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Abstract: The adoption of sophisticated analytical tools, including Machine Learning and massive data 

processing, has accelerated health research. However, a foundational principle asserts that the rigor of 

these complex methods is dependent on the integrity and validity of the underlying statistical design. I 

posit that advanced analyses, particularly in epidemiology, must be subsequent to the rigorous 

verification of methodological coherence. In this study, I used an exploratory case to demonstrate a 

crucial cautionary principle: Complex models amplify, rather than correct, substantial methodological 

limitations. To demonstrate this, I applied standard descriptive and inferential statistical methods (Z-tests, 

Confidence Intervals, and t-tests) alongside established national epidemiological benchmarks to a 

published cohort study on vaccine outcomes and psychiatric events. Through this approach, I identified 

multiple, statistically significant inconsistencies within the source data, including implausible incidence 

rates and relevant baseline group imbalances. These findings, supported by inferential statistical evidence, 

demonstrated that the observed effects (e.g., contradictory Hazard Ratios) are not biological but are 

mathematical artifacts stemming from uncorrected selection and classification biases in the cohort 

construction. These paradoxes arise from the exclusion of prevalent psychiatric cases in the vaccinated 

group and the misclassification of pre-existing conditions as new incident events in the control group. 

Our analysis serves as a robust demonstration that the validity of any conclusion drawn from subsequent 

advanced ML or statistical modeling sourced from public health data rests on first passing the test of 

basic epidemiological consistency. 
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1. Introduction  

The modern era of medical research is defined by an escalating reliance on Big Data platforms 

and Machine/Deep Learning (ML/DL) algorithms [1]. These technologies, ranging from neural 

networks for medical image analysis to predictive models for population health, promise to uncover 

subtle associations and forecast patient outcomes with high precision. The prevailing narrative often 

suggests that the complexity of the computational approach inherently guarantees the robustness and 

reliability of the conclusions. Instead, this creates a problematic methodological inversion where 

complex modeling precedes basic data validation [2,3]. In fact, research demonstrates that simpler 

models, when properly specified, can yield identical or more stable results than overly complex 

computational methods [4,5]. 

However, a core principle of data science remains immutable and should be the sine qua non for 

any complex analysis: The outcome of any processing, regardless of its computational sophistication, 

is ultimately constrained by the quality and design integrity of the input data. A flawed methodological 

foundation, particularly in medical cohort construction or case definition, will not be corrected by the 

power of complex statistics or ML/DL. Instead, the complexity may mask and amplify the underlying 

bias. This is why the application of ML/DL and Big Data tools in public health research must be 

rigorously conditioned on the initial validation of the cohort through descriptive and inferential 

statistical methods and the consistency of its observed epidemiological metrics. 

For example, in retrospective observational studies utilizing large administrative databases (such 

as national health service cohorts), the crucial challenge lies in achieving a covariate balance between 

comparison groups. Failure to correct for intrinsic, large differences in baseline characteristics (like 

age, comorbidity status, and health-seeking behavior) introduces severe selection and misclassification 

bias. The resulting statistical metrics, such as Hazard Ratios (HRs), would then reflect this baseline 

disparity rather than any true biological effect. 

In this paper, I leverage the power of basic descriptive and rigorous inferential statistics (e.g., Z-

tests and t-tests) alongside established national epidemiological benchmarks to identify an uncorrected 

selection bias in a population-based study [6]. It is important to emphasize that our research is intended 

as a methodological illustration. I use the study reported in [6] as an exemplar case, aiming to 

demonstrate that foundational statistical scrutiny is a mandatory prerequisite that must be satisfied 

before any subsequent ML/DL or predictive analysis is meaningful. Our objective is to prove that 

simple methodological scrutiny is the definitive test for validity, highlighting that observed health 

outcomes may be epidemiologically inconsistent and indicating that reported associations are 

likely the results of flawed data input rather than biological signals in the absence of the 

aforementioned scrutiny. In essence, the failure to execute this foundational step may increase the 

likelihood that subsequent complex models, no matter how sophisticated, will propagate a 

systematic error, rendering it useless for public health decision-making. The remainder of the paper 

is structured as follows: The Materials and Methods section (Section 2) details our consistency 

check approach, including the use of inferential statistical tests. In Section 3, I present the three 

major epidemiological statistical inconsistencies observed in the scrutinized data, which were 

derived from checks rooted in basic statistical epidemiology. Had these simple consistency checks 

not been applied, the data could have proceeded to advanced modeling, inevitably producing an 

invalid model for subsequent public health inference. In Section 4, I discuss how advanced models 

like ML/DL would yield invalid or biased results on such flawed data, emphasizing the urgent 
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necessity of basic yet robust covariate balancing techniques. Finally, Section 5 provides a summary 

conclusion of our finding. 

2. Materials and methods 

2.1. Sources of data 

The data analyzed in this report are sourced from the literature, specifically from the reported 

incidence rates and baseline characteristics extracted directly from the primary study under 

examination [6]. In this study, I utilize administrative data to compare outcomes over a three-month 

follow-up period between a vaccinated group and an unvaccinated control group. Given the nature of 

the case study, where I investigate the association between COVID-19 vaccination and adverse 

psychiatric events, it is necessary to perform preliminary data validation and calculations to ensure the 

integrity of subsequent inferences. For this analysis, I focus, in detail, on key psychiatric outcomes, 

notably: 1) Schizophrenia (ICD-10: F20-F29), 2) Bipolar Disorder (ICD-10: F31), and 3) Anxiety 

Disorder (ICD-10: F41.x). Instead, the epidemiological benchmarks used for comparison are derived 

from robust, independent national studies focused on the South Korean population (subject of the 

investigated case), which provide validated annual prevalence and incidence rates for the psychiatric 

conditions studied [7–9]. It should be also acknowledged that national administrative data may exhibit 

slight variations compared to regional cohorts. However, given the large-scale nature of the Seoul 

population-based study [6], these national benchmarks provide the most authoritative reference for 

assessing the epidemiological plausibility of the observed rates. 

2.2. Descriptive statistics 

Here, I list and explain the descriptive statistics methods, and their corresponding formulas, used 

for basic epidemiological checks on the study data under scrutiny. 

2.2.1. Calculation of epidemiological consistency metrics 

To assess the validity of the reported incidence rates and Hazard Ratios (HRs) of the scrutinized 

case, I applied standard statistical methods based on consistency checks and known relationships 

between epidemiological measures. To begin, all national annual incidence and prevalence rates were 

normalized to the equivalent three-month period and to the per 10,000 population scale used in the 

primary study [6] for direct comparison using the conversion formula for annual incidence I(Annual) 

to estimated quarterly incidence I(Quarterly), expressed as: 

I(Quarterly) = I(Annual)/4 (1) 

2.2.2. Calculation of expected upper bounds 

For Anxiety Disorders particularly, the reported 12-month prevalence P(Annual) was used to 

establish an absolute theoretical upper limit for the incidence over three months [9]. Since in 

computational epidemiology the incidence (new cases) must be lower than its prevalence (total existing 
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cases), the quarterly fraction of the national prevalence serves as the maximum plausible quarterly 

incidence P(Quarterly_max), as shown below: 

P(Quarterly_max) = P(Annual)/4 (2) 

2.2.3. Consistency checks on HRs 

The HR is the ratio of the hazard rates between the vaccinated H(Vaccinated) and unvaccinated 

H(Unvaccinated) groups in our case. The consistency check I applied to our case examines the 

simultaneous occurrence of highly disparate HRs (e.g., HR ≫ 1 and HR ≪ 1) for different chronic 

conditions within the same non-adjusted cohort to assess if the effect is biological or an artefact due to 

baseline bias. 

2.3. Inferential statistics  

After basic descriptive statistics, I list here the inferential statistics methods necessary to develop 

rigorous hypothesis testing procedures that add inferential confirmation (or simply rejection) to the 

validity hypotheses of the initial data coming from study [6]. The methods are explained succinctly, 

but with a listing of the corresponding null and alternative hypotheses [10,11]. 

2.3.1. One-Sample Z-test for schizophrenia incidence 

The purpose of this inferential test is to statistically assess the validity of the Schizophrenia 

incidence rate reported in [6] for the vaccinated group. By comparing it against established national 

epidemiological benchmarks, I test if the observed deficit is within the bounds of statistical plausibility. 

This approach enables us to evaluate the Null Hypothesis of methodological consistency even when 

considering potential demographic or behavioral variations. The analysis will rely on the following 

key data and metrics: a) The Observed Rate, P(Obs), extracted directly from [6], showing the 3-month 

Schizophrenia incidence rate in the vaccinated cohort; and b) the Benchmark Rate, P(Bench), derived 

from the robust national registry study in [7], which establishes the expected annual incidence for 

Schizophrenia in South Korea. This annual rate is normalized to a 3-month (quarterly) period. c) the 

Sample Size (N), that is he exact size of the vaccinated cohort, N(Vac), as reported in [6]. A summary 

of these figures is reported in Table 1 below. 

Table 1. Data inputs required to compare the observed 3-month incidence proportion of 

Schizophrenia in the vaccinated cohort [6] against the national epidemiological benchmark [7]. 

Metric Value (3-month rate/proportion) Source/Reference Calculation of Cases 

P(Obs) 0.51/10,000 = 0.000051 Vaccinated Cohort [6] 1,718,999 x 0.000051 

≈ 88 

P(Bench) ~ 2.1/10,000 = 0.00021 National Incidence Range: 

2.0–2.2/10,000 (annually, 

normalized/4) [7] 

1,718,999 x 0.00021 ≈

 361 

Cohort Size (N) 1,718,999 Vaccinated Cohort [6] Not applicable 
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In this circumstance, the test of interest aims to detect a non-plausible deficit in observed cases, 

making it a one-tailed Z-test, which can be structured as follows: 

Null Hypothesis (H0). The observed Schizophrenia incidence proportion in the vaccinated cohort 

P(Obs) is equal to or greater than the national benchmark proportion P(Bench). This assumes 

methodological consistency, H0: P(Obs) ≥ P(Bench). 

Alternative Hypothesis (H1). The observed 3-month schizophrenia incidence rate in the 

vaccinated cohort is significantly lower than the national benchmark rate, suggesting uncorrected bias, 

H1: P(Obs) < P(Bench). 

At this point, a correct statistical test is needed to decide H0 vs. H1. This is the Z-score test statistic, 

which is calculated using the standard formula for comparing a sample proportion to a known 

population proportion: 

𝑍 =  (𝑃(𝑂𝑏𝑠) − 𝑃(𝐵𝑒𝑛𝑐ℎ)) √𝑃(𝐵𝑒𝑛𝑐ℎ)(1 − 𝑃(𝐵𝑒𝑛𝑐ℎ)) 𝑁⁄⁄  (3) 

2.3.2. Confidence interval calculation for bipolar disorder incidence 

The objective in this case is to establish the statistical precision and plausible range of the observed 

3-month Bipolar Disorder (BD) incidence rate reported in the unvaccinated control cohort of [6]. This 

precision will then be compared against the external 12-month national prevalence rate from [8] to test 

for methodological consistency. This time, the idea is to use formal statistical hypothesis testing to 

corroborate (or confute) the validation activity begun with simpler techniques of descriptive statistics. 

This analysis is carried out by comparing the 3-month observed BD incidence proportion (P) in the 

unvaccinated control cohort [6] against the 12-month Borderline Personality Disorder (BPD), yielding 

similar symptoms and conditions) national prevalence benchmark P(Bench) [8], as shown in Table 2 below. 

Table 2. Data inputs comparing the 3-month observed BD incidence proportion (P) in the 

unvaccinated control cohort [6] against the 12-month BPD national prevalence benchmark 

P(Bench) [8]. 

Metric Value (Proportion or Count) Source/Context 

Observed Incidence 

Proportion P 

0.000139 (from 1.39/10,000) Extracted from [6] (Unvaccinated Control Group, 3-

month incidence) 

Prevalence Benchmark 

P(Bench) 

0.000106 (from 1.06/10,000) Extracted from [8] (National 12-month Prevalence for 

similar conditions) 

Control Cohort Size (N) 308,354 Size of the Unvaccinated Control Group reported in [6] 

Observed cases (O) 43 Calculated from N x P 

In this situation, I will use the Wald method to calculate the 95% Confidence Interval for the observed 

BD incidence proportion (P). The formula for the 95% Confidence Interval for the proportion is:  

𝐶𝐼(95%) = 𝑃 ± 𝑍𝛼 /2  ×  𝑆𝐸, (4) 

 



126 

AIMS Public Health  Volume 13, Issue 1, 121–134. 
 

where P is the observed BD incidence proportion (0.000139); 𝑍𝛼/2 = 1.96 (i.e., the critical Z-

value for a 95% CI) and SE (the Standard Error) which, in turn, can be calculated as √
(1−𝑃)𝑃

𝑁
. 

At this point, the inferential test involves checking the relative position of the 12-month BPD 

prevalence benchmark P(Bench) within the calculated 95% CI of the 3-month BD incidence (P). 

If the benchmark is statistically consistent with the observed incidence rate, it will fall within the 

calculated CI. 

2.3.3. Two-Sample independent t-test for covariate balance (Mean age) 

The purpose of this inferential test is to check a more general condition that could affect the 

representativeness of a given cohort. Essentially, I want to determine if the compared cohorts of [6] 

were statistically equivalent on a critical confounding variable, the Mean Age, prior to the intervention. 

Establishing this baseline balance is a necessary prerequisite for valid causal inference in non-

randomized studies. In the end, following this way, it will be possible to verify if the scrutinized study 

yields valid or contradictory HRs. In this latter case, this would reflect the confounding effect of these 

pre-existing differences, rather than the biological effect of the vaccination intervention. I begin this 

kind of analysis utilizing the baseline statistics reported in [6] for the Mean Age of the two comparison 

groups reported in Table 3. 

Table 3. Empirical baseline characteristics (Mean Age and Standard Deviation) derived 

from [6] used to test the assumption of covariate balance between the Vaccinated and Non-

Vaccinated sub-cohorts. 

Metric Value Source/Context [6] 

Vaccinated Mean Age 𝑋(Vac) 54.67 years Reported mean age for the vaccinated group 

Vaccinated SD SD(Vac) 16.26 Reported standard deviation for the vaccinated group  

Vaccinated Cohort Size N(Vac) 1,718,999 Cohort size used for the t-test 

Non-Vaccinated Mean Age 𝑋(NonVac) 44.18 years Reported mean age for the non-vaccinated group 

Non-Vaccinated SD SD(NonVac) 16.28 Reported standard deviation for the non-vaccinated group 

Non-Vaccinated Cohort Size N(NonVac) 308,354 Cohort size used for the t-test 

I then use Welch’s independent samples t-Test to compare the means of the two cohorts. Thus, I 

need to structure the following hypothesis test: 

Null Hypothesis (H0). There is no statistically significant difference in the mean age between the 

Vaccinated and Unvaccinated cohorts (i.e., the groups are balanced for age): H0: 𝑋̅(Vac) = 𝑋̅(NonVac). 

Alternative Hypothesis (H1). There is a statistically significant difference in the mean age 

between the two cohorts (i.e., the groups are unbalanced): 𝑋̅(Vac) ≠ 𝑋̅(NonVac). 

The final t-test statistic will be calculated as: 

𝑡 = (𝑋̅(𝑉𝑎𝑐) − 𝑋̅(𝑁𝑜𝑛𝑉𝑎𝑐))/√
𝑆𝐷(𝑉𝑎𝑐)2

𝑁(𝑉𝑎𝑐)
+

𝑆𝐷(𝑁𝑜𝑛𝑉𝑎𝑐)2

𝑁(𝑁𝑜𝑛𝑉𝑎𝑐)
. (5) 

We conclude this Section by reminding that the data presented here is either included directly or 

was extracted from the referenced documents. All calculations are easily reproducible based on the 
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definitions provided. Further reasonable requests relative to data and calculations can be also addressed 

to the corresponding and sole author (email: marco.roccetti@unibo.it). 

2.3.4. Ethics approval of research 

This study constitutes a methodological re-evaluation and secondary analysis of aggregated data 

published in peer-reviewed literature. Neither humans, animals, or plants are involved, and no primary 

individual-level data are collected or accessed for this research; therefore, institutional review board 

approval is not required. The national epidemiological benchmarks used for comparison are derived 

from public reports accessible through official South Korean health ministry repositories  or through 

the referenced literature [7–9]. I commit to providing the calculation spreadsheets and statistical code 

used for the inferential analysis upon reasonable request. 

3. Results 

The main result of my analysis is that the application of the consistency metrics described earlier 

to the published data of [6] reveals three fundamental statistical paradoxes that challenge the core 

findings of that study. Importantly, if these statistical epidemiological checks, which highlight the three 

paradoxes discussed below, are performed first, any subsequent analyses or inferences would be 

invalid, contradictory, or, at a minimum, irrelevant. 

3.1. Paradox I: Unexplained protective effect for schizophrenia 

The researchers in [6] reported a Hazard Ratio of 0.231 for the development of Schizophrenia 

(ICD-10: F20-F29) in the vaccinated group compared to the unvaccinated control group. Specifically, 

an HR below 1.0 would suggest a protective effect, and HR of 0.231 should be interpreted as an 

approximately 77% reduction in the risk of developing Schizophrenia (1–0.231). 

This amounts to the first paradox: There is no biological or clinical justification for a COVID-19 

vaccine to confer such a profound, immediate protective effect against a chronic, neurodevelopmental 

disorder like Schizophrenia. To understand the mathematical source of this implausible finding, I must 

compare the incidence rates used to calculate this HR against known epidemiological benchmarks , like 

in Table 4 below. 

Table 4. Reported and benchmark quarterly incidence rates for Schizophrenia (ICD-10: 

F20-F29), illustrating severe cohort selection bias. 

Condition Group Reported Incidence [6] 

(per 10,000 over 3 months) 

Crude Ratio 

(Vac/UnVac) 

National Benchmark [7] 

(quarterly range per 10,000) 

Schizophrenia Unvaccinated 

(Control) 

1.98 Not applicable 2.0–2.2 

 Vaccinated 

(High-Risk) 

0.51 0.257 2.0–2.2 

It is easy to understand that the reported HR of 0.231 is extremely close to the crude ratio of the 

incidence rates (0.51/1.98, approx. 0.257). The small difference exists because the HR derived in [6] 

mailto:marco.roccetti@unibo.it
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was from a Cox regression model, which incorporates time-to-event data and slight adjustments, 

whereas 0.257 is a simple rate ratio. Unfortunately, both values signify the same magnitude of disparity. 

Nonetheless, the strong statistical evidence of methodological inconsistency is the incidence rate 

observed in the Vaccinated cohort (0.51 per 10,000). In fact, this rate is:  a) Nearly four times lower 

than the Unvaccinated Control group (1.98), and b) importantly below the stable national 

epidemiological benchmark (2.0–2.2), which represents the expected rate for the general population. 

Given that the vaccinated group is, on average, older and less healthy at baseline, its incidence 

rate should logically be higher than the control group’s rate, or at least comparable to the national 

benchmark. The observed severe deficit of new Schizophrenia cases in this cohort is the direct result 

of an uncorrected selection or misclassification bias at baseline. Notably, it indicates that individuals 

with pre-existing (prevalent) chronic Schizophrenia are systematically excluded or miscategorized 

from the vaccinated cohort, artificially lowering its observed incidence and mathematically forcing the 

resulting HR to be an implausibly low artifact. 

I pass now, for a further confirmaton, to the use of the inferential statistics with the statistical tests 

introduced earlier in Section 2.3.1. 

Starting from the definition of Z and substituting the real cohort data and benchmark values, I get: 

𝑍 =  (0.000051 − 0.00021) √0.00021(1 − 0.00021) 1,718,999⁄  ≈  −14.39.⁄  

This resulting value of the Z-Score is an extreme value that corresponds to a p-value ≪ 0.000001. 

Consequently, the Null Hypothesis (H0) is rejected, thus statistically validating the presence of the 

methodological flaw described in Paradox I. 

Importantly, all the following points should be considered: 1) Quantitative Disparity, that is, 

based on the national registry data from [7], the cohort of 1,718,999 individuals should have yielded 

approximately 361 new cases of Schizophrenia over three months (Table 1). However, the study [6] 

reports an observed rate that corresponds to only 88 cases. 2) Non-representativeness, that is the Z-test 

confirms that this relevant 75% deficit (361 expected vs. 88 observed) is statistically impossible to 

attribute to random chance. 

This inferential evidence demonstrates that the vaccinated cohort is not representative of the 

national population at baseline. Consequently, the resulting Hazard Ratio (HR = 0.231) reflects this 

initial statistical imbalance rather than a genuine biological protective effect. The methodological 

implications of this systematic discrepancy are further analyzed in Section 4. Rather, I recognize here 

two critical issues: First, possible differences of the incidence rates at the regional and national levels 

should be also considered. Nonetheless, while regional differences in psychiatric reporting or 

healthcare access can exist, the discrepancy identified here, where the observed Schizophrenia 

incidence is nearly four times lower than the national average, is statistically too large to be attributed 

to geographical or demographic variance alone. Instead, it points to a structural exclusion of prevalent 

cases during the initial cohort assembly. Second, I must also consider as an alternative explanation for 

our finding, the healthy vaccinee effect, where individuals with better baseline health or fewer severe 

pre-existing conditions are more likely to seek vaccination or potential differences in healthcare-

seeking behavior. However, while such factors are known to influence observational  data, they 

typically result in minor or moderate fluctuations in incidence rates. Indeed, a reduction of nearly 75% 

compared to the national benchmark is particularly implausible when considering that the vaccinated 

cohort is, on average, 10 years older and more comorbid than the control group (as statistically 

demonstrated later in Paradox III). In psychiatric epidemiology, a significantly older population 
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represents a group at higher, not lower, baseline risk for chronic manifestations. Therefore, such a 

massive discrepancy is epidemiologically inconsistent with a purely behavioral or biological 

explanation. It points, instead, to a structural exclusion of individuals with pre-existing (prevalent) 

schizophrenia during the initial cohort assembly. Again, the resulting HR seems to reflect more this 

initial statistical imbalance rather than a genuine protective effect, as the new cases are likely 

suppressed by the systematic misclassification of the starting population. 

3.2. Paradox II: Epidemiological inconsistency for BD 

A notable inconsistency arises when comparing the reported incidence rate for BD in the control 

group to national BPD prevalence data, as shown in Table 5. 

Table 5. Comparison of the reported 3-month BD incidence rate in the unvaccinated 

control cohort [6] against the National 12-month Prevalence Benchmark for BPD [8], 

illustrating the epidemiological inconsistency. 

Condition Group Metric Reported Value [6] 

(per 10,000 over three 

months) 

National Benchmark [8] 

(12-month prevalence per 

10,000) 

Bipolar Disorder Unvaccinated 

(Control) 

3-month Incidence 1.39 Not applicable 

BPD (Similar 

Severity) 

National 

Population 

12-month Prevalence Not applicable 1.06 

The first point to notice is that, as labeled in Table 5, a critical distinction must be made between 

the observation windows: The study [6] reports an incidence over a 90-day (3-month) period, while 

the national benchmarks refer to a 365-day (12-month) period. This temporal discrepancy makes the 

reported incidence of 1.39 even more anomalous, as it represents a quarterly flow of new cases that is 

disproportionately high compared to the annual stock of the affected population. 

Ultimately, the paradox here can be explained as follows: By definition, the incidence (new cases 

over three months) of a severe chronic condition (BD) cannot exceed the prevalence (total existing cases) 

of a similar condition (BPD) over a longer period (a full year). Additionally, my choice to use the 

prevalence of BPD (1.06 per 10,000) [8] as a benchmark is a deliberate and conservative decision made 

in deference to the authors of the investigated study [6]. Since BPD is generally considered to have a 

higher diagnostic and prevalence threshold than BD, using it as a reference provides the most favorable 

margin for their findings. The reported three-month incidence of BD (1.39) in the control group of [6] is 

statistically implausible as it exceeds the national 12-month prevalence of a condition of similar severity, 

that is BPD (1.06) [8]. Nonetheless, a more direct comparison with specific BD data further validates 

this paradox. According to the National Mental Health Survey of Korea 2021 reported in [9], the official 

12-month prevalence of BD is 0.1%, which translates to 10 cases per 10,000 population per year. When 

juxtaposed with this direct benchmark, the reported quarterly incidence of 1.39 per 10,000 (roughly 5.56 

annually) accounts for more than 55% of the total annual national prevalence in just one quarter. 

In closing this issue, the anomaly is given by a fundamental mathematical and statistical 

impossibility: The reported value of 1.39 (the incidence, i.e., the new cases of BD over only 3 months) 

is higher than the national prevalence of 1.06 (which represents the total existing cases, both old and 
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new, over a full 12-month period for BPD), violating the epidemiological principle that quarterly 

incidence cannot exceed the annual prevalence of a similar disease in a stable population. This 

invalidates the derived HR of 0.672. 

If I pass, as usually in our analysis, to inferential statistics, I can now calculate the figures 

announced in Section 2.3.2. In particular, the calculation of the standard Error (SE) yields SE = 

√
0.000139 (1−0.000139)

308,354
 = 0.00002124, while the calculation of the Margin of error (ME) achieves ME = 

1.96 x 0.00002124 ≈ 0.0000416. 

Now, I have all the ingredients to approach the calculation of the 95% Confidence Interval limits 

per 10,000. In fact, the CI can be calculated as 1.39 ± 0.416 per 10,000, where its lower limit is 0.974 

and its upper limit is 1.806, both per 10,000. At this point, the 95% CI for the 3-month BD incidence 

is straightforward: [0.974, 1.806] per 10,000. I have finally arrived where also the inferential results 

confirm the severity of the methodological flaw of Paradox II. In fact, I cannot dismiss the fact that I 

am in the presence of the following evidences: a) Observed CI vs. Benchmark, that is the calculated 

CI for the 3-month incidence rate (new cases) is [0.974, 1.806]. The 12-month Prevalence Benchmark 

(1.06/10,000) falls within this interval. More importantly, the direct BD 12-month prevalence 

benchmark (10/10,000) [9], mentioned earlier, confirms that while the study’s incidence (1.39) is lower 

than the annual total, its magnitude (nearly 14% of the total yearly cases in only 90 days) remains 

epidemiologically strained, and b) Epidemiological Inconsistency, that is the inclusion of the 12-month 

BPD prevalence value inside the CI of the 3-month BD incidence rate, while statistically allowed, is 

epidemiologically implausible. This means that the statistical estimate for the rate of BD new cases 

over 90 days is so high that it is statistically compatible with the total rate of all existing BPD cases 

over 365 days.  

In conclusion, this statistically verified anomaly supports the core argument where the observed 

incidence rate of 1.39 per 10,000 population of [6] is an extreme and highly improbable estimate. It 

points strongly to a misclassification error where a significant number of prevalent (existing) BD cases 

are erroneously identified and counted as incident (new) cases in the unvaccinated control cohort. This 

structural error consequently invalidates the derived HR (HR = 0.672). 

3.3. Paradox III: Contradictory HRs for anxiety and more common disorders 

The third and final paradox is as follows: The cohort selection bias not only creates falsely low 

HRs (protection, Paradox I) but simultaneously generates falsely high HRs for common disorders, such 

as Anxiety. The study [6] reports an HR = 1.439 for these common disorders, suggesting a detrimental 

effect of COVID-19 vaccination. The simultaneous presence of HR ≪ 1 (suggesting protection for 

chronic disorders) and HR ≫ 1 (suggesting harm for common disorders) within the same uncorrected 

cohort is the clear evidence that the observed effect is not biological, but a direct confirmation of the 

underlying uncorrected baseline disparity. The bias manifests differently across distinct pathologies 

based on the baseline prevalence in the two cohorts. In this case, moving to inferential statistics and 

hypothesis testing (as anticipated earlier in Section 2.3.3) will give the finally convincing proof. In 

fact, substituting the empirical mean age, standard deviations, and cohort sizes into the t -test formula, 

I achieve what is shown in Table 6. 
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Table 6. Inferential test (t-test) demonstrating baseline covariate imbalance. 

Calculation component Formula or value Result 

Numerator (Mean Difference, MD) 54.67–44.18 10.49 years 

Denominator (Standard Error, SE) 

√
16.262

1,718,999
+

16.282

308,354
 

0.03183 

Calculated T-Statistic (t-score) t = 10.49/0.03183 329.58 

As seen in Table 6, the calculated t-score is 329.58. Given the massive sample size, this result 

corresponds to an infinitesimally small p-value (≪ 0.000001). While it is acknowledged that such an 

extreme t-score is partly a function of the large sample size, the absolute difference of 10.49 years 

represents a profound demographic and clinical gap between the two groups. The Null Hypothesis H0 

is overwhelmingly rejected, confirming the methodological weaknesses underpinning the conflicting 

findings of [6], which amount to the following: i) A Statistical and Clinical Imbalance, the t-test 

confirms that the two cohorts are statistically and non-randomly unbalanced on age. The disparity of 

over 10 years on average (54.67 vs. 44.18) is not merely a statistical artifact but a clinically meaningful 

difference that shifts the baseline risk profile of the cohort . This disparity is strong evidence of the 

selection bias arising from the data-gathering process, and ii) Conflicting HRs, the proven imbalance 

explains the conflicting Hazard Ratios. In fact, since the Vaccinated group is significantly older and 

more comorbid (as suggested by the high mean age), it has a naturally higher baseline risk for 

conditions correlated with age, such as Anxiety/Stress Disorders (HR ≫ 1). Conversely, its low 

incidence for Schizophrenia (HR ≪ 1) is due to the non-random exclusion of prevalent cases (as 

confirmed by the Z-test for Paradox I). 

4. Discussion 

The analysis presented here, leveraging basic descriptive and rigorous inferential statistics 

(notably the Z-test for Paradox I and II, and the t-test for Paradox III) and established epidemiological 

reference points, consistently demonstrates that the findings of study [6] are statistically unreliable and 

could compromise the validity of medical inferences if they are considered without a prior statistical 

check. It is a plausible hypothesis that the study’s core methodological weakness lies in the control 

cohort construction, selected via random sampling (50% of unvaccinated individuals), a suboptimal 

approach in retrospective administrative data studies. This random selection, in fact, fails to account 

for the vast, intrinsic differences between individuals who choose to be vaccinated (often older, with 

more comorbidities and exhibiting higher health-seeking behavior) and those who do not. 

However, beyond the results regarding COVID-19 vaccination, this study should be primarily 

intended as a methodological cautionary tale. It highlights how the absence of preliminary consistency 

checks can lead to the dissemination of epidemiological artifacts, regardless of the complexity of the 

statistical models employed. The following further considerations are in order. 

4.1. Amplification of bias by advanced modeling 

This case raises the critical question of what would have transpired if researchers had immediately 

moved past the initial biased cohort construction and applied sophisticated inference tools like (ML/DL) 
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algorithms. The answer poses a concern: ML/DL models do not correct fundamental selection bias; 

they simply automate and amplify it. 

Consider the potential propagation of misclassification in the Schizophrenia case. As 

demonstrated by the statistical inconsistencies identified in previous Sections, the ML/DL model 

would be trained to predict the outcome based on the feature space of the highly biased cohorts. Since 

the feature Vaccinated is artificially correlated with a low Schizophrenia rate (due to prevalent cases 

being excluded from that group, Paradox I), an ML/DL model would learn this false association. When 

deployed in a clinical setting, such a model would falsely flag vaccinated status as a protective factor 

for Schizophrenia, potentially leading to incorrect clinical risk stratification. 

Furthermore, I also see the risk of over-sensitivity to noise in the Bipolar Case. The highly 

complex algorithms, designed to find subtle patterns, would attempt to find a non-linear relationship 

explaining the anomaly identified in Section 3.2 (Paradox II). The model might latch onto an irrelevant 

feature, such as a zip code or a specific primary care physician, that happens to be correlated with the 

underlying data-entry error. This process would yield a complex, yet non-informative, explanation that 

adds zero predictive value but significantly increases computational cost and model opacity.  

This leads to falsely prioritized features. A ML/DL model would assign significant weight to the 

treatment variable (vaccination) because of the strong, albeit artificial, signal it carries (HR = 0.231 for 

Schizophrenia, HR = 1.439 for Anxiety). The model’s complex feature importance metrics would thus 

mislead the investigator into believing the intervention is the primary driver of the outcome, ignoring the 

foundational methodological flaw that created the signal in the first place. This is a classic example of 

the propagation of input errors into model outputs, where the complexity of the output lends undeserved 

credence to flawed inputs. In essence, by skipping the basic consistency check, I risk creating high-

performance predictive models that are robustly and confidently predicting an artifact . 

4.2. Necessity of covariate balancing 

The observed anomalies strongly suggest a failure to properly define prevalent cases at baseline, 

leading to systematic misclassification. This methodological failure requires correction that ML and 

Big Data analyses cannot provide post hoc. A critical point that must be addressed is the distinction 

between statistical significance and clinical relevance regarding the baseline imbalances. As identified 

in Section 3.3, the mean age difference between the cohorts is 10.49 years (54.67 vs. 44.18). Moreover, 

while the massive t-score (329.58) is admittedly a product of the large sample size, the ten-year gap 

represents a profound clinical disparity. In psychiatric epidemiology, a decade of difference shifts the 

baseline risk profile for most disorders; comparing a 44-year-old cohort to a 54-year-old cohort without 

rigorous stratification is epidemiologically unsound, as they represent different biological and social 

life stages and different comorbidity burdens. 

In this context, I must also address the potential role of Cox proportional hazards models, 

which were utilized in the original study [6] to estimate risk. While Cox models are the gold 

standard for adjusting for measured confounders, such as age, sex, and baseline health st atus, their 

corrective efficacy is strictly contingent upon the quality of the input data. Statistical adjustment 

cannot mitigate a fundamental structural bias in the cohort assembly. If the starting line of the 

survival analysis is biased because prevalent cases are erroneously included in the control group 

or excluded from the vaccinated group, the resulting HR does not reflect a biological protective or 

risk effect. Instead, it becomes a mathematical artifact of the initial misclassification. No amount 
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of multivariable regression can rectify a situation where the outcome has been structurally 

confounded with the baseline state. 

Consequently, the reliance on complex HR calculations without first establishing a foundational 

balance has enabled a structural methodological error to propagate. Hence, I conclude with the 

consideration that any valid analysis of this kind of public health data must employ a statistically robust 

procedure, such as Propensity Score Matching (PSM) [12]. PSM is designed for retrospective studies 

to achieve a true covariate balance, minimizing the effect of confounding factors between the groups. 

This case study highlights that sophisticated statistical models are no substitute for rigorous study 

design and proper cohort construction. 

5. Conclusions 

In this analysis, I critically evaluated a population-based health study by returning to the fundamental 

principles of epidemiological consistency, a necessary precursor to advanced analytical methods like Big 

Data and ML [1,2]. By systematically applying descriptive and inferential statistical methods (Z-tests, 

Confidence Intervals, and t-tests) to the study’s reported rates and baseline characteristics [6], and 

juxtaposing them against established national benchmarks [7–9], I discovered multiple, relevant statistical 

paradoxes. These contradictions, including a statistically implausible protective effect for a chronic mental 

health condition (Schizophrenia), an epidemiologically impossible incidence rate (BD), and a massive 

baseline covariate imbalance (proven by the t-test), conclusively establish the presence of uncontrolled 

selection and misclassification biases in the cohort construction. The derived HRs are therefore numerical 

artifacts of this deep methodological flaw, rather than reflections of a genuine biological association. Our 

investigation serves as a strong admonition that the inherent complexity of computational analysis, far from 

correcting poor data quality, will invariably amplify and obscure underlying structural errors, especially 

when ML and DL models are deployed on such severely compromised inputs. Consequently, the utility 

and reliability of any big data-driven health research are strictly conditional upon the prior successful 

implementation of robust study designs and preliminary inferential statistical validation to ensure the input 

data is fundamentally sound and epidemiologically consistent.  
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