [56].

Other environmental factors could be allergic triggers and cause ferroptosis as well. Postnatal
arsenic exposure increases the risk of childhood allergic rhinitis [57]. Arsenic exposure can also
decrease ferritin level and decrease GPX4 to induce ferroptosis [58,59]. Asbestosis is an interstitial lung
disease caused by the inhalation of asbestos fiber [60], which can cause weak allergic disease [61];
ferroptosis-dependent extracellular vesicles act as a key mutagenic mediator by transporting iron,
which contributes to asbestos-induced mesothelial carcinogenesis [62]. Long-term exposure to
particulate matter 2.5 (PM2.5) can cause allergic diseases [63] and induce ferroptosis in human
endothelial cells through iron overload and redox imbalance [64].
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Table 1. Key regulators in ferroptosis.

Regulator Name Function References
Iron
metabolism
Promotion
TFR1 Transferrin receptor protein 1 Transporting Fe®* to intracellular domain ~ [23]
NCOA4 Nuclear receptor coactivator 4 Maintaining intracellular iron homeostasis [26]
HMOX1 Heme oxygenesl Releasing free iron from heme [27]
Inhibition
FPN Ferroportin Transporting Fe?* to extracellular domain  [28]
TFL/FTH1  Ferritin light chain/ferritin heavy Storing iron ion [29]
chain 1
Oxidation
Promotion
Erastin Erastin Regulating cystine-glutamate transport [15]
receptor
RSL3 RAS-selective lethal small molecule Promoting XCT lysosomal degradation [31]
3 through ROS/AMPK/mTOR
Inhibition
SLC7A11  Solute carrier family 7 member 11 Transporting cystine into cells [35]
GPX4 Glutathione peroxidase 4 Key antioxidant enzyme in cells [14]
GSH Glutathione Co-factor of GPX4 [13]
Fer-1 Ferrostatin-1 Inhibiting RSL3 or erastin [34]
Lipid
peroxidation
Promotion
ACSL4 Acyl-CoA synthetase long chain Catalyzing the activation of long-chain [43]
family member 4 fatty acids
LPCAT3 Lysophosphatidylcholine Catalyzing FUFA-COA to produce PE-AA [44]
and PE-AD acyltransferase 3
LOXs Lipoxygenases Catalyzing PE-AA oxidation and [46]
ferroptotic execution
SCD1 Stearoyl-CoA desaturase-1 Inducing ferroptosis through lipid [47,48]
metabolism or inhibiting ferroptosis
through mTOR pathway
Inhibition
ACSL3 Acyl-CoA synthetase long-chain Key to MUFA-induced ferroptosis [49]
family member 3 resistance
Lp-1 Liproxstatin-1 Preventing lipid ROS build-up [50]
FSP1 Ferroptosis suppressor protein-1 Working through coenzyme 10 [32]
DHODH Dihydroorotate dehydrogenase Inhibiting mitochondrial ferroptosis [33]

AIMS Allergy and Immunology
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3.2. IgE regulation in allergy and ferroptosis

IgE is the central molecule in the allergic response, traditionally associated with atopic disease
and systemic anaphylaxis [65]. In our previous experiments examining the factors that regulate
immunoglobulin class switching in B lymphocytes and the generation of IgE, we identified the
circadian oscillation gene BHLHEA40 as central to antibody class switching during stimulation [2].
BHLHEA40 can regulate ferroptosis in dual ways: It may inhibit ferroptosis through SREBF1 [66] or it
can promote macrophage pro-inflammatory gene expression and function of genes including PTGS2
and SERPINB2 [67]. The two associated proteins have been found to promote ferroptosis in cells.

PTGS2 is a gene encoding the cyclooxygenase-2 (COX-2), markedly increased in cells treated
with ferroptosis inducers [68]. COX-2 is a key enzyme in prostaglandin biosynthesis. Increased
expression of PTGS2 is associated with ferroptosis [69]. PTGS2 was found to be augmented in
bronchial smooth muscle tissues of experimental asthma [70]. Mutations of PTGS2 genes are
associated with diisocyanate-induced asthma [71].

Serpin family B member 2 (SERPINB2) is a member of the serine protease inhibitor family and
the main product of monocyte/macrophage activation after infection or inflammation. SERPINB2 has
been identified through protein—protein interactions in asthma [72]. SERPINBZ2’s regulatory effects on
inflammation seem to play a double role: It is associated with Th2 response and also acts as an anti-
inflammatory gene [73,74]. It also promotes the progression of inflammation [75,76]. A genome-wide
association study identified the SERPINB gene cluster as a susceptibility locus for food allergies [77].
Increased SERPINB2 potentiates 15LO01 expression via STAT6 signaling in epithelial cells in
eosinophilic chronic rhinosinusitis with nasal polyps [78].

3.3. Inflammatory cytokines in allergy and ferroptosis

Ferroptosis originates and propagates from several organelles, including mitochondria,
endoplasmic reticulum (ER), Golgi, and lysosomes. Recent data revealed that immune cells can both
induce and undergo ferroptosis [16]. Disordered redox biology and increased lipid peroxidation can
activate multiple inflammatory cells and pathways; also, such inflammatory cells can aggravate
intracellular oxidate stress and excessive lipid peroxidation [79]. Inflammatory cytokines, including
IL-1B, IL-6, TNF-a, and IFN-y, can regulate the synthesis of ferritin to influence iron storage in cells
and tissues [80]. Multiple inflammation signaling pathways, including JAK-STAT, NF-Kb, and
MAPK, are closely related to ferroptosis; also, ferroptosis can affect such signaling pathways [81]. IL-13
is a cytokine that is associated with allergies [82] that can also induce ferroptosis. The MDA serum
level, an index of lipid peroxidation, has been found to positively correlate with 1L-13 levels and
negatively correlate with the predicted forced expiratory volume in 1 s (FEV1%) in asthmatics. 1L-13
facilitates ferroptosis by upregulating the suppressor of cytokine signaling 1 (SOCS1) [83]. In human
osteoblast-like MG63 and umbilical vein endothelial cells (HUVEC), TNF-a signaling promoted
cystine uptake and GSH biosynthesis, providing protection against a low-dose of ferroptosis-inducer
erastin. TNF-a facilitates ferroptosis in the presence of high-dose erastin through ROS accumulation.
TNF-o regulates ferroptosis-induced osteogenic and angiogenic dysfunctions [84]. Interferon-y
produced by tumor-infiltrating T cells can kill cancer cells through the induction of ferroptosis [85].
These cytokines are central to an allergic response and ferroptosis.
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3.4. Lipid metabolism in allergy and ferroptosis

One of the key elements in ferroptosis is abnormal lipid metabolism. In recent years, the ORMDL3
gene on chromosome 17 has been linked to allergic asthma [86]. ORMDL3 is an important
transmembrane protein anchored in the ER [87]. The ER is the cytoplasmic membrane system
responsible for the storage of calcium, protein folding, and lipid synthesis. ORMDL3 facilitates the
unfolded protein response to cellular stress by influencing ER calcium ATPase and ER-mediated Ca?*
flux [88]. It interacts with the serine palmitoyltransferase (SPT) enzyme complex in sphingolipid
synthesis, especially for ceramide and sphingosine-1-phosphate (S1P) levels [89]. ORMDL3 works in
multiple pathways, regulating airway inflammation in epithelial cells [90]. It can promote eosinophil
trafficking and activation. The overexpression of ORMDL3 in eosinophils causes increased rolling,
distinct cytoskeletal rearrangement, extracellular signal-regulated kinase phosphorylation, and nuclear
translocation of NF-kb [91]. ORMDL3 upregulates airway smooth muscle proliferation, contraction,
and Ca?* oscillations in asthma airway smooth muscle cells [92]. These biological functions have been
intensively reviewed [90,93]. ORMDL3 influences almost all organelles in the cell with specific roles
in ferroptosis [94].

The most direct evidence of ORMDL3 being involved in ferroptosis is that it regulates HOMX1.
ORMDL3 knockdown epithelial cells have lower HMOX1 expression [90]. HMOX1 could metabolize
heme into ferrous iron, carbon monoxide, and biliverdin/bilirubin [95]. HMOXZ1 expression is highly
inducible in response to various stimuli, including heavy metals, oxidative stress, inflammation, and
UV radiation. Different cis-acting elements on the promoter of HMOXL1 facilitate the binding of
different transcriptional factors to the promoter and activate HMOX1 expression. HMOX1 is not only
a rate-limiting enzyme in heme metabolism but an important regulator in allergic response through the
regulation of various immune cells, such as dendritic cells, mast cells, basophils, T cells, and
macrophages [96]. In monolayer retinal pigment epithelium (RPE) cells, a modulated expression of
HMOX1 could elicit ferroptosis [97]. Lipoxygenases (LOXs) are enzymes that catalyze the
peroxidation of polyunsaturated fatty acids (arachidonic acid and linoleic acid) [98]. The LOX pathway
is involved in allergic tracheal contraction [99], and LOXs have been implicated as central players in
ferroptosis [45].

The factors for both ferroptosis and allergic reactions are listed in Table 2; the potential
mechanisms for allergic response and ferroptosis are shown in Figure 1.

Table 2. Factors influencing both allergy reaction and ferroptosis.

Factors Role in allergic response Role in ferroptosis References

Allergen triggers

HDM Inducing IgE mediated Decreasing GPX4 and SLC7A11 [51,52]
Type 1 and upregulated ACSL4 and LOX1
hyperresponsive reaction

Pollen Inducing IgE Increasing reactive oxygen species [56]

(ROS)

Arsenic Inducing allergic rhinitis Increasing ferritin and decreasing GPX4  [57,58]

Asbestosis Causing weak allergic Mediator by transporting iron [60,61]
reactions

Continued on next page

AIMS Allergy and Immunology Volume 9, Issue 1, 8-26.



16

Factors Role in allergic response Role in ferroptosis References
PM2.5 Allergic causes Through iron overload and redox [63,64]
imbalance
IgE regulation
BHLHE40 Regulating IgE Regulating PTGS2 in ferroptosis [2,67]
PTGS2 Regulating prostaglandin Lipid peroxidation [70,71]
E2
SERPINB2 Food allergy Involving ferroptosis [77]
Cytokines
IL13 Allergic cytokines Upregulating SCOs in ferroptosis [83]
TNFa Allergic cytokines Osteogenic and angiogenic dysfunctions  [84]
in ferroptosis
IFNy Allergic cytokines Infiltrating T cells in ferroptosis [85]
Lipid metabolism
ORMDL3 Cell stress, sphingolipids Regulating HOMX1 in ferroptosis [90,93]
HRYV infections
HMOX1 ORMDL3 regulated Releasing free ion from heme [27]
LOXs Regulating allergy Inducing peroxidation [99,46]
Allergic reaction Ferroptosis
Fe3* "
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Figure 1. The potential mechanism of ferroptosis in allergic response. Allergens can
influence cell stress, inducing the generation of IgE and cytokines release. BHLHE40
regulates IgE production and induces PTGS2 and SERPINB?2 to regulate ferroptosis. The
allergic gene ORMDL3 regulates HMOX1, which regulates iron metabolism. ORMDL3
also regulates cell stress and lipid synthesis involved in ferroptosis.
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4. Ferroptosis and allergic diseases

Currently, only a few papers have discussed the relationship between ferroptosis and allergic
diseases. Several conclusions can be drawn by studying iron metabolism, oxidation, and lipid
peroxidation in allergic diseases.

4.1. Allergic asthma

Allergic asthma is the most common type of asthma. In the United States, approximately 25
million people have asthma, and among them approximately 60% have allergies [100]. Allergens such
as HDMs can induce allergic asthma through generations of allergic-specific IgE triggering an allergic
response. In a study of HDM-induced mouse asthma, HDM exposure significantly increased airway
hyperresponsiveness (AHR), inflammatory cell infiltration, and mucus secretion around the airways [52].
The mice had elevated IgE levels, and IL-5 and IL-13 levels in the bronchoalveolar fluid (BALF) and
lung eosinophilia in BALF were also observed. Interestingly, inhalation of HDM increased ROS
production and decreased the levels of GSH in the mouse lungs. HDM inhalation induced dysmorphic
small mitochondria with decreased crista, as well as condensed, ruptured outer membranes—signs of
ferroptosis. The research also demonstrated that the activities of GPX4 and SLC7All were
significantly decreased and protein expression levels of acyl-CoA synthetase long-chain family
member 4 and 15 lipoxygenase 1 were upregulated. Results suggested that HDM inhalation can induce
ferroptosis in the lungs in allergic asthma patients [52].

Interleukin-17A (IL-17A) levels are elevated in patients with allergic asthma. IL-17A was
significantly upregulated within serum in allergic asthma cases [101]. In a report with human bronchial
epithelial cells (BEAS-2B) and ovalbumin (OVA)-induced allergic asthmatic mice, 1L-17A was found
to significantly increase ferroptosis. It regulated and activated lipid peroxidation to induce ferroptosis,
whereas IL-17A knockdown effectively inhibited ferroptosis in vivo by protecting airway epithelial
cells via the xCT-GSH-GPX4 antioxidant system, also reducing airway inflammation. Mouse mMRNA
sequencing results indicated that the TNF pathway was significantly altered in the IL-17A knockout
OVA group. N-acetylcysteine inhibits the TNF signaling pathway, which was found to protect BEAS-2B
cells from IL-17A-induced lipid peroxidation and ferroptosis damage [102].

4.2. Allergic rhinitis (AR)

AR relates to an inflammation (redness and swelling) of the inner human nose caused by an
allergen. Symptoms of allergic rhinitis include sneezing, itchiness, and blocked or runny nose. Some
people only get seasonal allergic rhinitis due to being allergic to tree or grass pollen. Other people
suffer from allergic rhinitis all year round. Ferroptosis can occur in epithelial cells in AR [103],
suggesting that novel tools for AR prevention could be explored in the near future.

Lecithin-bound iodin (LBI) has been used to treat the disease symptoms. In an OVA-induced
allergic rhinitis mouse model, LBI has been found to suppress OVA-specific IgE production by
attenuating germinal center (GC) reaction in the draining lymph nodes. The antiallergic effect of LBI
is most likely attributed to increased serum iodine levels. An in vitro treatment of activated B cells
with potassium iodide could induce ferroptosis by increasing intracellular ROS and ferrous iron in a
concentration-dependent manner. LBI diets increased ROS levels in GC B cells of the draining lymph
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nodes. This suggests that iodine directly promotes ferroptosis in activated B cells and attenuates GC
reactions, leading to the alleviation of allergic symptoms [104].

In AR, the epithelial barrier composed of nasal epithelial cells is the first line of defense, which
is crucial to protect the host immune system from harmful stimuli. Moreover, irreversible structural
changes in nasal epithelial cells can occur in response to different allergens. Ferroptosis and allergic
responses in nasal epithelial cells can be regulated by many genes, interacting with multiple signaling
pathways.

4.3. Allergic dermatitis

Allergic contact dermatitis (ACD) is a prevalent inflammatory skin disease that occurs due to an
immune response induced by skin exposure to various allergens. The prevalence of ACD is increasing,
currently afflicting approximately 20% of the world’s population [105].

In a report of 2,4-dinitrochlorbenzene (DNCB)-induced ACD mice, ferroptosis activation was
found to be more remarkable in the dermis rather than the epidermis. Gpx4-knockout mice showed
similar severity of skin dermatitis as control mice, but ferroptosis inhibitor Fer-1 alleviated skin
inflammation in mice and reduced ferroptosis in neutrophils and CD8* T cells presenting ACD [106].

The skin system provides an indispensable barrier for the human anatomy, shielding it from external
influences. Dermatological disorders result from a complex interplay of inflammation, oxidative stress, and
other elements caused by genetic, immunological, infectious, and environmental factors. Currently, there
has been a surge in interest in the exploration of ferroptosis in inflammation, recognized as a critical factor
in the pathogenesis of skin diseases. Ferroptosis can incite the release of damage-associated molecular
patterns (DAMPs), which can further elicit immune cells’ activation and stimulate the expression of
inflammatory cytokines, therefore facilitating an inflammatory response [105,107].

5. The future works of ferroptosis and allergic disease

Regulating ferroptosis can potentially be explored as a therapeutic strategy for reversing cancer
therapy resistance [108]. Inhibition of ferroptosis could be applied to therapeutic treatments for
neurodegenerative diseases and strokes [109]. For allergic diseases, targeting ferroptosis should
consider inflammatory cytokines and IgE regulation. Inducing ferroptosis can lead to the release of
cytokines, enhancing the allergic response. On the other hand, inducing ferroptosis in antibody-
producing B lymphocytes could result in less IgE production, therefore reducing the allergic response.
Recent investigations on dietary iodine found that it can attenuate allergic rhinitis by inducing
ferroptosis in activated B cells [104]. Targeting the ROS system, inflammatory cytokines, and lipid
metabolism pathways in ferroptosis may bring new therapeutic treatments for allergic disease, as could
the research on the mechanisms and pathways of ORMDL3 and BHLHEA4O0 in allergic diseases and
ferroptosis [93].

Many questions about allergy and ferroptosis remain. What is the threshold of damage from the
allergic response to induce ferroptosis? How does the allergic reaction cause iron overload and
oxidative damage? What is the balance between ferroptosis and Th2 inflammatory response in an
allergic response? How can ferroptosis physiologically regulate macrophage subset development,
function, and survival in allergy responses?
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6. Conclusions

Allergic responses to allergens trigger an inflammatory response that can cause ferroptosis
through iron accumulation, oxidative stress, and lipid metabolism. Ferroptosis regulates allergy
response in two different ways: It can control cell death due to iron overload and enhance allergic
response through major signal pathways and TH2 cytokines. The challenge of researching ferroptosis
in allergy is the lack of good animal models and cellular models available. Specific translational
strategies, such as developing GPX4 agonists or iron chelators, may provide additional tools to treat
allergies. Further investigations regarding the ferroptosis pathways in allergic response could bring
new insights into potential therapeutic targets to intervene in allergic diseases in the future.
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