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Abstract: Artificial intelligence (AI) is playing an increasing role in several fields of medicine. It is 

also gaining popularity among surgeons as a valuable screening and diagnostic tool for many 

conditions such as benign and malignant colorectal, gastric, thyroid, parathyroid, and breast disorders. 

In the literature, there is no review that groups together the various application domains of AI when it 

comes to the screening and diagnosis of main surgical diseases. The aim of this review is to describe 

the use of AI in these settings. We performed a literature review by searching PubMed, Web of Science, 

Scopus, and Embase for all studies investigating the role of AI in the surgical setting, published 

between January 01, 2000, and June 30, 2023. Our focus was on randomized controlled trials (RCTs), 

meta-analysis, systematic reviews, and observational studies, dealing with large cohorts of patients. 

We then gathered further relevant studies from the reference list of the selected publications. Based on 

the studies reviewed, it emerges that AI could strongly enhance the screening efficiency, clinical ability, 

and diagnostic accuracy for several surgical conditions. Some of the future advantages of this 

technology include implementing, speeding up, and improving the automaticity with which AI 

recognizes, differentiates, and classifies the various conditions. 
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1. Introduction 

Artificial intelligence (AI) is a discipline that studies models and the development of algorithms 

so that machines can acquire the ability to self-learn and achieve human-like performance in complex 

tasks [1,2]. These algorithms are based on the analysis of large amounts of data in a limited time 

span to achieve learning, problem-solving, and decision-making in complex scenarios [3]. AI 

represents, therefore, a tool with the potential to revolutionize the practice of medicine in many fields, 

including surgery. 

Today’s medicine has reached a complex and at times overwhelming level of data production. 

Analyzing and retaining such a plethora of data is not always feasible in a limited time span, and it 

may require skills that could prove difficult to be retained by a single expert [4]. Therefore, machines 

with deep learning capabilities can be used as an invaluable tool for observing data and learning from 

them. The aim is to support doctors in their daily clinical practices [5], reducing diagnostic and 

screening errors, which are still an important cause of foreseeable and preventable damage to patients. 

Indeed, studies are being published on the role already played by AI-based decision-making 

algorithms in supporting doctors at the point of care [6,7]. Furthermore, it is foreseeable that 

predictive analytics could generate personalized, patient-centered decision-making, improving care 

and diagnosis [8]. 

The World Health Organization (WHO) has suggested various types of screening procedures, 

depending on the type of cancer being examined (e.g., mammography for the breast, pap smear for the 

cervix). However, they still have limitations [9] such as the operator-dependent variability in the reporting 

of an exam and the long analysis time of some data-rich techniques, such as MRI. To overcome these 

objective difficulties, doctors have been supported by tools in their clinical practice. These tools are known 

as computer-aided detection and diagnosis (CAD) systems. Through diagrams and mathematical models, 

CAD systems have the task of analyzing data [10]. This feature removes the difficulties due to inter- and 

intra-observer variability and reduces the effort required to perform the analysis [11].  

Despite its potential, the development of medical AI systems as diagnostic aids represents an 

untapped opportunity, especially in surgery [2,8,12–14]. In fact, there is still some mistrust of AI 

among surgeons, which makes its adoption in decision-making less likely [2,14].  

In the literature, there are only a few studies on the applications of AI in the screening and 

diagnosis of surgical conditions. However, the subject of AI in general surgery is gaining an increased 

interest and relevance as a potential diagnostic and therapeutic tool [10]. Historically, surgery has been 

one of the branches most inclined to innovation and adoption of new technologies able to offer 

advantages in terms of performance [14]. To our knowledge, this is the first review that analyzes the 

application of AI in the diagnosis and screening of some of the main diseases with surgical interest; it 

aims to provide an in-depth analysis of the use and future applications of AI in fields such as gastric 

cancer, colorectal cancer, or thyroid cancer.  
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2. Methods 

We performed a literature review by searching PubMed, Web of Science, Scopus, and EMBASE 

using the following keywords: “artificial intelligence in medicine” AND “artificial intelligence and 

diseases diagnosis” OR “application of artificial intelligence in general surgery” OR “AI and cancer 

diagnosis” OR “AI and future perspectives in medicine” OR “Future of AI in medical diagnosis” OR 

“AI and gastric cancer” OR “AI and colorectal cancer”. Articles published between January 2000 and 

June 2023, addressing the use of AI as a diagnostic aid in general surgery, were analyzed (Figure 1). 

The search was limited to studies in the English language. Incomplete articles and those in preprint or 

not peer-reviewed were excluded. We focused our attention on randomized controlled trials (RCTs), 

meta-analyses, systematic reviews, and observational studies on cohorts of patients. The process of 

screening and selecting articles was based on titles, abstracts, and full-text reviews. Our focus was to 

evaluate the various studies addressing the association between AI and screening or diagnosis of the 

main diseases in the field of general surgery (colorectal, stomach, thyroid, parathyroid, breast). We 

also aimed to evaluate any prospects for the application of AI in the same field of interest.  

From a total of 120 articles analyzed, 91 items were selected and 29 excluded, as shown in Figure 

1. The articles included were either prospective or retrospective, monocentric or multicenter studies, 

and with a variable number of patients (hundreds to thousands). 

 

Figure 1. Flowchart of research. 
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3. Results 

The results of our review have been organized into paragraphs, divided into fields of application 

of AI in colorectal, stomach, thyroid, parathyroid, and breast diseases. The Tables 1, 2, 3 and 4 show 

observational studies divided by topic. 

3.1. AI in colorectal cancer 

Screening, diagnosis, and treatment of colorectal cancer (CRC) may represent an important field 

of application of AI [15–17]. Colorectal cancer is the third most frequent cancer in the world; however, 

through screening and early diagnosis programs, its mortality rate is being reduced [18].  

A few studies have evaluated the integration of AI algorithms with gene expression in CRC 

patients. Hu et al. showed the ability of AI to detect an eventual relapse after surgery [19]. The 

authors compared the performance of three neural networks: S-Kohonen, Back-propagation, and 

Support Vector Machine (SVM) [19]. The AI tool analyzed the presence of genes predictive of 

malignancy. The genes were extrapolated from tissue samples obtained from 53 patients who had 

undergone surgery for CRC. S-Kohonen was the best at correctly recognizing the largest number of 

genes associated with cancer [19]. Xu et al., using the SVM system, identified 15 genes as predictors 

of risk of recurrence or prognosis in patients with colon cancer [20].  

An interesting study, published in 2019 by Wang et al., proposed new approaches to improve the 

diagnosis of CRC using The Cancer Genome Atlas database and analyzing artificial neural networks. 

These authors have identified four diagnostic models with a predictive accuracy of 100%: 

Cancer/Normal, M0/M1, carcinoembryonic antigen (CEA) <5/≥5, and Clinical stage I–II/III–IV [21]. 

Other studies have evaluated the ability of artificial neural networks to compare the expression 

profiles of micro RNAs (miRNAs) in CRCs. MiRNAs could be potential drug targets [22–24].  

Another field of application of AI could be the assessment of CRC risk in the general 

population [17]. Colonoscopy is the gold standard screening test for CRC. However, there is a 

percentage of CRCs that present a few years after a negative colonoscopy [17,25].  

Some studies have shown the role of AI during colonoscopy in the automated identification and 

characterization of polyps through the use of CAD [12–15]. The neural network used was a 

convolutional neural network (CNN). CNN helps to interpret complex images by simplifying the 

detection of premalignant lesions [17]. Wang et al. showed that a colonoscopy with CNN achieved a 

better identification of hyperplastic polyps and small polyps compared with a colonoscopy alone [26]. 

This neural network identified the region of interest (ROI) in a complex image, discerning the lesions 

present in the ROI as polyposis or non-polyposis [26].  

Further studies have highlighted the ability of AI algorithms to detect colorectal polyps with high 

sensitivity and specificity [27–30]. Deliwala et al., in their meta-analysis of six RCTs totaling 

approximately 5000 patients, concluded that AI is useful in detecting small-sized adenomas [28]. Hori 

et al. developed an automated collection system using a deep learning algorithm, which allowed the 

collection of 47,000 endoscopic images taken from approximately 750 colonoscopies and the 

extraction of key polyp images [29]. The AI system identified 1356 images of polypoid lesions with 

97% sensitivity, 97.7% specificity, and 97.3% accuracy [29]. Hassan et al. used AI to distinguish between 
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adenomatous and non-adenomatous lesions smaller than 5 mm in the sigmoid colon and the rectum [30]. 

In 291 of the 295 lesions, the AI technology was able to correctly diagnose a polypoid lesion [30]. 

The Synergy-Net project used AlexNet with promising results [31]. This CNN was previously 

trained on a dataset of images of neoplastic lesions. The dataset used was the ImageNet, obtained 

from approximately 200 colonoscopy images, selected by surgeons and gastroenterologists [31]. 

From these images, AlexNet identified the large polypoid lesions. The future prospect is to use 

AlexNet during a colonoscopy [31]. 

Kudo et al. used AI to identify patients with lymph node metastases in T1 colorectal cancer [32]. 

AI recognized lymph node metastases in 10.2% of CRC patients (319 out of 3134), showing the 

potential to be used in the foreseeable future to assess the risk of lymph node metastases. 

Based on this new evidence, routine colonoscopy can benefit from the help of AI-assisted models, 

which can be used as an “extra pair of eyes” in real time [17]. 

There are also interesting studies on the use of AI in identifying complete responders (CR) 

and non-responders (NR) to neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal 

cancer (LARC) [33–36].  

The role of AI in surgical procedures is still uncertain. With the development of robotic surgery, 

algorithms could also be developed in the future that could help the surgeon locate planes of dissection 

and perform a complete lymphadenectomy. 

Table 1. Observational studies on artificial intelligence in colorectal cancer. 

Authors Year Design Type of study Sample size  

Hu et al. [19] 2015 Prospective Single center 53 

Xu et al. [20] 2016 Retroscpective Genetic screening 1207 genes 

Morris et al. [25] 2015 Retrospective Multicenter 94,648 

Wang et al. [26] 2019 Prospective Single center 1058 

Hori et al [29] 2022 Prospective Single center 47,391 endoscopic images  

Deliwala et al. [28] 2021 Prospective Multicenter 4996 

Hassan et al. [30] 2022 Prospective Single center 162 

Kudo et al. [32] 2021 Prospective Multicenter 3134 

Ferrari et al. [33] 2019 Prospective Single center 55 

Shi et al. [34] 2019 Prospective Single center 51 

Abraham et al. [35] 2021 Prospective Single center 467 

Oyaga-Iriarte et al. [36] 2019 Prospective Single center 20 

3.2. AI in gastric cancer 

Gastric cancer is the fourth most common cancer in men and the seventh most common in 

women [37]. The 5-year survival for stage IA and IB cancers treated with surgery ranges from 60% to 

80%. Patients with stage-III tumors who undergo surgery have a 5-year survival rate of 18% to 50%, 

depending on the dataset [38,39]. Diagnosis of gastric cancer is often delayed [40]. This is due, in 

many cases, to an insidious onset with non-specific and latent symptoms. According to various studies, 

an early diagnosis of gastric cancer can improve the 5-year survival rate [41].  
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Early detection of cancerous lesions is crucial to prolong survival; however, its accuracy is 

operator-dependent. To overcome the risk of inconsistencies, AI is taking on an important role in 

detecting gastric lesions during gastroscopy through the automatic recognition of ROI [42–45]. 

Luo et al. trained a neural network with 1,036,496 standard white-light endoscopic images of 

84,424 cases across China [42]. The sensitivity achieved by their AI was comparable to that of an 

experienced endoscopist and higher compared with competent and trainee endoscopists. Consequently, 

the authors developed the Gastrointestinal AI Diagnostic System (GRAIDS).  

Sakai et al. trained a neural network to detect cancerous lesions and distinguish them from normal 

stomach images during gastroscopy [43]. The method used was transfer learning. The ability of AI to 

automatically discriminate between the two types of gastroscopic images was 87.6%.  

Hirasawa et al. used an AI tool, trained with over 13,000 gastroscopic images, with the aim of 

recognizing both early and advanced cancer images [44]. The AI tool was tested on 71 cancer images 

with a diameter greater than or equal to 6 mm. In 70 of the 71 cases, AI was able to identify the 

neoplastic lesion, with an accuracy of 98.6%. 

Wu et al. trained a neural network to recognize early gastric cancer (EGC) [45]. The neural 

network demonstrated an accuracy of 92.5%, a sensitivity of 94.0%, a specificity of 91.0%, a 

positive predictive value (PPV) of 91.3%, and a negative predictive value (NPV) of 93.8% [45]. 

In this case, AI was exposed to a grid model that fractionated the stomach into different windows. 

The AI automatically signaled blind gastric regions to the endoscopists during EGD. When the 

gastroscope was inserted into the stomach, the neural network model started capturing gastric 

images and filling them in the corresponding part of the model it was trained on, coloring the 

various parts (so-called ROIs). 

An important application of AI is the recognition of precancerous gastric lesions. Again, the 

recognition of precancerous lesions, endoscopically, often depends on the experience of the 

endoscopist [46]. For this reason, Guimarães et al. trained a neural network that recognized chronic 

atrophic gastritis [47]. Being trained with 200 endoscopic images of chronic atrophic gastritis, AI 

reached an accuracy of 93% in recognizing these precancerous lesions, faring better than a team of 

expert endoscopists.  

Some authors have focused on the ability of AIs to distinguish malignant from non-malignant 

lesions. Horiuchi et al. trained their neural network with 1492 EGCs and 1078 gastritis images [48]. 

AI correctly recognized 220 of the 258 images submitted sequentially to the neural network, with a 

sensitivity of 95.4%, specificity of 71%, and PPV of 82.3%. 

Ueyama et al. trained a neural network with 5574 endoscopic images of both neoplastic and non-

neoplastic lesions [49]. The overall accuracy, sensitivity, and specificity of this system were 98.7%, 

98%, and 100%, respectively.  

Li et al. developed a neural network called GastricNet to automatically identify cancerous 

gastric lesions [50]. The classification accuracy of the proposed picture was 100% on gastric 

pathological sections.  

Even in computed tomography (CT), the ability to make a correct diagnosis of gastric cancer 

is operator-dependent [51]. Some authors developed AIs capable of identifying ROIs in CT images. 

Huang et al. created a neural network model to identify preoperative peritoneal metastases in 

advanced gastric cancer [52]. Li et al. proposed CT imaging analysis for lymph node metastases 
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in gastric cancer [53]. Their algorithm developed in 2012 achieved 96.3% accuracy; the algorithm 

developed in 2015 achieved an accuracy of 76.9% [54]. 

Another field of study in gastric cancer is a preoperative criterion for endoscopic resection: 

the depth of tumor invasion. Endoscopic curative resection can be performed for intramucosal 

cancer and cancer with submucosal invasion <500 µm [55]. Studies used transfer learning 

technology to instruct AI to predict the depth of invasion [56,57]. Zhu et al. and Nagao et al. used 

a pre-trained CNN with 203 and 16,557 gastric cancer images, respectively. Both AI technologies 

achieved greater accuracy than human endoscopists in predicting any submucosal invasion by 

looking at the endoscopic image [56,57]. 

Another application of AI concerns the predictive ability of patient survival with gastric cancer. 

Jiang et al. developed an AI that ranked patients on survival prognosis, which included the survival 

capacity of patients undergoing adjuvant chemotherapy [58]. According to the authors, the AI’s ability 

to predict the survival rate of patients was superior to the staging system developed by the American 

Joint Committee on Cancer. Lu et al. performed a similar study to Jiang’s, demonstrating that their AI 

model improved the ability to predict overall survival [59].  

Another application of AI, which aims to determine the patient’s prognosis, is the recurrence 

risk assessment, particularly when it comes to the risk of developing metastases. Hensler et al. 

devised an AI capable of predicting lymph node metastases preoperatively [60]. Their model was 

superior to the diagnostic system of the National Cancer Center in Tokyo. Jagric et al. have devised 

an AI capable of identifying the risk of liver metastases in patients who have already been operated 

for gastric cancer [61]. Jiang et al. have developed a deep learning model to predict peritoneal 

recurrence of gastric cancer from preoperative CT images [62]. The number of patients enrolled in 

the study was 2320. The AI technology showed an ability to predict peritoneal recurrence with a 

steadily increased accuracy. The use of this AI improved disease-free survival. When AI classified 

the patient with a high risk of peritoneal recurrence, postoperative adjuvant chemotherapy 

markedly improved disease-free survival. Consequently, when the predicted risk of AI was low, 

adjuvant chemotherapy did not improve disease-free survival. 

Table 2. Observational studies on artificial intelligence in gastric cancer. 

Authors Year Design Type of study Sample size  

Luo et al. [42] 2019 Retrospective Multicenter 1,036,496 endoscopy images 

Hirasawa et al. [44] 2018 Prospective Single center 69 

Wu et al. [45] 2019 Prospective Single center 324 

Horiuchi et al. [48] 2019 Retrospective Single center 2570 endoscopy images 

Ueyama et al. [49] 2021 Retrospective Single center 5574 endoscopy images 

Li et al. [50] 2020 Prospective Multicenter 341 

Zhu et al. [56] 2019 Retrospective Single center 993 endoscopy images 

Nagao et al. [57] 2020 Prospective Single center 1084 

Jagric et al. [61] 2010 Retrospective Single center  213 
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3.3. AI in breast cancer 

One of the main fields of application of AI is breast cancer screening and diagnosis [63]. AI has 

been used in the recognition of breast lesions by targeting specific ROI. After receiving a radiological 

or tomographic image of the breast, AI breaks it down into smaller images and automatically identifies 

the regions of interest. ROIs are areas automatically selected by AI where the likelihood of detecting 

the breast lesion is likely to be higher [63].  

Approximately 97% of mammograms show no malignant breast lesions (identifiable as true 

negatives). Screening mammography has been shown to reduce breast cancer mortality. Given the 

large number of mammograms performed each year (33 million in the US alone), automating the 

diagnosis would reduce the workload of radiologists, improving reporting speed [64].  

The task of AI is to help the radiologist in the diagnosis of breast lesions that are considered 

suspicious or that were not considered in the evaluation of mammography or tomography. The goal is 

to reduce false negatives [65]. Retrospective studies were therefore carried out to evaluate the ability 

of CAD systems to identify breast lesions in radiographic and tomographic images.  

The initial results appear promising [66–69]; however, a study conducted by Lehman et al. 

showed that CAD systems detected a larger number of false positives [70]. Indeed, in recent years, 

new protocols have been expected to improve the screening intervals and the technologies used but, in 

turn, they can increase false positives [71]. 

Some risk factors for breast cancer are radiologically relevant; a particularly important one is 

breast density. In fact, dense breasts can hide lesions in mammograms, carrying a higher risk of 

causing false negatives. Hence, AI is gaining an increasingly important role in breast cancer 

diagnostics [72]. The ability to evaluate a breast lesion in a dense breast depends on the experience 

of the operator assessing the mammogram [73]. Some authors have trained AI with numerous 

radiological images and assessments made by expert radiologists. Mohamed et al. trained AlexNet 

using mammograms from 1427 women [74]. The authors demonstrated that the ability of AI to 

identify breast lesions in dense breasts depends on the type of mammographic projection used, 

showing greater precision in mediolateral oblique views.  

Lehman et al. developed an AI technology called ResNet-18 using mammography images 

from 39,272 women [75]. Initially, the assessment by the AI was compared with that of 12 

radiologists, showing a good level of agreement. Subsequently, 500 images were randomly 

selected and subjected to the opinion of five other radiologists; also, in this case, there was a good 

level of agreement. Finally, eight other radiologists reviewed 10,763 images already evaluated by 

the AI, with similar levels of agreement. 

Dontchos et al. used a deep learning model for predicting mammographic breast density in routine 

clinical practice [76]. They compared mammogram assessments by academic and non-academic 

radiologists (94.9% and 90.7%). The result was a reduction in the percentage of mammograms rated 

as dense from 47% to 41%. 

Kallenberg et al. developed a deep learning model to predict the risk of breast injury 

associated with breast density [77]. The sample included 493 women. The two inputs used were 

breast density segmentation and mammography facility score. Sørensen–Dice coefficient (DSC) 
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was 63%; this means that in 63% of cases, there was a similarity between the predictive model of 

breast injury and reality. 

Finally, some AI studies evaluated the assessment of breast density from reconstructed 3D images. 

In Gastounioti et al., 132 women already diagnosed with breast cancer and 528 women with no 

evidence of neoplastic breast lesions were enrolled in the study [78]. A software reconstructed the 

breasts in 3D; then, these images were subjected to pre-trained AI to associate breast cancer risk with 

breast density. The results were adjusted for age and body mass index. The mean age was similar for 

the two groups, approximately 60 years. Some images were obtained from mammograms (DM) and 

others from digital tomosynthesis (DBT). Volume density estimates calculated from DBT were more 

strongly associated with breast cancer than density derived from DM for both groups. 

Table 3. Observational studies on artificial intelligence in breast cancer. 

Authors Year Design Type of study Sample size  

Birdwell et al. [66] 2001 Retrospective Multicenter 110 patients 

Warren Burhenne et al. [67] 2000 Retrospective Multicenter 427 (images) 

Freer et al. [68] 2001 Prospective Single center 12,860 (images) 

Destounis et al [69] 2004 Retrospective Single center 318 (images) 

Lehman et al. [70] 2015 Prospective Multicenter 323,973 (images) 

Dontchos et al. [76] 2021 Prospective Multicenter 2174 (images) 

3.4. AI in parathyroid and thyroid disease 

In recent years, the use of AI for the screening and diagnosis of parathyroid and thyroid diseases 

has been increasingly used in several research programs [79]. At the time of surgery, one of the 

difficulties may be the identification of some anatomical structures. A typical difficulty is 

distinguishing parathyroid glands from perithyroidal lymph nodes [80].  

Wang et al. addressed this problem by using three AI models, named YOLO V3, Faster R-CN and 

Cascade [81]. These AI models were pre-trained to recognize the parathyroids by using images from 

166 videos, showing a total of 1700 parathyroids. The algorithm with the best performance in 

recognizing parathyroids was R-CNN. Data from 20 additional full-length videos were used as an 

independent external cohort for two groups of professionals: one of junior surgeons and one of senior 

surgeons, to compare the accuracy of parathyroid recognition by AI with the two groups. The accuracy 

of AI was 88.7%, which compared favorably to the independent external cohort of senior and junior 

surgeons, whose detection rates were 87.5% and 71.9%, respectively. Furthermore, AI recognized the 

parathyroid glands with an advantage of 3.83 s compared to senior surgeons, with a longer monitoring 

period of 62.82 s compared to junior surgeons. From these results, the ability of parathyroid recognition 

by AI appeared superior to that of junior surgeons and like that of experienced surgeons. In the future, 

such AI models could be used to speed up and simplify the recognition of parathyroids, assisting 

especially junior surgeons. 

Another study was conducted by Seyma et al. [82]. The authors developed an AI technology 

able to recognize abnormal parathyroids (e.g., hypersecretory ones) during surgery and 
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differentiate them from normal parathyroids. The parathyroids are known to fluoresce darker and 

heterogeneously in cases of hyperparathyroidism [83,84]. A total of 303 patients were enrolled in 

the study, and 906 auto-fluorescent intraoperative parathyroid images were used to train and test 

the AI model. The goal of AI was to recognize and differentiate abnormal parathyroids. Area under 

the receiver operating characteristic curve (AUROC) and area under the precision-recall curve 

(AUPRC) of the model to predict normal and abnormal parathyroid glands were 0.90 and 0.93, 

respectively. Model recall and model accuracy were 89% each. From their results, the authors 

concluded that AI could be used effectively in cases of primary hyperparathyroidism by 

recognizing abnormal parathyroids during surgery [83,84]. 

Regarding thyroid surgery, one of the difficulties of surgeons is to identify lymph node masses 

suspected of being positive for metastases [85]. Techniques have been developed to identify and 

differentiate normal from abnormal lymph nodes. In patients with papillary thyroid cancer (PTC), 

the presence or absence of lymph node metastases has crucial implications for both staging and 

treatment of the disease, although lymph nodes are often not removed during thyroidectomy. 

Esce et al. developed a CNN to predict lymph node metastases starting from the histology of 

PTC [86]. A cohort of 174 patients was enrolled to train AI so that it could discriminate the group 

with lymph node metastases from the group without lymph node metastases. The neural network 

recognized lymph node metastases with a sensitivity of 94% and a specificity of 100%. Based on 

their results, the authors suggested that, in the future, AI will be usable to identify lymph node 

metastatic lesions from visual histopathological images. 

Recently, the same authors conducted a follow-on multicenter study aimed at further assessing 

the ability of a CNN to predict the presence or absence of lymph node metastases in patients with 

PTC [87]. When CNN from one institution was tested against images from the other institution, the 

achieved sensitivity and specificity were 65% and 61%, respectively. The best-performing 

institution’s combined algorithm had a sensitivity and specificity of 68% and 91%, respectively. The 

authors concluded that the results were comparable to the ones obtained in their previous study, 

confirming the future potential advantage of using AI technologies to generate algorithms able to 

predict the presence of lymph node metastases in patients with PTC [87]. 

Wang et al., in turn, developed an AI model to recognize cervical lymph node metastases [88]. In their 

retrospective multicenter study, preoperative CT images were used to train the AI neural network. An 

experienced radiologist identified an ROI for each CT scan. Subsequently, the same CT images were 

used to train the AI. With the help of the AI system, the radiologists’ specificity was improved by 9% 

and 15% for R1 and 13% and 9% for R2, respectively; this means that the AI model was superior to 

the radiomic and clinical model in predicting the cervical lymph node metastasis (CLNM) of the PTC. 

Therefore, increasing the preoperative diagnostic capabilities could also improve the accuracy and 

precision of the surgical intervention in the future. 

Ultrasonography is an essential diagnostic tool for the early identification of benign and 

malignant thyroid lesions [89,90]. However, being operator-dependent, its diagnostic yield may be 

reduced in the hands of young or less experienced doctors. Therefore, the use of AI can assist 

sonographers in improving their diagnostic accuracy while reducing the time to diagnosis [91]. 

One of the main applications of AI-assisted ultrasonography involves the discrimination between 

benign and malignant thyroid nodules. Several authors have developed CAD that uses machine 
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learning (MC) technologies with an aim to demonstrate the ability of AI to assist doctors in the 

diagnosis of thyroid diseases [91].  

The first to carry out such a study were Hirning et al. [92]. Already in 1989, the authors enrolled 

55 patients and created an automatic classifier of benign and malignant thyroid lesions, achieving an 

accuracy of 85%.  

Tsantis et al. and Chang et al. performed the same type of study on 120 and 61 patients, reaching 

accuracies of 96.7% and 100%, respectively [93,94]. 

Iakovidis et al. were among the first to use a fuzzy system to classify thyroid lesions by 

ultrasound [95]. Fuzzy systems appear to be suitable methods for examining data as they deal with 

uncertainty and ambiguity in data [96]. They have been successfully applied to various areas such as 

classification, pattern recognition, and prediction. 

AI has also been used to identify benign and malignant thyroid nodules in fine needle aspiration 

biopsies (FNAB). Kezlarian et al. have published a systematic review on this topic [97]. The authors did 

not find statistically significant reliability at the point of care, deeming algorithms not yet suitable for 

correctly classifying benign and malignant FNABs [97]. 

Some authors have tried to use AI to distinguish follicular adenomas from follicular carcinomas. 

Currently, the diagnosis requires evaluation of the thyroid capsule. For this reason, the authors have trained 

AI technologies. Savala et al. used 57 cases divided between adenomas and follicular carcinomas [98]. The 

AI tool recognized three follicular adenomas and six follicular carcinomas. 

Shapiro et al. trained three neural networks with the same goal [99]. The first used cytology 

features such as colloid, cytoplasm, and tissue fragments selected by expert pathologists, the 

second used thyroid morphology features, and the third used images of Giemsa-stained smears. 

The cytological algorithms correctly classified 93%, 96%, and 87% of cases, respectively. 

Other authors have been developing an AI classifier that identifies benign and malignant 

thyroid nodules based on their ultrasound features. Chen et al. enrolled 227 participants with 256 

nodules [100]. Patients’ clinical data were collected and the presence of calcifications on 

conventional grayscale ultrasound images was retrospectively examined by an endocrinologist. 

Quantification of cystic components and calcifications was performed automatically by the 

classifier (AmCAD-UT). The calcification index (CI) was calculated after excluding the cystic 

component. Calcifications were found in 48.19% of malignant thyroid nodules and 10.98% (19 of 

173) of benign nodules [100]. This new computer-assisted diagnosis method for evaluating 

ultrasound calcifications of thyroid nodules is a more sensitive and objective method. According 

to the authors, it may provide better sensitivity than conventional methods in the diagnosis of 

thyroid tumors containing microcalcifications. Choi et al. used images of 99 calcified thyroid 

nodules to train a neural network [101]. The neural network subsequently had to be capable of 

classifying benign and malignant thyroid lesions. The data examined dealt with the relationship 

between calcification distance, number of calcifications, and maximum intensity. The results 

showed a sensitivity of 83.0%, a specificity of 82.4%, and an accuracy of 82.8% [101]. 
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Table 4. Observational studies on artificial intelligence in parathyroid and thyroid disease. 

Authors Year Design Type of study Sample size  

Wang et al. [81] 2022 Prospective Single center 1700 images 

Avci et al. [82] 2022 Prospective Single center 303 images 

Akbulut et al. [83] 2021 Prospective Single center 106 images 

Esce et al. [86] 2021 Prospective Single center 174 patients 

Esce et al. [87] 2023 Retrospective Multicenter 420 patients 

Wang et al. [88] 2023 Retrospective Multicenter 671 patients 

Tsantis et al. [93] 2005 Prospective Single center 120 images 

Iakovidis et al. [95] 2010 Prospective Single center 75 patients 

Savala et al. [98] 2018 Prospective Single center 57 images 

Shapiro et al. [99] 2007 Prospective Single center 197 images 

Chen et al. [100] 2011 Prospective Single center 227 patients 

Choi et al. [101] 2015 Retrospective Single center 99 images 

4. Limits and future prospects 

AI provides advantages when applied to the diagnosis and screening processes of surgical 

diseases. AI systems are useful in helping surgeons to identify precancerous lesions and anatomical 

structures of doubtful interpretation, as well as evaluating the accuracy of a diagnostic and screening 

procedure. They also prove to be useful in developing precision medicine models personalized for 

each individual patient. All this can improve the speed and accuracy of some diagnoses.  

However, there are still significant limitations to the use of AI in the clinical setting. First, it is 

not easy to train an AI to think like a human and use it on a large scale. The standardization of AI and 

its uses by governmental organizations, which currently do not exist, is becoming necessary. Another 

important limitation is the cost of developing and training AI and the need to have a lot of quality data 

to achieve reliable results. Data should be standardized as much as possible, considering the variability 

of clinical conditions, to avoid generating unpredictable algorithms. Finally, randomized controlled 

clinical trials are needed to evaluate the appropriateness of AI algorithms.  

In general, the scientific community remains confident about future applications of AI in surgery, 

screening, and diagnosis. As discussed in our review, deep learning and machine learning systems are 

expected to improve the recognition and classification of potentially malignant and malignant lesions. 

Furthermore, AI models are showing the potential to enable future diagnostic improvement and 

management of patient clinical data. 

In our opinion, academic societies and surgical training programs should promote a basic 

understanding of clinical AI. At the same time, AI should be further developed and improved as an aid 

in the process of surgical decision-making. Ultimately, AI in surgery should earn the trust of surgeons 

by demonstrating performance benefits in terms of patient care. 
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5. Conclusions 

The aim of this systematic review is to describe the state of the art and potential future 

developments of AI as an aid in the screening and diagnosis of main surgical diseases. The review 

of literature indicates that the application of AI has already shown promising results in improving 

the efficiency and accuracy of diagnosis and treatment in several types of cancer, such as breast and 

colorectal. In other fields, such as thyroid pathology, AI is still facing several problems: unreliability 

in cytopathological diagnosis, difficulty in discriminating follicular lesions, and inaccurate prognosis. 

The future prospect is to speed up, implement, and improve the automaticity with which AI 

recognizes, differentiates, and classifies pathological lesions. However, RCTs should be performed 

to evaluate long-term functional outcomes. 
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