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Abstract: Toll-like receptors (TLRs) are essential defensive mediators implicated in immune 
diseases. Tight regulation of TLR function is indispensable to avoid the damaging effects of chronic 
signaling. Several endogenous molecules have emerged as negative regulators of TLR signaling. In 
this review, we highlighted the structure, regulation, and function of RP105 and A20 in negatively 
modulating TLR-dependent inflammatory diseases, and in fibrosis and potential therapeutic 
approaches. 
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1. Introduction 

Toll-like receptors are evolutionarily conserved pattern recognition receptors (PRRs) that 
recognize and respond to both microbial pathogen-associated molecular patterns (PAMPs) and 
endogenous damage-associated molecular patterns (DAMPs) or so-called “danger signals” [1]. Upon 
sensing PAMPs or DAMPs, these promiscuously expressed cellular receptors trigger NF-κB 
activation, leading to the secretion of proinflammatory cytokines and promoting a vigorous 
inflammatory response. DAMPs include extracellular matrix components such as alternately spliced 
fibronectin (Fn-EDA), tenascin-C, low-molecular-weight hyaluronan degradation products, and 
biglycan; or intracellular stress proteins such as high-mobility group protein-B1 (HMGB1) and heat 
shock protein 60 (Hsp60) released from damaged cells; and nucleic acids and immune complexes, 
each of which can induce cell activation via TLRs [2–4]. Uncontrolled TLR activation can lead to 
unchecked production of inflammatory mediators culminating in diseases [5–7]. Limiting the 
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duration and amplitude of TLR signaling by negative regulation is therefore essential to inhibit 
unchecked inflammation. There is a multitude of negative regulators of TLR signaling,     
including alternative splicing of TLR adaptors (e.g. MyD88s), the cell surface molecule 
radioprotective 105 (RP105), the ubiquitin-editing enzyme A20 that modulate the activity of key 
TLR signaling intermediates, transcriptional regulators, and microRNAs (microRNA-19a, -34a, 
-146a, and -146b) [8–15]. 

Recent studies implicate DAMPs and their TLR-dependent cellular responses as key     
factors underlying pathological fibrosis in the liver, kidney, lungs, heart, keloids, and systemic 
sclerosis (SSc) [16–20]. Levels of TLR4 and its cognate DAMPs, alternatively spliced Fn-EDA and 
tenascin-C, are elevated in SSc and elicit potent stimulatory effects on fibrotic gene expression [21]. 
Genetic targeting of TLR4 and its DAMPs or selective TLR4 inhibitor in mice ameliorates 
experimental fibrosis in models of SSc and explanted SSc fibroblasts. Alternatively, impaired 
negative regulation of TLR signaling might result in unchecked TLR activation and TLR-dependent 
fibrotic responses, thus contributing to fibrotic diseases. Therefore, restoring or boosting endogenous 
expression or function of the TLR inhibitors such as A20 or RP105 might hold promise for effective 
anti-fibrotic therapies. Speculated RP105 and A20 mediated regulation of TLR driven fibrotic 
responses were described in Figure 1. This review highlights recent insights and current 
understanding of the basic structure and function of negative regulators of TLR signaling in 
inflammation and fibrosis and discuss about the potential therapeutic strategies targeting TLR 
negative regulators. 
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Figure 1. Regulation of TLR mediated fibrotic responses by RP105 and A20. TLR 
receptor upon ligand (DAMP) recognition, interacts with its adapter proteins to trigger 
downstream signaling via IRAK/TRAF6/NF-κB signaling cascade and in association 
with TGF-β results in fibrosis. RP105, a TLR homolog inhibits the DAMP recognition of 
TLR and block TLR signaling. A20 inhibits the polyubiquitination and activation of 
TRAF6 and thus block TLR-mediated fibrotic events. 

2. Toll-like receptors (TLRs) and signaling pathway 

2.1. TLRs 

Toll-like receptors are type 1 integral membrane proteins that consist of leucine-rich     
repeats in their ectodomain for ligand recognition, a transmembrane domain, and toll/interleukin 1 
receptor (TIR) in the cytoplasmic domain to activate downstream signaling cascade [22,23]. Broadly, 
there are 13 murine and 10 human TLRs, that can be sub-classified into two types based on their 
localization. TLRs-1, -2, -4, -5, -6 and -10 are confined to cell surface, while TLR-3, -7, -8, -9, -11, 
-12, and -13 are located on intracellular components [24–26]. The expression of TLRs is not 
restricted to immune cells but is promiscuous on non-immune cells including fibroblasts and 
epithelial cells [27–29]. 
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2.2. TLR signaling 

Adapters for TLR signaling include myeloid differentiation factor 88 (MyD88), 
TIR-domain-containing adaptor protein-inducing IFN-β (TRIF), TIR-associated protein (TIRAP), 
and TRIF-related adaptor molecule (TRAM), that initiate TLR signaling upon ligand binding and 
subsequent TLR dimerization [30–32]. These adapter proteins are ligand-specific, and either interact 
mutually or with TIR in response to individual or combination of TLRs. MyD88 is a central adapter 
protein that signals all TLR responses excluding TLR3 and triggers activation of IL-1R associated 
kinases (IRAKs) and TNF receptor-associated factor 6 (TRAF6)-mediated NF-κB activation [33,34]. 
TLR3 signals through TRIF. Notably, TLR4 is the only TLR that engages both MyD88 and TRIF for 
signaling, while TLR2 mediated signaling is associated only through MyD88 interaction. All TLR 
signaling downstream effectors converge in the activation of NF-κB, which regulates the expression 
of various inflammatory cytokines [35]. The activation of NF-κB is mediated by MyD88 dependent 
TLR signaling including phosphorylation of IRAK, and their subsequent dissociation from MyD88, 
which then interacts with TRAF6, which in turn triggers polyubiquitination of TRAF6 and NEMO. 
Ubiquitinated TRAF6 and NEMO recruit TAK1 and regulates signaling pathways involving the IKK 
complex, resulting in NF-κB activation [23,36–38]. 

3. Negative regulation of TLR signaling 

To forestall sustained and deleterious TLR signaling, a variety of negative regulators evolved to 
dampen the magnitude and duration of the TLR signaling generated by endogenous DAMPs [39]. In 
this context, the present review summarizes (Table 1) and highlights recent insights into these 
negative regulators of TLR. Most of the TLR negative regulatory mechanisms comprise 
ubiquitination and epigenetic mechanisms. E3 ubiquitin ligases including TRIAD3A and Nrdp1, 
regulate K48-mediated ubiquitination of critical TLR adapters, TRIF and MyD88 respectively [40,41]. 
As further described below, A20 is an important ubiquitin-editing negative regulator of TLR 
signaling which by deubiquitinating K63-linked ubiquitin chains from TRAF molecules inhibits TLR 
signaling [40]. Furthermore, downstream of TLR signaling upon ligand stimulation is mediated via 
key adapter molecules of TLR. Disassociation of adapter complexes (MyD88, TRIF, TRAF6, etc) is 
therefore important in the negative regulation of TLR signaling. For instance, flightless I    
homolog (Fliih) is identified as one of the not previously recognized proteins to interact with  
MyD88 [42]. Further, this study also demonstrated that Fliih could suppress TLR4-MyD88 mediated 
NF-κB activation, by disassociating the interaction of MyD88 and TLR4 signaling complex. The 
findings of this study formed a new dimension for TLR signaling pathway [42]. Similarly, very 
recently identified TLR negative regulators affecting the adapter complex include S100A10, SPOP, 
and Tob2 (Table 1). While these intriguing observations implicate these negative regulators of TLR 
signaling in inflammatory pathways, further investigation of their potential role in the pathogenesis 
of fibrosis is warranted. 
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Table 1. Insights on recent key negative regulators of TLR activity. 

Negative regulator Class/family Function In vitro In vivo Receptor Outcome Reference 

β-arrestin 2 GPCR regulator Facilitates SHP-1 to Tir and 

K63-dependent 

ubiquitination by TRAF6 

and TAK1 

HEK293 T cells, 

RAW264.7 cells, 

and mouse primary 

macrophages 

β-arrestin 

2-deficient mice 

TLR4 Regulates Tir-mediated 

immune evasion 

[43] 

IRAK-M Inactive kinase 

of IRAK family 

Formed IRAK-TRAF6 

complexes by limiting the 

disassociation of IRAK with 

MyD88 

Primary bone 

marrow-derived 

macrophages 

(IRAK-M−/−) 

IRAK-M−/− mice 

challenged with 

bacteria 

TLR4; 

TLR9 

Promoting endotoxin 

tolerance 

[44,45] 

TLR10 The orphan 

receptor of TLR 

family 

Suppression of MyD88- and 

TRIF-inducing 

IFN-β-mediated signaling 

pathway 

Human 

myelomonocytic 

U937 cells 

TLR10 transgenic 

mice—LPS-induced 

septic shock model 

TLR2; 

TLR2/6; 

TLR3; 

TLR4 

Decreased production of 

cytokines (IL-6, IL-8, 

type I IFN, IFN-β, 

TNF-α) 

[46] 

Prolactin Neuroendocrine 

hormone 

Inhibits LPS mediated 

elevated TLR4 expression 

and phosphorylation of 

NF-κB 

Cotyledon explant 

culture 

- TLR4 Reduction of LPS 

induced TNF-α, IL-1β 

and IL-6 production 

[47] 

RING finger 

protein 182 

(RNF182) 

RNF family K48-dependent 

polyubiquitination of p65 

Primary peritoneal 

macrophages 

- TLR3, 4, 

and 9 

Silencing of RNF182 

triggered the production 

of inflammatory 

cytokines including IL-6 

and TNF-α, but not type I 

IFN, and enhanced 

NF-κB luciferase activity 

[48] 

Continued on next page 
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Negative regulator Class/family Function In vitro In vivo Receptor Outcome Reference 

Cullin B4 

(CULB4) 

Cullin4B-Ring 

E3 ligase 

complex 

CULB4 deficiency 

upregulated Phosphatase 

and tensin homolog 

(PTEN), thereby activating 

GSK3β signaling mediated 

inflammatory responses 

Myeloid cells CULB4 deficient 

mice 

TLR2/3 and 

4 

Silencing of CULB4 

upregulated the 

expression of cytokines 

including IL-6, IL-1β, 

and TNF-α; reduced the 

expression of IL-10 

[49] 

S100A10 S100 family of 

intracellular 

calcium-binding 

protein 

Interacts with the TIR 

domain of TLR 

competitively and 

consequently inhibits the 

association of TLR adapters 

with either MyD88 or TRIF 

Macrophages from 

S100A10-deficient 

mice 

S100A10-deficient 

mice 

TLR-2, -3, 

-4 

Elevated expression of 

TNF-α, IL-6, IL-12, and 

IFN-β mRNA in 

S100a10−/− macrophages 

[50] 

Speckle-type POZ 

protein (SPOP) 

Representative 

substrate-recogni

tion subunit of 

the cullin-RING 

E3 ligase 

Associates with TLR 

adapter, MyD88, and 

suppresses the 

MyD88-dependent TLR4 

signaling 

Bone marrow cells 

were isolated from 

the tibias and 

femurs of 

wild-type C57BL/6 

mice, 

SPOP-deficient 

THP-1 cells 

- TLR-2, -4, 

-7, -9 

SPOP inhibited 

LPS-induced expression 

of cytokines, including 

TNF-α, IL-1β and IL-6, 

at both the mRNA and 

protein levels 

[51] 

Transducer of 

ErbB2.2 (Tob2) 

Tob/BTG1 

antiproliferative 

family of 

proteins 

Downregulation of MyD88 

and TRAF6 associated 

NF-κB activity 

Tob2 depleted 

murine peritoneal 

macrophages, 

HEK293T cells 

Tob2-defective 

C57BL/6 mice 

TLR-4, -7/8 Depleted macrophages 

resulted in elevated 

production of 

inflammatory cytokines 

including TNF-α and 

IL-6 

[52] 
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3.1. TLR signaling negatively regulated by TLR homolog: radioprotective 105 (RP105) 

3.1.1. Structure of RP105 

RP105, also named CD180, is an unconventional TLR homolog. Structurally, it consists of an 
extracellular leucine-rich repeat domain as well as the transmembrane domain but lacks a TIR 
signaling domain unlike other homologs of TLR. Expression of RP105 was initially thought to be 
limited to B cells [53]. However, RP105 was also found on human and mouse monocytes and 
dendritic cells. In HEK 293 and dendritic cells, RP105 functions as a negative regulator of TLR4 
signaling, where RP105 co-expressed with MD1 to form a complex and associates with TLR4/MD2 
to inhibit lipopolysaccharide (LPS)-mediated TLR4 responses [54]. MD1 is a secreted molecule 
without a membrane-spanning domain. It is an essential adaptor molecule of RP105 and is required 
for trafficking of RP105 to the cell surface [55]. MD1 alone does not act as a signaling molecule. 
However, in response to ligands MD1 associates with RP105 to form RP105/MD-1 complex to 
initiate signal transduction. Subsequent studies performed using RP105−/− and MD1−/− mice linked 
the physiological association of RP105 with MD1, wherein both mice exhibited similar B cell 
phenotypes [56,57]. Lyn (protein kinase of Src-family), NF-κB, and various kinases including, 
protein kinase C, mitogen-activated protein kinase (MAPK), PI3K, and Bruton type kinase are found 
to be some of the down regulatory pathways of RP105 regulated TLR4 signaling [58–60]. 

3.1.2. Functions of RP105 

The physiological role of RP105 in TLR-mediated inflammation is variable and is determined by 
its expression on various cell types. For example, RP105 suppresses TLR4 activation when expressed 
in myeloid cells, while it mediates TLR4 signaling in B cells [53,61]. In light of this concept, findings 
from a study performed in RP105−/− mice demonstrated elevated levels of basal serum B-cell 
activating factor (BAFF) as compared to wild type controls; which was exacerbated upon LPS 
stimulation, implicating the possible role of TLR signaling in B cell activation [62]. Moreover, 
LPS-challenged RP105-deficient mice exhibited elevated cytokine production and endotoxicity     
in bone marrow-derived dendritic cells (TNF, IL-12p70, IL-6 and IP-10) and peritoneal    
macrophages (TNF), confirming the role of RP105 as a negative regulator of TLR activation in both 
dendritic cells and macrophages [8]. The role of RP105 on smooth muscle cells was explored in an 
elegant study based on vascular modeling during neointima formation in RP105−/− mice. Increased 
restenosis was observed in RP105 knockout mice, and lack of expression of RP105 on vascular smooth 
muscle cells both in vitro and in vivo resulted in enhanced neointima [63]. On the other hand, reduction 
of atherosclerotic burden in lethally irradiated mice treated with RP105−/− bone marrow was 
demonstrated. RP105−/− chimeras exhibited altered expression of inflammatory B2 circulating cells, 
leaving B1 circulating cells unaffected and the reduction of plaque burden is related to reduced B cell 
activation in those mice suggesting that deficiency of RP105 can ameliorate atherosclerotic    
lesions [64]. 

In a consequent study, the effect of RP105 deficiency was evaluated in LPS-treated mice lacking 
both low-density lipoprotein receptor and RP105 (LDLr−/−/RP105−/−) in vivo and in monocytes in vitro. 
LPS stimulation affected monocyte migration into the vessel wall and thereby reduced early 
atherosclerosis by 40% compared to LDLr−/− controls [65]. The same team reported 90% aggravation 
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of vein graft lesions as well as intraplaque hemorrhage in RP105−/− smooth muscle cells and mast cells. 
Altogether these findings indicated RP105 as a potent endogenous TLR4 inhibitor in smooth muscle 
and mast cells, while promoting TLR4 function in B cells [66]. RP105 functions in different cell types 
and detailed mechanisms of regulating immune-mediated inflammation and other related diseases are 
warranted. 

3.1.3. RP105 and TLR4 signaling 

Although the role of RP105 depends on the cell type, it functions as a negative regulator of 
TLR4 dependent immune signaling in various diseases. For instance, in an experimental model of 
myocardial infarction, apparent cardiac dilatation and alteration in cardiac parameters including 
systolic pressure, heart rate, were evident in RP105−/− mice as compared to wild type mice [67]. In a 
rat model of myocardial ischemic reperfusion (I/R) injury, RP105 adenovirus decreased myocardial 
apoptosis by downregulating TLR4 mediated intracellular signaling of P38 MAPK and transcription 
factor activator protein 1 (AP-1) [68]. Moreover, RP105 exerted anti-inflammatory effects by 
suppressing TLR-MyD88 signaling and reduced the expression of inflammatory cytokines including 
TNF-α and IL-6, and transcription factor, NF-κB [69]. Furthermore, constitutive expression of MD-1, 
an essential adaptor for RP105, resulted in cardio-protective effects against hypertrophy and fibrosis 
by inhibiting NF-κB signaling, while MD-1 KO mice demonstrated detrimental results [70]. 
Overexpression of RP105 in a rat model of myocardial ischemia also resulted in attenuation of TLR4 
dependent inflammation, apoptosis, and autophagy [69,71]. Furthermore, hypoxic cardiac 
microvascular endothelial cells with minimal RP105 expression offered no protection against 
hypoxic injury where overexpression of adenovirus-RP105 rendered protection from hypoxia and 
reduced hypoxia-mediated inflammation and apoptosis by inhibiting TLR4/MAPK/NF-κB  
signaling [72]. 

RP105 was shown to be a miR-327 target. A three-fold increased expression of miR-327 was 
found during ischemia-induced myocardial damage, which was correlated with RP105 
down-regulation. Further, inhibition of miR 327 using adenovirus transfection resulted in 
significantly elevated expression of RP105 that in turn down-regulated TLR4/MyD88-NF-κB 
signaling cascade and ameliorated myocardial inflammation [73]. 

Rat cardiomyocyte cells exposed to hypoxic conditions led to downregulation of RP105 with a 
concomitant increase of miR-141-3p. On the other hand, inhibition of miR-141-3p triggered RP105 
stimulation and thus contributed to anti-hypoxic effects via modulating PI3K/AKT signaling [74]. 
Likewise, RP105 exerted neuroprotective effects in PC12 cells in vitro where RP105 reduced 
neuronal injuries stimulated by oxygen-glucose deprivation (OGD)/reoxygenation via activating 
PI3K/AKT signaling, suggesting PI3K as one of the pivotal downstream regulators of RP105 [75]. 
RP105 involves a catalytic subunit p110δ of PI3K in triggering innate immune responses by 
releasing inflammatory cytokine TNF-α from macrophages during mycobacterial infection [76]. 

CD19, a B cell specific transmembrane signaling protein is one of the fundamental regulators in 
orchestrating immune signal transduction of RP105, mediated through Lyn/CD19/Vav cascade. In 
response to LPS, RP105 triggers Lyn activation, followed by CD19 phosphorylation, Lyn kinase 
activation, interaction with adapter molecule Vav, and eventually JNK activation of RP105 [77]. A 
clinical study, using monocytes from patients with primary biliary cirrhosis and chronic viral 
hepatitis revealed reduced expression of RP105 resulting in hypersensitivity to LPS induction in 
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cirrhosis patients. Further, the elevated expression of TLR4 and MyD88 was observed in cirrhosis 
patients, correlating the significance of RP105 in regulating TLR4 signaling with pre-clinical 
findings [78]. Tracing endogenous ligands of RP105 and understanding their mechanism in 
modulating functions of RP105 would be a significant therapeutic strategy in inflammatory diseases. 
Towards this context, cell–cell adhesion molecule named CEACAM1, was found to be a negative 
regulator of RP105 and suppressed RP105 activated secretion of IL-6 mediated fever responses in 
murine monocytes [79]. Future investigations on downstream effectors of RP105 in eliciting 
physiological responses and the development of novel therapeutic small molecules of RP105 
agonists are warranted. 

3.1.4. RP105 in autoimmune inflammatory diseases 

RP105 negative B-lymphocytes were reported in peripheral blood in rheumatic diseases 
including systemic lupus erythematosus (SLE), Sjogren’s syndrome, IgG4 related disease, and 
dermato-myositis, suggesting key contribution in disease pathophysiology [80–83]. The expression 
of RP105 in various rheumatic diseases is mentioned in Figure 2. Intriguingly, RP105 negative B 
cells were no longer characterized as B cells but were found to exhibit a specific phenotype of 
CD95+CD86+CD38+IgD-IgMlo [84]. In SLE patients, loss of RP105 is associated with B cell 
activation and increased disease activity. The disease activity is evaluated by SLE Disease Activity 
Index (SLEDAI) and Systematic Lupus Activity Measure (SLAM) [80,85]. Moreover, RP105 
expression was also reduced in peripheral blood B cells of patients with diffuse cutaneous systemic 
sclerosis (dcSSc) patients. RP105 triggered the production of natural antibodies from non-switched B 
cell subset, and its deficiency in SSc patients, therefore, resulted in differences amongst pathological 
and natural antibodies production [86]. As most of these mentioned diseases are featured by B-cell 
activation, examining the role of RP105 in other cell types will provide significant insights into 
disease pathogenesis. Recent unpublished data from our laboratory provide evidence for the role of 
RP105 in negative regulation of fibrosis thereby identifying a distinct new function. RP105 
attenuated TLR4 signaling in human foreskin fibroblasts and mouse skin and lung fibroblasts in vitro. 
Findings from in vivo study revealed bleomycin administered RP105 null mice showed exaggerated 
skin fibrosis, compared to bleomycin administered wild type mice. It will be of great interest to 
determine the role of RP105 in other fibrosis models and other forms of fibrosis as well and the 
possibility that, targeting (inducing) RP105 will have a protective role in fibrosis. 
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Figure 2. Expression of RP105 and A20 in rheumatic and fibrotic diseases. 

3.2. A20 negatively regulates TLR signaling pathway by ubiquitination 

Numerous proteases exhibit deubiquitinase activity with varied specificity for ubiquitin (Ub) 
linkages. Some of the deubiquitinases that function as negative regulators of NF-κB signaling 
pathway include A20 (TNF-α inducible protein 3 (TNFAIP3)), CYLD, Cezanne, and OTULIN [87]. 
Linear ubiquitin chain assembly complex (LUBAC) mediated ubiquitination is crucial in the 
regulation of immune responses. OTULIN (also termed as gumby, FAM105B) and A20 are the 
deubiquitinase enzymes, that counter regulates the ubiquitination, by cleaving linear (Met1) and 
Lys63 (K63) associated Ub chains, respectively from target molecules such as RIPK1 and IKKγ, 
thereby functioning as negative regulators of the canonical NF-κB pathway [88,89]. Among the 
aforementioned several deubiquitinases, A20 seems to play a significant role in the pathogenesis of 
fibrosis. Hence, we will discuss the role of A20 in inflammation and fibrosis will be discussed 
elaborately in the following sections. 

Ubiquitin-editing enzyme A20 was discovered 30 years ago as a gene expressed upon TNF 
stimulation on human endothelial cells from the umbilical vein, primarily to render protection from 
cell death induced by TNF [90]. Later, A20 was primarily recognized as a negative regulator of 
TLR4-induced immune responses [91–93]. In most cells at rest, expression of A20 is minimal but is 
upregulated transiently in inflammatory conditions through NF-κB activation [94]. Subsequently, 
A20 was found to play a critical inhibitory role in inflammatory and immune responses, especially 
TNF-induced NF-κB activation and NF-κB signaling triggered by pattern recognition receptors, T 
and B cell receptors, interleukin-1 receptors, and NOD-like receptors, induced by a wide spectrum of 
stimuli [95,96]. Mice lacking A20 showed severe inflammation in response to sublethal doses of LPS 
through persistent activation of NF-κB and IKK and died prematurely. This study established the 
importance of A20 as a negative regulator of NF-κB driven inflammation and suggested its crucial 
role for immune homeostasis [97]. 
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3.2.1. Structure and signal transduction of A20 

The A20 protein is comprised of two functional domains, an N-terminal ovarian tumor  
domain (OUT) with deubiquitinating activity, and seven zinc finger domains at a C-terminal with E3 
ubiquitin ligase activity both of which facilitate inhibition of NF-κB signaling [98]. This prototypic 
activity of A20 as a negative regulator of NF-κB-pathway can be attributed to the presence of these 
two domains in the promoter region of A20 [94]. The C103 catalytic cysteine site of the N-terminal 
OTU domain exhibits deubiquitinating enzyme (DUB) activity and is known to be responsible for 
K63 deubiquitination of TRAF6. ZnF4 of C-terminal had E3 ubiquitin ligase activity which is 
responsible for the degradation of the target proteins by K48 ubiquitination [99,100]. 

Following TNF stimulation on most cell types, TNF binds to TNF receptor 1 (TNFR1) 
triggering receptor trimerization. TNFR1 recruit adaptor proteins receptor-associated death domain 
protein (TRADD) and receptor-interacting protein 1 (RIPK1). TRADD recruits TRAF2/5 and E3 
ubiquitin ligase cIAP1 and 2. Further, cIAP1 and 2 conjugate to K63-linked polyubiquitin chains in 
addition to conjugation with RIPK1, which facilitates IKK-activating kinase TAK1 through its K63 
ubiquitin-binding subunit TAB2/3 and M1-specific E3 ligase Linear Ub chain assembly     
complex (LUBAC). LUBAC conjugates RIPK1 and NEMO with M1 linked linear Ub chains, 
allowing recruitment of IKK complexes. After it’s activation by TAK1, IKK is released from TNFR1 
signaling complex I followed by oligomerization by NEMO mediated M1-ubiquitin binding. This 
activity promotes phosphorylation of IKK and late phase activation, nuclear translocation, and 
expression of NF-κB response genes. A20 is recruited/induced by NF-κB to TNFR1 signaling 
complex I through M1-ubiquitin binding ZnF7. A20 bound to M1-linked ubiquitin competes with 
other ubiquitin-binding proteins and protects from deubiquitinase-mediated cleavage and thus 
prevents downstream signaling by preventing degradation of M1-linked chains. Also, ZnF7 of A20 
binds to the IKK complex and prevents its prolonged activation post its release from TNFR1 
complex I. A20 exhibits anti-inflammatory activity by deubiquitinating subunit (DUB) which 
removes K63-linked polyubiquitin from RIPK1 and NEMO. Additionally, A20 also facilitates the 
proteasomal degradation of RIPK1 and TNFR1 through ZnF4 E3 ligase activity. This activity of A20 
is extremely crucial for regulating the production of pro-inflammatory cytokines and also 
components of NLRP3 inflammasome signaling. In addition, A20 has been shown to act as a DUB 
that removes K63-linked polyubiquitin from different target proteins, including RIPK1 and NEMO. 
Furthermore, A20 has been shown to target RIPK1 and TNFR1 for proteasomal degradation through 
its ZnF4 E3 ligase activity [99–101]. 

TNF receptor-associated factors (TRAFs) are the adaptor proteins that regulate the responses of 
TNFR-family members. TRAF family comprises seven proteins, including TRAF 1–7. Besides 
regulating TNFR responses, TRAF6 also mediates IL-1R, IL-18R, and Toll-like receptors (TLR) 
signaling. The rest of the TRAF family proteins other than TRAF1, consist of the RING-finger 
domain (RING) and exhibit E3 ligase activity [102]. TRAF is one of the targets, by which A20 exerts 
its biological effects [103]. Among various TRAFs, ubiquitin ligase TRAF6 mediates TLR and IL-1β 
induced NF-κB signaling, but has no role in TNF-α regulated inflammatory signaling and RIP 
ubiquitination [104]. While TRAF2 plays a significant role in A20 mediated TNF-α dependent 
NF-κB activation [97]. TRAF6 stimulates NF-κB activation employing K63 dependent 
ubiquitination. OTU domain of A20 facilitates the cleavage of ubiquitin chains from TRAF6, 
regulates polyubiquitination of TRAF6, and thus blocks TLR/TRAF6 dependent NF-κB   
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activation [105]. OTU domain-mediated TRAF6 regulation of A20 was studied in Tnfaip3Otu/Otu  
mice (elimination of A20 deubiquitinase activity through mutations). These mice, when challenged 
with LPS showed aberrant kinase and NF-κB inflammatory activation demonstrating catalytic C103 
OUT domain of A20 as a prerequisite in inhibiting LPS stimulated inflammation by cleaving 
ubiquitin chains from TRAF6 [100]. Another important deubiquitinase enzyme that restricts TRAF6 
mediated NF-κB signaling is CYLD [106]. Interestingly, TRIP6, an LPA2 receptor-interacting 
adaptor protein was found to inhibit the interaction of A20 and CYLD enzymes to TRAF6 and 
promote NF-κB signaling [107]. TRIP6 inhibitors might be useful to block this positive regulation of 
TRAF6 mediated NF-κB activation. 

3.2.2. Functions of A20: in vitro evidence 

The role of A20 in regulating inflammation was demonstrated by showing that A20 inhibited the 
TLR3-induced dimerization of IRF3 through modulating NF-κB/TRAF pathway. Interestingly, A20 
knockdown reversed the effect [108]. A20 has a role in promoting apoptosis. In keratinocytes, A20 
triggered TNF-induced cell death by activating NF-κB and its downstream targets including cIAP1/2 
and TRAF1, which stabilizes NF-κB-inducing kinase, NIK leading to apoptosis. This study 
implicates A20 as a crucial player in mediating NF-κB-dependent apoptosis in skin diseases 
including psoriasis [109]. Moreover, dynamic expression of A20 attenuated TNF-α induced TAK1 
mediated vascular endothelial injury, noted in human umbilical vein endothelial cells (HUVEC). 
Overexpression of A20 in these cells caused downregulation of p38 MAPK, while either A20 
inhibition or TAK1 stimulation stemmed in inverse outcomes [110]. The role of A20 in gingival 
keratinocytes was also explored using human telomerase immortalized gingival keratinocytes. A20 
depletion resulted in excess production of cytokines including IL-6, IL-8, and increased apoptosis as 
evident from DNA fragmentation and generation of cleaved caspase 3 compared to A20 competent 
cells, while A20 overexpression reversed the effects. Further evidence implicating A20 signaling in 
periodontal inflammation was evident from enhanced NF-κB activation and cytokine production in 
A20 depleted THP-1 (macrophage-like cells) and bone marrow macrophages, emphasizing the 
anti-inflammatory role of A20 in periodontal inflammation [111]. These findings suggest the role of 
A20 in maintaining oral mucosa homeostasis and provide a scope to develop targeted therapies to 
ameliorate periodontal inflammation [112]. 

3.2.3. Functions of A20: in vivo evidence 

An exploratory study revealed anti-inflammatory and cytoprotective properties of A20 by 
generating mice with point mutations in ZnF7 and ZnF4 ubiquitin-binding domains of A20. 
A20ZnF7/ZnF7 knock-in mice demonstrated spontaneous inflammatory phenotype characterized by 
severe arthritis with paw swelling, nail loss, joint inflammation, splenomegaly, lymphadenopathy, 
apoptotic cells in the liver, and elevated inflammatory cytokines. Double mutant A20ZnF4ZnF7/ZnF4ZnF7 
mice showed severe early systemic inflammation. In this study, A20 acted primarily by 
ubiquitin-binding protein through ZnF7 and ZnF4 to restrict pro-inflammatory signaling [113]. 

Another interesting contribution of A20 is to preserve endothelial barrier integrity by 
maintaining vascular endothelial cadherin expression. LPS challenged endothelial cell restricted A20 
knockout mice (A20ΔEC) showed attenuated vascular injury. The subsequent mechanistic study 
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implicated the association of interleukin-1 receptor-associated kinase M (IRAK-M) in inducing A20 
expression, thereby maintaining endothelial barrier integrity [114]. Interestingly, microglia 
A20-deficient (A20Δmg) mice, developed spontaneous neuro inflammation due to CD8+ T cells 
infiltration rendering mice susceptible to viral infections [115]. These cell-specific functions of A20 
associated with distinct phenotypes were outlined in Figure 3. 

 

Figure 3. Cell specific functions of A20 associated with distinct phenotypes. Global 
knock down of A20 resulted in perinatal lethality. Various functions of A20 with 
controlled deletions specific to immune cells are represented along with phenotypes and 
disease involvement. Complete knock down of A20 as well as specific deficiency in cell 
types including DCs, myeloid cells, B cells, T cells and enterocytes are presented. 

Mouse with global knockdown of A20 (A20−/−) were generated to unveil the potential 
mechanism in regulation of TNF mediated signaling by A20 in vivo. However, A20−/− pups died due 
to multiple organ inflammation including liver, kidneys, intestine, joints, and bone marrow [97]. 
Further, this type of premature death was observed similarly in double mutant A20−/− 
recombinase-activating gene-1 deficient (RAG-1−/−) mice. A20−/− mice challenged with LPS (5 mg/kg) 
and TNF (0.1 mg/kg), died within 2 hrs, while A20+/− and A20+/+ mice survived [97]. Lethality of 
A20-deficient mice limits understanding the physiological relevance of A20. Tnfaip3flox/flox mice 
were then used to generate cell type-specific deletion of A20 in dendritic cells, myeloid cells, B cells, 
T cells, macrophages, and fibroblasts [116,117]. 
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B cell-specific A20 deficient mice (A20flox/flox crossed with CD19-cre mice) had a phenotype 
indicated with excess B cell proliferation with a production of immunoglobulins [118]. B 
cell-specific A20 null mice also showed SLE-like autoimmunity and increased germinal B      
cells [119,120]. While, A20 deficient mice specific to DCs showed no lethality, but developed colitis, 
ankylosing arthritis, lymphadenopathy, and splenomegaly suggesting the essential role of A20 in 
DCs [121]. Myeloid cell-specific A20 deletion in macrophages and granulocytes (Tnfaip3flox/flox 
LysM-Cre mice) was associated with increased production of IL-6 as well as collagen-specific 
autoantibodies. These mice developed spontaneous polyarthritis [122]. Furthermore, A20 deletion in 
intestinal epithelial cells (A20IEC-KO) was associated with colitis and TNF mediated apoptosis [123]. 

3.2.4. A20 in diseases 

Aberrant expression of A20 contributes to immune pathologies of malignancies, systemic lupus 
erythematosus, rheumatoid arthritis, psoriasis, diabetes, fibrosis, cardiac and neurological   
disorders [124–127]. Figure 2 shows the expression of A20 in various rheumatic and fibrotic diseases. 
Genetic studies identified A20 single nucleotide polymorphisms (SNPs) in association with 
inflammatory and autoimmune diseases [128–130]. A European Caucasian cohort found an 
association of TNFAIP3 rs5029939 with susceptibility to SSc and other autoimmune diseases [131]. 
Also, a candidate gene study found that all the tested variants predispose to autoimmune phenotype 
of SSc [132]. 

Aberrant A20 expression is associated with a variety of diseases. In a study of spondyloarthritis, 
reduced A20 expression was associated with excess production of TNF-α [133]. In contrast, a 
dramatic increase of A20 expression was evident from peripheral blood mononuclear cells from 
patients with chronic Hepatitis B compared to healthy subjects. The mRNA expression of A20 was 
positively correlated to TNF-α, while anti-correlated with TLR4 expression. Increased A20 induction 
in hepatitis B was anticipated either to overcome the TLR mediated immune responses or to protect 
liver injury from sustained inflammation was not illustrated [134]. Subsequent findings from another 
study supported enhanced A20 levels in hepatitis B patients as well as in vitro and in vivo models of 
hepatitis. Upregulated A20 thus offered hepato-protection with reduced inflammatory responses by 
inhibiting NF-κB [135]. Further, A20 was proposed to be a biomarker in depressive disorders. 
Antidepressants augmented A20 expression and improved anti-inflammatory effects in patients with 
major depression [136]. 

3.2.5. A20 in fibrotic diseases 

As global A20 loss caused severe spontaneous inflammation, fibroblast-specific deletion of A20 
mice has been considered to study the effect of A20 in fibrosis. Huang et al. explored the role of A20 
in cardiac fibrosis using neonatal rat cardiac myocytes in in-vitro and A20 transgenic mice, in vivo. 
The results revealed that overexpressed A20 reduced hypertrophic responses, inflammation, and 
fibrosis by interrupting TAK1-JNK/p38 signaling and R-Smad activations. In addition, ectopic A20 
inhibited aortic banding-induced fibrosis as well as reduced collagen synthesis in cardiac  
fibroblasts [137]. Another study documented attenuation of obesity induced cardiac inflammation by 
A20 [138]. Jung et al implicated A20 as a negative regulator of the non-canonical TGF-β1 pathway 
in mouse liver cells, primary hepatocytes, and in A20 KO mice, in vivo. The study demonstrated that 
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Smad6 recruited A20 and inhibited the Lys-63-dependent polyubiquitination of TRAF6, a central 
player in TGF-β1 induced activation of TAK1 and its downregulating kinases including p38 MAPK 
and JNK [139]. 

A very recent study looked into the role of A20 in lung fibrosis. The authors reported that 
diminished A20 levels resulted in accumulation of C/EBPβ in alveolar macrophages triggering 
pulmonary fibrosis. Using genetically targeted Tnfaip3+/−Lyz2-cre and Tnfaip3F/+Lyz2-cre mice, A20 
reduced k63 dependent ubiquitination and degradation of C/EBPβ. The authors linked these effects 
with glycogen synthase kinase-3β (GSK-3β), which phosphorylates A20 in response to injury. 
Elevated A20 expression caused degradation of C/EBPβ to mitigate fibrosis. These results provide 
some mechanistic insights into the anti-fibrotic role of A20 in pulmonary fibrosis [140]. Another 
recent study revealed that A20 expression was significantly upregulated in patients with hepatic 
fibrosis, as well as in mouse models of hepatic fibrosis, due to augmented inflammatory responses. 
A20 overexpression in hepatic stellate cells resulted in attenuation of liver fibrosis, suggesting 
anti-fibrotic potential of A20 [141]. 

Enhancing A20 expression via pharmacological stimulation might result in attenuation of 
profibrotic responses. A recent study showed that Gibberellin induced A20 and reduced NF-κB 
activity in LPS stimulated airway epithelial cells [142]. A connectivity map using gene expression 
data was used to identify A20 inducing drugs. Bronchial and primary nasal epithelial cells were 
treated with ikarugamycin and quercetin, A20 inducing drugs selected from a database. The results 
showed A20 induction to a lesser extent in cells derived from patients with cystic fibrosis compared 
to non-fibrotic controls [143]. Adiponectin, an adipocyte-derived cytokine was shown to induce A20, 
thereby downregulating fibrotic responses [144]. Adiponectin regulation of A20 expression was 
previously reported in adipose tissue macrophages where A20 expression was positively correlated 
with that of adiponectin [145]. Bariatric surgery was associated with heightened levels of adiponectin, 
enhanced A20 expression in white adipose tissue with improved metabolic and inflammatory 
markers [145]. We recently implicated A20 as an intrinsic negative regulator of Smad-dependent 
canonical TGF-β1 signaling in fibroblasts. Our unpublished data explored the contribution of A20 in 
SSc pathogenesis in murine model of bleomycin induced scleroderma using A20+/− mice and A20fl/fl 
mice. A20+/− mice showed exacerbated dermal and lung fibrosis, compared to A20fl/fl mice. 
Bleomycin induced A20+/− mice demonstrated a notable rise in increased dermal thickness and 
elevated expression of collagen mRNA extracted from skin, as compared to bleomycin induced 
A20fl/fl mice. Further, exacerbated lung distortion along with enhanced myofibroblasts positive cells 
and collagen accumulation was evident in A20+/− mice compare to A20fl/fl mice, suggesting A20 
induction as a therapeutic approach for fibrosis. 

3.2.6. A20 regulation by repressing its transcriptional repressor DREAM 

The transcriptional repressor downstream regulatory element antagonist modulator (DREAM) is 
widely expressed in immune cells and multiple organs including brain, heart, thymus, testis, and 
thyroid gland, while minimally expressed in lungs [146–148]. DREAM is a Ca2+-binding protein 
family member containing 4 Ca2+ binding motifs (“EF-hands”) that interact with downstream 
regulatory elements (DRE) to inhibit transcription [146]. DREAM was recently shown to be a 
transcriptional repressor of A20 [149]. DREAM binds to DRE in the promoter region of A20 to 
inhibit A20 gene transcription, thereby inhibiting NF-κB signaling. On the other hand, upstream 
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stimulatory factor 1 (USF1) binds to E-box domain of DRE to upregulate A20 expression suggesting 
a reciprocal relationship between DREAM and USF1 in regulating A20 expression. DREAM−/− mice 
showed augmented A20 expression in a variety of tissues and LPS mediated anti-inflammatory 
responses [149]. 

Levels of A20 and DREAM were anti-correlated in our study performed using DREAM KO 
mice (unpublished). Expression of A20 was increased in bleomycin administered DREAM KO mice, 
with significant amelioration of skin and lung fibrotic responses as compared to bleomycin induced 
wild type mice. Enhanced A20 expression is associated with reduced dermal thickness in skin, as 
well as reduced collagen accumulation in lungs. These intriguing findings suggest that targeting 
DREAM might be a potential therapeutic strategy in inflammatory and fibrotic diseases. 

In this regard, antidiabetic drug repaglinide was reported to inhibit DREAM. Repaglinide 
competitively blocked the interaction of DREAM and Activating transcription factor 6 (ATF6), a 
transmembrane receptor whose activation is reduced in Huntington disease. Treatment with 
Repaglinide stimulated ATF6 signaling and enhanced neuroprotection in Huntington disease [150]. 
Towards this end, two novel DREAM ligands, IQM-PC330 and IQM-PC332 were identified using 
target structure-based design approach that functions by blocking the interaction of DREAM and 
ATF6. Interestingly, IQM-PC330 was found to be more potent and exerted sustained neuroprotective 
effects in both in vitro and in vivo experimental models of Huntington disease, compared to 
Repaglinide [151]. These findings suggest that small molecule pharmacological inhibitors of 
DREAM might enhance A20 activity and might represent a potential anti-fibrotic therapeutic 
strategy. 

4. Conclusions and future perspectives 

In this review, we have highlighted primarily two negative regulators of TLR signaling, A20, 
and RP105, and have discussed the implications of each of them in the pathogenesis of autoimmune 
diseases focusing primarily on fibrosis in SSc and strategies for therapeutic intervention. Although a 
comprehensive discussion of all negative regulators of TLR signaling lies outside of the scope of the 
current review, they also play an important part in TLR regulation. Evolving insights from in vitro 
experiments, transgenic animal models, and clinical information suggest a pathogenic contribution of 
DAMP-TLR4 signaling in progressive fibrosis in SSc. TLR4 signaling in fibroblast by DAMPs 
appears to convert a self-limited tissue repair process into pathological fibrosis. Interestingly, several 
drugs targeting the TLR4 signaling, including eritoran and TAK-242, failed in sepsis clinical trials, 
suggesting an urgent need for novel treatment strategies. These agents might also be considered as 
anti-fibrotic approaches in a drug “repurposing” strategy. Intriguingly, our findings using small 
molecule TLR4 inhibitor T5342126 and TAK242 display potent anti-fibrotic activity in animal 
models as well as in SSc fibroblasts [7,152]. On the other hand, restoring the expression of 
endogenous inhibitors of TLR signaling such as A20 or RP105 by pharmacologic agents might be 
other approaches for anti-fibrotic therapies. We found that levels of A20 were significantly reduced 
in fibrotic SSc biopsies, while DREAM, a negative regulator of A20, was elevated (unpublished 
data). Therefore, an inverse correlation between A20 and its repressor DREAM exists in SSc patients 
where TLR4 signaling is persistently elevated. Analysis in other studies showed an inverse 
correlation of A20 expression with the severity of depression, suggesting modulating A20 expression 
to rebalance TLR-mediated inflammatory signaling as a potential therapeutic strategy [136]. 
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Interestingly, both adiponectin and a small molecule adiponectin receptor agonist AdipoRon with 
potent anti-fibrotic activity can induce A20 expression in skin fibroblasts and skin tissue sections 
from a mouse model of skin fibrosis [153]. Selectively ablating DREAM activity using anti-diabetic 
drug repaglinide might be an alternative approach to boost A20 function.  

Given the various reports on RP105 as a negative regulator of TLR signaling, we speculate its 
probable role in controlling TLR mediated fibrosis. No reports are available exploring RP105 as a 
negative regulator in the context of fibrotic disorders. Preliminary findings from our      
laboratory (unpublished) indicated that RP105 by modulating TLR4 signaling inhibits fibrosis. 
Inducing RP105 expression or function seems to be a promising targeting approach that merits 
further investigation. In summary, this review highlighted negative regulators of TLR signaling and 
underlined opportunities for restoring or boosting the expression of A20 or RP105 by 
pharmacological agents, which might hold promise for effective anti-fibrotic therapies. 
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