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Abstract: The SARS-CoV-2 virus causes the COVID-19 disease associated with over 6.2 million 
deaths globally. Multiple early indicators raised the potential risk of the SARS-CoV-2 virus infecting 
monocytes and macrophages via Fc-receptor antibody binding based on closely related beta 
coronaviruses. Antibody Fc-receptor infection of phagocytic monocytes and macrophages is one type 
of antibody dependent enhancement of disease. Increased COVID-19 severity correlated with early 
high antibody responses on initial infection for unvaccinated adults. Clinical evidence suggests that 
for moderate antibody titer levels, antibodies binding to SARS-CoV-2 may contribute to viral spread, 
cytokine dysregulation, and enhanced COVID-19 disease severity. Primary immune responses 
appear to have too low of antibody titer to significantly contribute to Fc-receptor uptake by 
monocytes and macrophages for COVID-19 patients. Very high antibody titers created by 
SARS-CoV-2 vaccines also appear to inhibit Fc-receptor uptake and infection of monocytes and 
macrophages; this inhibition appears to decrease as antibody titer levels decrease. Cross reactive 
antibodies to other coronaviruses or moderate levels of SARS-CoV-2 antibodies may be contributing 
to antibody dependent enhancement of disease in critical COVID-19 patients. 
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1. Introduction 

The main receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 
the angiotensin converting enzyme 2 (ACE2) protein. Coronavirus disease 2019 (COVID-19) starts 
with viral infection of ACE2 expressing respiratory cells. The major difference between 
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SARS-CoV-1 and SARS-CoV-2 are exposed surface residues of the spike protein [1]. Infection of 
human immune cells by the SARS-CoV-1 virus was demonstrated to be dependent upon the Fc 
receptor [2]. By inference, SARS-CoV-2 expanded cellular tropism by infection of phagocytic 
immune cells was proposed to be a risk for antibody dependent enhancement of disease for 
COVID-19 patients [1]. Assuming that the antibody dependent enhancement (ADE) risk was 
negligible, multiple vaccines have been developed and widely disseminated targeting the 
SARS-CoV-2 spike protein. While antibody titer levels are high within vaccinees, this approach has 
demonstrated positive vaccine effectiveness. As antibody titer levels have decreased, vaccinated 
individuals have been provided the option for one or more vaccine boosters that currently use the 
original vaccine strain spike protein. COVID-19 infection of vaccinated individuals are referred to as 
“breakthrough” cases. Along with unvaccinated individuals, both vaccinated and vaccine boosted 
individuals are susceptible to one or more SARS-CoV-2 infections. Individuals with multiple 
reinfections or ongoing SARS-CoV-2 infections are referred to as having “chronic COVID”. 

2. Model 

The SARS-CoV-2 can leverage Fc-receptor update to infect monocyte and macrophage 
phagocytic innate immune cells for expanded cellular tropism to innate immune cells [3]. Low 
SARS-CoV-2 antibody titers (i.e., primary immune response level) is too low for significant 
contributions to compromising innate immune cells [4]. Very high SARS-CoV-2 antibody titers (i.e., 
following second vaccination or boosting) may interfere with expanded cellular tropism to innate 
immune cells (perhaps multiple antibodies bound to virons could potentially the block viral 
membrane fusion mechanism). Hence, moderate SARS-CoV-2 antibody titers pose the greatest 
potential risk for Fc-receptor expanded tropism to innate immune cells (monocytes and 
macrophages); when this occurs, it is referred to as antibody dependent enhancement of disease. 
Infected monocytes and macrophages can disseminate the SARS-CoV-2 virus to additional organs 
and contribute to viral dysregulation of cytokines and immune response. 

3. Discussion 

3.1. SARS and COVID-19 antibody clinical observations 

Patient antibody serology levels provide indirect evidence for antibodies correlating with 
disease severity. For SARS patients, high IgG antibody titer levels correlate with increased disease 
severity [5–8]. Likewise, in COVID-19, high antibody responses are correlated with disease 
progression and severity [9–16]. Nucleocapsid antibody responses were found to be elevated in 
deceased individuals (N = 22) [17]. 

3.2. Antibody titer level impact 

Wan et al. [4] describe that expanded host cell tropism of some phagocytic cells is dependent 
upon antibody dose. Expanded host cell tropism increases with antibody level and then decreases for 
high antibody levels [4]. This antibody titer model is consistent with patient antibody serology levels 
correlating with disease severity. In addition, high antibody titer levels from the second vaccine dose 
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or boosting doses appear to interfere in some manner with expanded host cell tropism to phagocytic 
cells. 

3.3. Cross-reactive antibodies 

Cross-reactive antibodies from previous betacoronavirus infections have been reported for 93% 
(N = 44) adults and 55% (N = 86) children [18] and 40% (N = 50) children [19]. COVID-19 patients 
with early anti-SARS-CoV-2 IgG recall-type responses had increased disease severity [20]. Poorly 
neutralizing “original antigenic sin” antibodies were found in severe COVID-19 patients with 
preexisting seasonal common cold coronaviruses antibodies [21]. Memory B cell responses with 
cross-reactive antibodies is consistent with the model of expanded viral tropism to monocytes and 
macrophages. 

3.4. Convalescent plasma treatment 

SARS patients treated with convalescent plasma had a mortality rate of 6.3% if treated before 
14 days and 21.9% if treated after 14 days [22]. Early treatment of COVID-19 patients with 
convalescent plasma in the NCT04355767 trial resulted in five deaths in the treated group of 257 
patients compared to one death in the 254 placebo group [23]. The large RECOVERY trial of 16287 
patients found no benefits of convalescent plasma treatment of COVID-19 patients [24]. A small trial 
of high-dose convalescent plasma treatment of severe COVID-19 patients also found no benefits [25]. 
Meta-analysis of 33 convalescent plasma trials (20 unpublished) confirmed lack of benefits for 
treating COVID-19 patients [26]. On July 21, 2021, the World Health Organization recommended 
against the use of convalescent plasma to treat COVID-19 patients. The lack of efficacy of 
convalescent plasma treatment of COVID-19 patients is consistent with the model of expanded viral 
tropism to monocytes and macrophages facilitated by Fc receptor update of virons bound by 
antibodies. 

3.5. SARS-CoV-2 Infected Macrophages in COVID-19 patients 

Some studies cannot detect evidence for SARS-CoV-2 infection of monocytes and 
macrophages [27]. While others find that SARS-CoV-2 efficiently infects monocytes and 
macrophages from COVID-19 patients [28]; infected monocytes and macrophages were associated 
with secretion of interleukin 6 (IL-6), IL-10, and transforming growth factor beta (TGF-β) [28]. 
SARS-CoV-2 infection of macrophages were observed in hilar lymph nodes in autopsy examination 
of three COVID-19 patients [29]. Single-cell RNA sequencing on 10 bronchoalveolar lavage fluid 
samples with severe COVID-19 were enriched in T cells and likely infected alveolar macrophages [30]; 
these infected alveolar macrophages and T cells form a positive feedback loop that drives persistent 
alveolar inflammation [30]. Postmortem examinations of six cases observed SARS-CoV-2 infection 
of CD169+ macrophages with ACE2 receptors in spleens and lymph nodes resulting in tissue 
decimation [31]. After examinations of autopsies of two COVID-19 patients, Wang et al. [32] 
proposed that infected macrophages might be drivers of the “cytokine storm” that occurs in some 
severe COVID-19 patients. Infected macrophages and mature adipocytes were detected in adipose 
tissue of COVID-19 patients [33]; these infected macrophage cells were associated with increased 
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inflammatory profile [33]. Results further suggest that SARS-CoV-2 was infecting macrophages 
through a non-canonical entry receptor (i.e., not ACE2) [33]. An endomyocardial biopsy detected 
infected macrophages but not myocytes in a COVID-19 patient with acute cardiac injury [34]. A high 
content screen identified compounds ranolazine and tofacitinib as candidates to protect 
cardiomyocytes from macrophage-induced cardiotoxicity [35]. A recent study found about 6% of all 
blood monocytes were infected with SARS-CoV-2 in COVID-19 patients [3]; infection of monocytes 
depended upon uptake of antibody-opsonized viruses by Fcγ receptors [3]. 

It has been proposed that SARS-CoV-2 infection of monocytes and macrophages is abortive and 
does not contribute to viral replication [3]. An in vitro study demonstrated that SARS-CoV-2 virus 
can infect monocytes and monocyte-derived macrophages from infected cells [36]. While the 
SARS-CoV-2 could persist in these infected monocytes and macrophages, the virus did not replicate 
but was able to infect other cells [36]. SARS-CoV-2 is able to form syncytia of infected cells with 
neighboring cells leading to the formation of multi-nucleate enlarged cells; syncytia formation may 
be a possible mechanism for SARS-CoV-2 to spread to new tissues. This ability to infected other 
cells demonstrates a pathway by which the virus can infect monocytes and macrophages, migrate 
into new tissues, and enable the virus to infect susceptible cells [36]. 

4. Conclusions 

Clinical evidence clearly establishes that a subset of monocytes and macrophages are being 
infected by SARS-CoV-2 in some COVID-19 patients. Infection of monocytes and macrophages is 
mediated by Fc receptor uptake. Scientific and clinical studies support the conclusion that Fc 
receptor mediated infection of monocytes and macrophages in some COVID-19 patients is one type 
of antibody dependent enhancement of disease; this expanded cellular tropism to innate immune 
cells may have pathogenesis implications in COVID-19 patients with multiple reinfections and 
chronic COVID-19. SARS-CoV-2 infected monocytes and macrophages in COVID-19 patients 
remains an important and neglected area of medical research in this ongoing COVID-19 pandemic. 
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