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Abstract: In recent years, machine learning (ML) and deep learning (DL) have been the leading
approaches to solving various challenges, such as disease predictions, drug discovery, medical image
analysis, etc., in intelligent healthcare applications. Further, given the current progress in the fields of
ML and DL, there exists the promising potential for both to provide support in the realm of health-
care. This study offered an exhaustive survey on ML and DL for the healthcare system, concentrating
on vital state of the art features, integration benefits, applications, prospects and future guidelines.
To conduct the research, we found the most prominent journal and conference databases using dis-
tinct keywords to discover scholarly consequences. First, we furnished the most current along with
cutting-edge progress in ML-DL-based analysis in smart healthcare in a compendious manner. Next,
we integrated the advancement of various services for ML and DL, including ML-healthcare, DL-
healthcare, and ML-DL-healthcare. We then offered ML and DL-based applications in the healthcare
industry. Eventually, we emphasized the research disputes and recommendations for further studies
based on our observations.
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1. Introduction

A new era in healthcare is beginning, one in which extensive medical data will be more and more
important. For instance, accuracy in healthcare looks at a range of patient information, in addition to
variances within molecular features, Electronic Health Records (EHRs) and surroundings, as well as
ways of living. This guarantees that the proper drug is provided to the appropriate patient at the correct
point in duration [1, 2]. As a result of increased access to healthcare data, healthcare research has
both opportunities and challenges. Discovering the connections between all the data in huge medical
datasets is a significant challenge for developing a reliable healthcare system based on data-driven
methods, deep learning (DL) and machine learning (ML). In the past, academics have tried to merge
data from various sources to create collaborative knowledge sets that may be used for prediction and
discovery [3]. DL and ML, technique-based prediction tools, have not been widely deployed in the
healthcare industry despite the fact that existing models have significant promise [4, 5]. Biological
data’s high complexity, variety, dependency on time, sparsity, and unpredictable nature make it difficult
to effectively use [6].

Our cities are becoming more digital as a result of vigorous devices equipped with sensors for data
collecting, environmental inspection, digital carriage, health betterment, simple entrance to facilities
and services, and general assistance requirements for one and all across the urban areas. The term
“smart city” is frequently used to describe a digital metropolis. A smart city contains many elements,
all connected by increased technology and the requirement to offer its residents high-quality services
[7–9]. Smart health is one of these elements. The application of cutting-edge technology to improve
and provide high-quality healthcare is known as smart health. Therefore, it necessitates the use of
astute gadgets, electronic health surveillance equipment, and web services that are entirely associated
with a data core in order to draw conclusions about a person’s or a community’s health. Since many
people use smart health, its creation is a great development. This has increased demand for smart health
apps in recent years, along with the continued advancement of technology instruments. For instance,
with a mobile smartphone and the inbuilt sensors and applications available on these devices, a person
may check their blood pressure [10]. Additionally, the effects of weather on health may be explored by
the weather or climatic data of a specific location inside a city to learn what sort of regions of the city
to escape [11].

It is standard procedure in biomedical research to have a specialist choose the phenotype that will be
employed. Nevertheless, supervised feature space definition loses opportunities to find novel patterns
and scales poorly. The graphical representations required for the forecasting can instead be automati-
cally found from the raw data using learning-based methodologies. The nonlinear modules known as
layers of representation are also used by DL and ML methods to transmute the properties at a specific
level (starting over the initial contribution of the data) toward some properties at a more metaphorical
level. The DL and ML present a fascinating as well as a contemporary paradigm which is potential
for biomedical informatics considering their demonstrated effectiveness in a variety of fields (such as
recognition of voices, machine apparition, spontaneous language processing chores, etc.) along with
the prompt speed of methodological improvements [12]. The utilization of DL and ML aptitudes in
healthcare is currently proposed or is already in use. For example, International Business Machines
(IBM) Watson Health uses this technology to interact with patients and healthcare providers and fo-
cuses on providing affordable healthcare to a large population; Google DeepMind has put up a strategy
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to utilize its specialized expertise to enhance healthcare [13], for the purpose of identifying health con-
cerns on computed tomography (CT), scans, Enlitic employs deep neural networks and X-rays [14],
and these are just a few examples.

The extensive application of computer-assisted decision-making and outcome evaluation in the pro-
vision of healthcare highlights the technical value of modeling expertise and knowledge [15]. On the
other hand, conventional rule-based models primarily rely on feature representation of issue domains
and are unable to accurately mimic the complexity of human brains. So, we attempt to address this
issue by using a deep model. The deep model creates a single model that can imitate human thought
processes by fusing feature representation with learning. However, a vast number of medical conditions
that could profit from DL and ML approaches haven’t been fully investigated. The various advantages
of DL and ML, such as improved performance, a lateral learning model with incorporated feature
learning, and the aptitude to deal with intricate, diverse information, among others, could be advanta-
geous to the healthcare industry. Additionally, the sparse, noisy, heterogeneous, and time-dependent
nature of healthcare data presents a number of challenges for the DL and ML research community [16].
Additionally, better methods and tools are required to integrate DL into clinical decision-support func-
tioning.

In view of this study, we address existing and planned DL and ML applications in medicine, draw-
ing attention to the prominent factors that appreciably influence health care. We don’t wish to furnish a
comprehensive context on technological particulars (for example, [17,18]) or common uses of DL and
ML [19]. Instead, we emphasize on biological information obtained through clinical imaging, EHRs,
and wearable technology. These industries have not yet made considerable use of DL and ML, despite
the fact that other data sources, such as the metabolome, antibody one, and other omics data, are pro-
jected to be helpful for health monitoring. We consider these aspects in the context of the characteristics
and powers of various DL and ML methods, as well as their practical uses in problem-solving [20].
Another key goal of this study is to identify important research opportunities and issues, such as those
pertaining to new algorithm design, data-driven hyperparameter learning, model optimization, inte-
grating domain knowledge, and adapting to resource-constrained devices, as well as effective data rep-
resentation. One possible product of this work is “Future Generation ML-DL Modeling”. Therefore,
the purpose of this work is to serve as a reference for scholars and industry professionals who wish to
learn about and create data-driven intelligent systems and enhance intelligent healthcare through the
use of DL and ML techniques. We have reviewed a significant number of publications with an empha-
sis on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) technique,
which is a frequently used checklist and guideline for reporting systematic reviews and meta-analyses
of studies that evaluate healthcare interventions or other healthcare-related concerns. The following
checklist items—justification, eligibility requirements, search method, research selection, data extrac-
tion, and synthesis—were covered in this study that coordinated with this technique. The concrete
contribution of this paper is summarized as follows:

• We provide a comprehensive outline of ML and DL applications within the healthcare sector.
• We extensively present some areas that can cover the cutting edge based on the key features of

ML, DL, and healthcare.
• We efficiently integrate as ML-DL, ML-healthcare, and DL-healthcare based on novel taxonomic

strategies that can be able to offer individual services and grouping-based application services.
• We consider some concrete ML, DL and healthcare-based applications from diverse perspectives.
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• In addition, we highlight the open issues and challenges and provide a solution path for future
research indications.

Organization of this survey: This article is arranged as follows: Table 1 displays the abbreviations
used in this paper. Section two describes the survey organizing technique PRISMA, which is main-
tained throughout the research. Section three provides a review of ML, DL and healthcare. After that,
section four presents integration among them with a couple of tremendous taxonomies. Applications
of ML, DL, and healthcare in diverse areas have been highlighted in Section five. Also, section six
considers potential challenges as well as future opportunities in the area of our desire. At last, we
conclude this study in Section seven. In summary, this study presents a logical road map in Figure 1.

Figure 1. Road-map of this paper.
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Table 1. List of common abbreviations with description.

Keys Description
AI Artificial Intelligence
ARM Association Rules Mining
COVID-19 Coronavirus Disease 2019
CNN Convolutional Neural Network
DoS Denial of Service
DL Deep Learning
DT Decision Tree
EHR Electronic Health Records
FCNN Fully connected neural network
FL Federated Learning
GBCAs Gadolinium-based Contrast Agents
HCU Healthcare Control Unit
HM Healthcare Management
HPW Healthcare Provider’s Wallet
IIoT Industrial Internet of Things
IoMT Internet of Medical Things
IoT Internet of Things
kVp kilo Voltage peak
LR Logistic Regression
MCC Matthews Correlation Coefficient
ML Machine Learning
MHCL Machine Learning for healthcare communication
RL Reinforcement learning
XAI Explainable Artificial Intelligence

2. Searching methodology and implementation of PRISMA approach

We have implemented PRISMA in this survey paper. Although there are so many terms and tech-
niques, some of them are considered here that are appropriate for this scenario. The following are the
important terminology and principles for this approach:

• A handful of particular phrases have been used in the search of the journals that were part of our
analysis.
• For the purpose of accumulating statistics, the majority of recent publications from 2020 to 2023

have been included.
• In Figure 2, a brief synopsis of recent works, such as most of the papers cited from 2022 and

second most from 2023, were included in the documentation in this survey.
• The terms “Machine Learning in Healthcare”, “Deep Learning in Healthcare”, and “Machine

Learning and Deep Learning in Healthcare” etc. have been used to filter abstracts of various
articles and identify pertinent information.
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• Certain rules, such as, the articles must be published in a reputable publication with up-to-date
content, and several levels of implementation have been maintained.
• A database that was managed during the process has been used to monitor, organize, examine,

and incorporate the papers in this survey.

Figure 2. Considered papers mostly cited in this survey.

Figure 3. PRISMA-based methodology for this survey.
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We have filtered our papers using the above terminology and criteria. In addition, Figure 3 described
the step-by-step process used in this study to adopt PRISMA technology. For the identification process,
we have searched papers with predefined keywords along with some added specific terms. In the
screening part, the duplication of some papers has been removed, and in the eligibility section, the
eligible studies have been considered. After finding the required papers, the inclusion part has been
completed.

3. ML, DL, and smart healthcare: State of the art

The utilization of ML and DL together in the healthcare industry is relatively new and hasn’t been
fully investigated before. The medical healthcare industry is a promising subject according to current
research trends, and we will discuss some of the most important recent literature in the following
sections regarding the methods, contributions, and applications of ML-DL to the many fields of this
industry. A discussion of the surveys (i.e., 49 papers) about DL and ML technologies, together with
the integration of smart healthcare, is presented in Table 2. Each of the groups shown in this table has
had its approach and contributions investigated.

3.1. Key features of ML

Classification: Categorization is a common way that supervised learning issues are represented.
The objective is to develop a technique that, given a limited number of already-known subgroups,
determines which group a new result belongs to. The training set is fed instances with known subcat-
egories. Each observation may receive more than one label during categorization as opposed to each
observation just receiving one. However, the comprehensive taxonomy of the ML approach applied to
healthcare is illustrated in Figure 5.

Clustering: Clustering, which seeks to organize data in a way that they are more similar to one
another than to observations in other groups, is a standard unsupervised learning technique. In contrast
to classification, the clustering is determined by the training data rather than being known beforehand.
The three primary types of clustering algorithms are as follows– centroid-based based, hierarchical,
and density-based [70]. The first two methods are sometimes merged into a single partitional, which
is a class. Many of the solutions mentioned in this article use K-means, one of the more well-known
algorithms [71].

Association Rules Mining (ARM): ARM is the method that is used to unveil latent relationships
between different entities using important metrics. It is one of the most common techniques mostly
used in data mining and ML fields Group regulations unsupervised learning also includes mining.
Support and confidence metrics are the major metrics used to assess association rules.

Reinforcement Learning (RL): Another use of ML that draws on trial-and-error learning is RL.
Real-world learning is based on how people learn by observing their environment. It helps agents who
aim to get the most out of each task overall. RL considers what to do next in order to categorize data
based on the advantages the input provides in the short- and long-term. RL and decision-making are
frequently combined; for example, this configuration permits human-level performance in a variety of
games.
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Table 2. Related surveys on ML, DL, and smart healthcare. Within each group, the cutting-
edge works are chronologically reported and grouped based on the relevant technology.

Authors Year Relevant Fields Contribution and Techniques
Karim et al. [21] 2023

ML/MLTechnique

An brief overview of the application of ML models for fighting against flood using U-Netriver and FloodGAN techniques.
Mukerji et al. [22] 2023 An investigation on the neuropsychological characteristics of HIV-positive individuals with data-driven approach
Chen et al. [23] 2022 Study of the multiple convergence phenomenon management through machine learning having variable selection.
Halbouni et al. [24] 2022 Intrusion detection techniques are incorporated for leveraging ML models for mitigating the issues in the cybersecurity sector.
Luan et al. [25] 2021 An analysis of ML-based algorithms in the education field analyzing the algorithms, evaluation measures, and validation.
Reboredo et al. [26] 2021 The most recent developments of machine learning techniques such as NB, SVM, RF, and ANN in the pharmaceutical research.
Verbraeken et al. [27] 2020 Outlines the benefits and drawbacks of distributed machine learning in comparison to traditional (centralized) machine learn-

ing, as well as the techniques used to implement distributed machine learning.
Alanazi et al. [28] 2020 SIR-F and SIR models are proposed, implemented, additionally numerical along with mathematical analysis. Moreover,

simulation results are presented for smart health care with the help of mathematical and numerical analyses.
Djenouri et al. [29] 2019 Survey and classification of ML applications in smart buildings to implement occupant-centric and energy centric solutions.
Narayan et al. [30] 2023

DL/DL Technique

A brief explanation of techniques using deep learning to recognize human walking styles at a distance. Using the improvement
of Human Gait Activity detection.

Abdusalomov et al.
[31]

2023 A Deep Learning-based methodology that is used for the Improvement of forests fire detection technique.

Ibrahim et al. [32] 2022 A study on the deep learning-based techniques to classify the fruits using Convolution Neural Network (CNN)
Aqeel et al. [33] 2022 A thorough investigation of DNA-based encryption using neural networks in the medical sector.
Ahmed et al. [34] 2021 A algorithm which is based on deep learning presents and constructs a noninvasive, automated IoT-based system for tracking

and detecting patient discomfort.
Zhang et al. [35] 2021 Reviews recommended systems that use deep learning. Proposed a classification approach for grouping and organizing

already-published materials.
Altaheri et al. [36] 2021 DL-based classification of MI-EEG studies from the last ten years. Here, CNN was used to classify MI.
Asraf et al. [37] 2020 Deep learning applications using several dimensions for innovative coronavirus control (COVID-19).
Rahman et al. [38] 2020 A distributed deep learning neural network-based COVID-19 management architecture was presented. Utilizes a distributed

DL paradigm, in which one and all COVID-19 edge uses its own local DL framework.
Kumar et al. [39] 2023

Healthcare

A secure Blockchain and Deep learning based model for IoT based healthcare observing system including AutoEncoder
(DSAE) with Bidirectional Long Short-Term Memory (BiLSTM).

Gnanasankaran et al.
[40]

2023 Analysis NLP techniques of the growth of AI-based application of several areas of the medical field especially after the
COVID-19 outbreak.

Azadi et al. [41] 2023 Using network data and deep learning involvement analysis, predicting the long-term viability of hospital distribution networks
by developing a network DEA (NDEA) model.

Bhat et al. [42] 2023 The Impact and future opportunities of Deep Learning for Medical sector research areas.
Javaid et al. [43] 2022 Machine learning’s relevance in healthcare system an analysis of the characteristics, tenets, and potential by applying sophis-

ticated predictive analytics
Abdullah et al. [44] 2022 A Survey of Probabilistic Deep Learning’s Solutions and Constraints in Healthcare
Futoma et al. [45] 2020 Machine Learning and the fallacy of adaptability in medical studies
Wiens et al. [46] 2019 A guide to ethical machine learning in the medical field.
Periyasamy et al. [47] 2023

ML-Healthcare

A research employing predictive modelling techniques to examine the effects of Singapore’s elderly population on its medical
system includes ANOVA and Correlation.

Patil et al. [48] 2023 This study provides a compressed overview of the application of ML models in the medical arena.
McCoy et al. [49] 2022 To investigate explainability’s function in the application of machine learning for healthcare, as well as the requirement and

importance of this function for the proper and moral deployment of MLHC.
Sabry et al. [50] 2022 This article presents a survey of the many areas of contemporary automated learning development for wearable medical

devices. The difficulties that various gadgets with autonomous learning algorithms face are highlighted using GAN.
Zhang et al. [51] 2022 Deep generative models and federated learning are used in this study as methods to enrich datasets for improved model

performance. More advanced transformer algorithms are also used to enhance the simulation of clinical language.
Siddique et al. [52] 2021 This work emphasizes how the use of Machine Learning (ML) in medical communication may help people. The COVID-19

health awareness campaign, treatment for cancer, and imaging-related chatbots are included in this.
Chen et al. [53] 2021 The ethical part of the medical sector leveraging machine learning approach here a finite sequence of well-defined instructions

and an algorithm is used.
Souri et al. [54] 2020 A novel machine learning-powered surveillance system for medical that uses the IoT to assess the illnesses of students with

SVM.
Mageshkumar et al.
[55]

2023

DL-Healthcare

Automated Collection Reuse for Cloud-Based Medical System with Neural Machine Learning Enabled Categorization Model

Dhar et al. [56] 2023 Clinical vision assessment with deep learning issues, increasing explicitness and Reliability
Narayan et al. [57] 2023 A strategy based on real-time health data to improve the effectiveness of deep learning models
Jujjavarapu et al. [58] 2023 Combining heterogeneous deep neural networks with patients’ both organized and unorganized health data to predict the need

for decompression therapy using classical and generalizability evaluation of DL
Buddenkotte et
al. [59]

2023 An efficient model for ovarian cancer by leveraging deep learning methods with well-established “no-new-Net” (nnU-Net)
framework.

Rajan et al. [60] 2022 An accurate signal prediction and estimate technique based on Deep Neural Networks was utilized in an advanced learning-
based smart-monitor and patient monitoring system for Internet of Things-based medical infrastructure.

Jin et al. [61] 2022 Explainable DL model for a healthcare system with the help of data-driven technologies.
Vinod et al. [62] 2023

ML-DL-Healthcare

Analyzed the application of AI and ML based model for restricting the spread of COVID-19 with AI-driven techniques with
performance metrics.

Zohuri et al. [63] 2023 Machine learning and deep learning components powered by artificial intelligence for robustness in the fields of medicine,
advertising, homeland security, and other areas with the concept of Big Data solutions.

Hassan et al. [64] 2023 Recent trends, services, and consequences of AI and ML in the forecasting of postoperative risks with the help of AI algo-
rithms.

Jenkins et al. [65] 2022 Medical facilities based on the Internet of Things, portable clinical sensory equipment, and machine and deep learning algo-
rithms for COVID-19 patient examination, diagnosis, tracking, along with therapy.

Saravi et al. [66] 2022 Utilizing mixed ML models for decision-making and artificial intelligence-driven prediction modeling in the field of spine
surgery using CNN.

Bahrami et al. [67] 2022 An in-depth examination of ML and DL algorithms for single-lead Electrocardiogram sleep disorder screening. The authors
focused on deep CN such as VGG16, ZF-Net and AlexNet, Recurrent network, and also hybrid deep NN.

Stone et al. [68] 2022 COVID-19 Remote Patient Tracking Using ML and DL Techniques with sensor networks for the human body and IoT.
Afshar et al. [69] 2021 Datasets from computerized tomographic scans (COVID-CT-MD and COVID-19) useful for ML and DL. In this work, the

images were reproduced by using the filtered backpropagation method.
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Figure 4. Different stages involved in constructing a learning model.

Figure 5. Taxonomies of the ML approach.

3.1.1. Process of ML

Here, we cover every phase of creating a framework for learning in the medical field. Consider that
the purpose of this section is to guide scholars toward creating a system of learning for the medical
field. Five crucial factors need to be considered while generating a learning model for the healthcare
sector: Problem description, information set, preparation of information, ML model production, and
assessment. These phases are depicted in Figure 4. Each of these stages is thoroughly explained in the
sections that follow.

Problem Specification: We must initially consider the following questions while developing an
approach to learning for the medical industry: “What is the purpose of designing this learning model?”
Identifying healthcare problems and obstacles is the first step in developing a relevant model. The
availability of data is an important feature of the first stage. This indicates that data sources should be
known to investigators since the information needed to develop and evaluate the learning model should
be readily available. A lack of digital data may result in a lack of data in the healthcare sector, patient
confidentiality, economic problems, or rare diseases.

Database: Datasets are used in industrial healthcare applications to train, validate and test learn-
ing models. The healthcare database contains demographic data, pictures, test results, genetic data
and sensor data [72]. These data are produced or collected via various platforms, including personal
computers, cellphones, mobile applications, network servers, e-health records, genetic data, and wear-

AIMS Public Health Volume 11, Issue 1, 58–109.



67

able technology [73]. Today’s global relationships could be enhanced due to the internet and cloud
computing [74, 75]. Data accessibility has improved as a result.

Data Preparation: When developing a model for the medical sector, data preprocessing is one
of the most difficult obstacles to overcome since a ML prototype needs data with greater attributes to
deliver better training results and more accurate results. Analyzing disturbance data, absent values,
replicate data, and contradicting data is known as data preprocessing. This approach aims to improve
the information’s integrity before creating the framework for learning. To estimate missing values or
filter anomalies, data preprocessing might turn out to be necessary. Furthermore, certain information
minimization approaches, such as feature assortment or feature parentage, are perhaps applied if the
data has high dimensionality [76, 77].

ML Model Development: We must consider the margin of the database, the variety of learning
stratagem, and the length of the model inference process while establishing a learning model for the
healthcare industry [78]. To prevent overfitting or underfitting, we measure the degree of complexity
of a model to learn about the size of the information stored in the database. It’s crucial to take a
learning model’s training duration into account. More parameterized learning models, however, can
result in more precise outcomes. Reward-based learning, unsupervised learning, supervised learning,
and semi-supervised learning are the four prominent categories of learning techniques [79].

Evaluation: Executing numerous procedures to find discrepancies between the system’s current
behavior and the expected behavior is what evaluation of a ML-based system entails [80]. We must
reassess the learning model’s performance after being deployed in real situations to assess how it will
behave while interacting with actual users [81]. The following components are supposed to be taken
on board when assessing the performance as regards to the final model:

• True Positive (TP): The percentage of positive class members successfully predicted and classi-
fied as positive class members by the classifier.
• True Negative (TN): The certain amount of negative category members are adequately prophe-

sied by means of the classifier and recognized as accordingly.
• False Positive (FP): The number of unfavorable class members who were wrongly projected as

positive class members by the classifier.
• False Negative (FN): The number of classes which have positive members who were wrongly

anticipated as negative class members by the classifier.

Subsequent that we discuss several relevant degrees for evaluating a learning prototype. This scale
is on the basis of the following criteria: TP, TN, FP, and FN:

Sensitivity: In order for a classifier to accurately predict a positive outcome whenever the associated
ground truth is similarly positive, this scale is denoted as a probability. The true positive rate (TPR),
which is another name for this scale, is determined as pursue:

Sensitivity =
T P

T P + FN
. (1)

Specificity: The probability that a classifier will accurately predict a negative outcome when the
associated ground truth is likewise a negative result is specified as this scale. The true negative rate
(TNR), another name for the specificity, is computed as follows:
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Specificity =
T N

T N + FP
. (2)

Positive Predicted Value (PPV): This rating system is characterized as the likelihood that the
classification will correctly predict the outcome of the test when the test result (the classifier’s output)
is positive. PPV is also known as precision, and it is computed as follows:

PPV =
T P

T P + FP
. (3)

Negative Predicted Value (NPV): The probability that a classifier would correctly predict the
outcome when the test result is opposite is how this grading system is defined. The computation of this
scale appears as follows:

NPV =
T N

T N + FN
. (4)

Accuracy: This scale has a lot of significance. Usually, this scale is used to evaluate classifiers. It
is described as the percentage of samples that the classifier is properly categorized. That is determined
as follows:

Accuracy =
T P + T N

T P + T N + FP + FN
. (5)

Matthews Correlation Coefficient (MCC): This method is stated as the correlation between the
actual results and those projected. Its value ranges from +1 to 1. If MCC=+1, then the classifier cor-
rectly anticipates the outcome. If MCC=0, then the classifier cannot prophesy the outcome ameliorate
than an arbitrary process. If MCC=1, therefore, there is a complete inconsistency between the expected
outcome and the associated basis truth. The MCC margin is determined as follows:

MCC =
T P · T N − FP · FN

√
(T P + FP) · (T P + FN) · (T N + FP) · (T N + FN)

. (6)

False Discovery Rate (FDR): The proportion of the total number of favorable outliers to the per-
centage of positive samples that were mistakenly anticipated is represented by this scale. This is how
the FDR scale is created:

FDR =
FP

FP + T P
. (7)

Area Under the Receiver Operating Characteristic curve (AU-ROC): This scale is yet another
important variable to consider while assessing classifiers. It is calculated using the area under the ROC
curve. It should be noted that the ROC was calculated using TPR and FPR. This scale is derived as
follows:
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AU − ROC =
1
2

T P
T P + FN

+
T N

T N + FP
. (8)

F1-Score:This scale combines the sensitivity and accuracy measures. It is described as the average
of their scores, weighted. Recall is a measure of overall amount, whereas precision is a measure of
quality. An algorithm with a greater precision will return more relevant results than irrelevant ones,
while one with a high recall will return the majority of relevant results, regardless of whether irrelevant
results are also returned. We can clarify as follows:

Precison =
T P

T P + FP
and Recall =

T P
T P + FN

. (9)

When F1-Score is one, it has reached its ideal value. F1-Score = 0 is said to be the overpower value
in contrast. This scale is derived as follows:

F1-Score = 2 ∗
Precision ∗ Recall
Precision + Recall

. (10)

Figure 6. Basic Block Diagram of ML-DL Method.

3.1.2. Role of ML in smart healthcare

Identification and Diagnosis of Disease: The primary applications of ML in healthcare are for
diagnosing and predicting ailments and conditions that are traditionally seen as being difficult to study.
This might include anything from early-stage cancers that are hard to find to other inherited illnesses.
The best example of how to combine fast analysis with psychological registration is IBM.

Engineering and Medical Innovation: In the new era of medicine production, there are primary
clinical learning programs for robots. This also involves research and development (R&D) abilities like
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next-generation sequencing and precision medicine, which may be used to identify different treatment
options for complex illnesses.

Analysis of Medical Imaging: Computer visualization is a technical advancement made possible
by DL and artificial intelligence (AI). The Microsoft-created Inner Eye activity, which targets picture
diagnostic tools for picture analysis, has recognized this. As ML gets more open and as they approach
its informative limit, this AI-driven symptomatic interaction turns out to be a component of the objec-
tive of grasping new information based on shifting clinical symbols.

Personalized Medicine: The combination of prognostic analysis and personal fitness may not truly
produce individualized care. Currently, doctors can only do a limited number of studies or assess
threats. In the next years, more gadgets and bio-sensors with advanced health assessment capabili-
ties will hit the market, making information easier to obtain for cutting-edge ML-based medical care
originalities.

Integrated Health Records: The process of maintaining a modern health record is labor-intensive
and complicated. The information section measure has been assisted by technology developments,
although this is still true for the majority of cycles. In the medical sector, the primary role of ML
is to streamline procedures in order to save time, effort, and money. Using vector technologies and
ML-based optical character recognition (OCR) recognition algorithms, archives are being organized in
an ever-increasing variety of ways.

3.2. Key features of DL

Fully connected neural network: In a fully connected neural network (FCNN), every neuron in a
layer may communicate with every other neuron in the layer above it. For the same reason, these layers
are referred to as thick layers. These layers are excessive in terms of computation since each neuron
communicates with several other neurons. When there are fewer neurons in the layers, it is preferable
to employ this calculation since it would take a lot of time and computing resources to finish the work
otherwise. Due to its wide network, it could lead to overfitting [82].

Convolutional Neural Network (CNN): CNNs are a particular type of neural network designed
to interpret visual input, such as images and sounds. As a result, it is employed in operations such
as OCR, object localization, and other picture-processing procedures. CNNs may also be used to
recognize text, voice, and video. The pixels that make up an image decide how much white there is in
the image. Every pixel in a picture stands for a part that the neural network will look after [83].

Generative Adversarial Networks (GAN): Generative adversarial networks (GAN), a single
learning process, find and integrate examples from the data as a result. It develops a discriminator-
and sub-models-generator-divided model. The generator model aims to create fresh images from the
data. With convolutional neural organization, the discriminator model often functions as a parallel clas-
sifier. The producer model aims to trick the discriminator model into recognizing the picture, whilst the
discriminator model aims to identify fraudulent photos effectively. Both models make every attempt to
improve their performance [84].

The Multilayer Perceptron (MLP): Between the input and output layers of a feed-forward neural
network, known as an MLP, there are frequently one or more hidden layers. In this case, the perceptron
can use any activation function and is not constrained to being a strictly binary classifier. As stacked
nonlinear transformation layers for learning hierarchical feature representations, MLPs may be thought
of in this way.

AIMS Public Health Volume 11, Issue 1, 58–109.



71

Autoencoder: Unsupervised models called AEs (AEs) attempt to recreate the input data at the out-
put layer. The middle layer, commonly referred to as the bottleneck layer, frequently represents the
main characteristics of the incoming data. The denoising AE, sparse AE, variational AE, marginaliza-
tion AE, and contractive AE are only a few examples of the several types of AEs. However, Figure 8
depicts the comprehensive taxonomy of the DL approach applied to smart healthcare.

3.2.1. DL process

In the case of the DL concept, the extensive aggregation of many neurons between the unseen layers
communicates the subsequent propagation concerning the neural network from the activation layer to
the end layer. This is made possible by the activation function’s nonlinear adjustment. The following
is the equation:

f (l) = m
(
VT l + s

)
. (11)

The activation function is denoted by the letter m in the equation above, where VT represents a
matrix of weights. DL neural network training aims to enhance the neural network’s capacity for
decision-making and data-suitability [85]. Additionally, the parameters must also be optimized in
order to establish the best decision boundary. This requires comparing the loss function, often known
as the dissimilarity between the sample’s original value, k, and its foretold value, f(l). The equation
below can be used to determine the loss function:

c = k − f (l). (12)

The symbol c in the equation above stands for loss. The reduction of the overall loss of all training
data is the aim of neural network operation [86]. Feature diagrams can be created considering this
layer. The pth feature diagram is repeatedly expressed as mp, and the parameter that makes up the
convolution kernel V p and sp, then the equivalency below can be acquired:

mp
i j = f

(
(V p ∗ l)i j + sp

)
. (13)

The input feature map is represented by one in the previous equation, the activation function is
portrayed by f(. ), and the hidden layer parameter is represented by V. Each layer region will be
evaluated individually during the convolution computation, and the features will be added to the matrix
element multiplication summation and overlaid deviation, as shown below:

Zh+1(i, j) = [Zh ⊗ vh] (i, j) + s =
Kh∑

a=1

f∑
l=1

f∑
k=1

[
Zh

p (b0i + l, b0 j + k) wh+1
k (l, k)

]
+ s (14)

Hh+1 =
Hh + 2k − f

b0
+ 1. (15)

In the depicted equations, s denotes the degree of deviation, while Zh and Zh+1 denote the convo-
lutional input and output of the h + 1th layer, which is also known as a feature mapping. The size of
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Zh+1 is denoted by Hh+1, and the measurement of the length and width of the feature are supposed to be
the same. The pixels of the related feature map are denoted by Z(i, j), and the amount of channels for
the feature map is denoted by P. The convolutional layer parameters are f , b0, and k, which describe
the magnitude of the convolution kernel, convolution stride and padding count. The aforementioned
equation can be used to compute the output feature map’s sketch if the following conditions are met:
The step dimension is B, the filter volume is C, the inlet feature map extent is W, and the amount of
zero padding added to the border is K.

(W −C + 2K)/B + 1 (16)

Similar to how an Artificial Neural Network (ANN) is connected, the completely connected layer
is also connected. More variations have been proposed as a result of the CNN network’s current rapid
development, including the Institute for Global Communications Network (IGCNet) [87], gated CNN
(GCNN) [88], GoogleNet [89], AlexNet [90], and the visual geometry group network (VGGNet) [91].

3.2.2. Role of DL in smart healthcare

Deep Learning in MRI: Standard magnetic resonance imaging (MRI) is becoming more and more
dependent on gadolinium-based contrast agents (GBCAs). Though GBCAs were believed to be benign,
they were linked to nephrogenic basic fibrosis, a real, progressive and often severe illness. By using
less gadolinium, this testimony may most likely be mitigated. Unexpectedly, low-partition contrast-
enhanced MRI frequently produces unsatisfactory demonstration images.

Use of DL in CT Scan: Despite their widespread usage in medical procedures, CT methods pose a
radioactive danger. When receiving a physical after more than seven years, for instance, many people
would be subjected to 200 chest X-rays worth of radiation, which is the radioactive component of a CT
scan. We can see in Figure 7, how the building blocks and layers together are incorporated together to
classify a binary decision.

Figure 7. DL process in healthcare.
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3.3. Key features of smart healthcare

• Scanning fingerprints: Mapping of fingerprints.
• Handprint scan: Follows and examines the hand’s full pattern.
• Voice recognition: Capturing characteristics and signals of the human voice.

Even yet, there are some crucial procedures that must be done before real-time applications are intro-
duced.

3.3.1. Combining role of ML-DL in smart healthcare

Finding signs of brain bleeding: The probability that a patient will recover relies on how quickly
a brain hemorrhage is discovered. Analysis shows that these bleeds are understandable anywhere
between 12% and 51% of the time and that every year, diseases associated with brain bleeds result in
the deaths of almost six million individuals. The level of patient care is greatly reduced by such a vast
range of variance.

Robotic or Robotic-assisted surgery: In summary, the surgical advancement phase we are cur-
rently entering may be described by the integration of surgical robots with AI and data gathered from
robotic systems. Motion pursuit data will reveal insights that might fundamentally alter how we now do
medical procedures. When the next generation of surgical robots is driven by AI and large information
analytics, three of the most promising AI systems—Alpha Go, IBM Watson, and ML algorithms—may
be integrated into surgical robots [92].

Cancer diagnosis: Malignancies may often be found and identified using ultrasonography, X-
rays, MRI, and CT. Unfortunately, certain cancers cannot be accurately recognized enough for these
technologies to consistently save lives. Examining microarray sequencing profiles is an alternative
technique, although doing so needs several processing hours unless the study is AI-enabled. At this
point, it has even been demonstrated that AI-enabled diagnostic algorithmic criteria is as effective at
identifying potential skin cancers.

4. Integration on ML-DL, ML-healthcare, DL-healthcare, and ML-DL-healthcare:
Advancement

4.1. Overviews of ML-DL techniques

Whereas DL artificial neural networks can only learn after processing millions of data points, ML
versus neural networks is better suited for business scenarios that can collect thousands of data points
for the training datasets. Yet, ML maintenance calls for a group of specialists who can manually select
features, categorize them, and modify algorithms when they stray [93]. DL involves substantially less
human input and is capable of self-correcting when high forecast accuracy is at stake. So, the industry
that requires DL has a vast array of unstructured data. In other situations, applying ML algorithms can
help you save time [94]. Figure 6 depicts the basic block diagram of the ML-DL method in a healthcare
system.
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Figure 8. Taxonomies of the DL approach applied to healthcare.

4.1.1. Integration benefits

• Improved customer experience: Customers may stand to gain the most from AI technology. Due
to automated chatbots, pushed emails, and other customized communication systems, the time
span between client requests and business responses can now be shortened.
• Reducing errors: Once the core of your AI and automation models is in place, you’ll notice

a reduction in manual errors. Small errors are eliminated because the system only recognizes
correctness.
• Automation: It is impossible to discuss speed in relation to DL and ML without bringing up au-

tomation. You can allocate resources to ideas and projects that previously appeared impossible by
reducing manual processes. Automation may provide businesses more time to focus on strategic
planning and the large picture instead of the minute details of individual activities.
• Decision making: Making decisions that are more intelligent has always been the aim of DL and

ML together. Humans are capable of critical thought, but we are constrained in how rapidly we
can organize and comprehend mountains of data. It has the capacity to transform unprocessed
data into an impartial judgment.
• Tackling complex problems: By implementing DL and ML into your business strategy, you can

take on more difficult problems. Large-scale solution finding is made possible by these technolo-
gies.

4.2. Overviews of ML-healthcare techniques

ML techniques are utilized in healthcare to improve patient outcomes by utilizing the expanding
amount of health data made available via the IoT. These techniques have a lot of potential applications
but also substantial drawbacks. Medical imaging, the natural language processing of medical records,
and genetic data are the three principal applications of ML. These fields frequently center on diagnosis,
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detection, and prediction. By utilizing data and minimizing human engagement, ML is utilized in
healthcare to enhance the efficacy and overall character of care. Furthermore, as patient data becomes
more available, ML technology will become even more important for healthcare providers and health
systems to interpret medical data. In Table 3, the analysis of current works focused on the analysis of
smart healthcare and the integration of ML in smart healthcare is shown.

4.2.1. Integration benefits

ML has a spacious assortment of achievable applications in clinical custody, from enhancing patient
data, diagnosis and treatment to cutting costs and improving patient safety. Only a few advantages that
ML applications in healthcare can offer medical professionals are listed below:

• Improving diagnosis: ML could be applied to the healthcare industry to develop more effective
diagnostic systems for looking at medical images. For example, by applying pattern recognition
to medical imaging (MRI scans and X-rays), an ML algorithm could be used to find patterns that
point to a particular disease.
• Developing new treatments: ML could be used to examine clinical trial data to find previously

unidentified drug side effects. This might improve the safety and effectiveness of medical proce-
dures as well as the care given to patients.
• Predictive Approach to Treatment: One example of the significance of ML technology in health-

care is its ability to correctly forecast the development of some of the most fatal conditions in
at-risk patients. This addresses oncology, liver and renal diseases, and the detection of diabetes
signs (using a Naive Bayes algorithm). [95].
• Data Collection: Medical personnel can choose the most appropriate questions to ask a patient

depending on a range of factors by using ML in healthcare management. In addition to forecasting
the most likely results, this will make it simpler to gather pertinent information.
• Clinical Research: The process can be sped up with the use of ML algorithms, which is good

news. It can be applied to select the best trial sample, gather more data, evaluate trial participants’
continuous data, and reduce data-based errors.
• Reducing costs: ML can be used to improve healthcare efficiency, which could lead to lower

expenses. For instance, improved devising or patient history supervision algorithms could be
evolved in the healthcare industry using ML. This could reduce in contemplation of time and
money spent on monotonous chores in the healthcare scheme [96].

4.3. Overviews of DL-healthcare techniques

The majority of DL-related news items in the industry at this moment are about diminutive-scale
pilots or research schemes that are at present in the pre-commercialization stage. DL, on the other
hand, is quickly being applied in creative systems with significant therapeutic applications. Some of
the most promising used cases incorporate cutting-edge patient-facing applications as well as a few
unexpectedly advanced ways for boosting health information technology (IT) user experiences [97].
Table 4 presents the overview of existing works based on the integration with DL and healthcare with
their methods, focused points, and highlighting the drawbacks or challenges of their works.
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4.3.1. Integration benefits

• Imaging analytics and diagnostics: CNNs are an example of DL because they are exceptionally
good at refinement of images such as X-rays or MRI examine results. The patterns found in actual
scans are used to create synthetic CT or MRI images [98].
• Natural language processing: Several of the natural language processing systems that have grown

common in the healthcare sector for dictating documentation and converting audio to text are
already based on DL and neural networks.
• Drug discovery and precision medicine: Medication development and personalized medicine are

other areas of interest for DL developers. Both goals require processing legitimately enormous
volumes of genomic, clinical, and population-level data in order to find previously unknown
connections between genes, drugs, and physical environment.
• Clinical decision support and predictive analytics: The healthcare territory has great hopes in the

field of application along with DL in clinical decision support and predictive analytics for a wide
range of disorders. For doctors caring for patients in an inpatient setting, DL may soon prove to be
a useful diagnostic tool, warning them of changes in high-risk diseases like sepsis and respiratory
failure.

Figure 9. An integration of ML-DL method in healthcare system.

4.4. Overviews of ML-DL-healthcare techniques

The current healthcare system places a high value on ML and DL to enhance the treatment provided
to patients, doctors, and other healthcare personnel, as well as their overall health. It has been shown to
be advantageous to use ML and DL for diagnosing acute illnesses, image scrutiny, drug breakthrough,
drug shipment, and smart health surveillance. The effectiveness of previously unavailable treatment
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options will increase as ML-DL based applications are soon widely implemented and loaded with
real-time patient data from a variety of healthcare systems in a variety of nations [99, 100]. Figure 9
illustrates how the ML-DL method has been integrated into the healthcare system.

4.4.1. Integration benefits

DL and ML have made outstanding changes in many areas, including business, industry, schools,
colleges, and healthcare systems. As a result of the availability of a wide range of online and offline
facilities, we can say that additional changes are being discovered in the medical profession [101,102].
For the automatic detection of cancer cells, DL is essential. While the DL uses ML to operate indepen-
dently or autonomously, the ML can address a wide range of issues but calls for human participation.
DL, as a contrast to ML, immediately solves the whole problem. Young children, coma patients, and
elderly patients can all benefit greatly from DL when it comes to heart disease diagnosis [103].

Figure 10. ML applications in healthcare system.
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Table 3. Analysis of current study based on ML in smart healthcare.
Works Technologies Used Techniques and Tools Focusing Points Limitations
Chen et al. [104]
(2023)

Information fusion and artificial
intelligence

The process of combining many informa-
tion sources to produce more accurate, con-
sistent, and dependable information to aid
in making the best decisions possible is
known as information fusion.

Artificial intelligence and information fu-
sion for smart healthcare

Process Under observa-
tions.

Chatzinikolaou
et al. [105]
(2022)

Data Mining and ML Predictive and descriptive techniques for
data mining along with clinical decision
support system

Clinical decision support system based on
Body area network (BAN) using wearable
sensors

Universal interoperation
are still not established.

Balakrishnan et
al. [106] (2022)

RFID, Wireless sensor and IoT Radio Frequency Identification (RFID),
Wireless Sensor Network, Brainsense head-
band and smart mobile, all with the Internet
of Things (IoT) as its linking platform

To follow the condition of the patient, Smart
Healthcare Sensor (SHS) and RFID are
used

System based automated
prescription can be harmful
if the gadgets have a power
issue.

Awotunde et
al. [107] (2022)

Internet of Medical Things
(IoMT) and Artificial intelli-
gence (AI)

Proposed a framework for real-time patient
diagnosis and monitoring based on ML and
AI-IoMT.

The model was put to the test using a dataset
of cytology images, and its performance
was assessed based on F-score, accuracy,
specificity, sensitivity, and precision

Will seriously reduce hu-
man intervention in medi-
cal practice.

Bahalul et
al. [108] (2022)

IoT, ML and wireless body area
network

IoT and ML based security mechanisms as
countermeasures to various cyber-attacks

Security mechanism and countermeasures Smart healthcare in the
context of the smart city
only.

Singh et
al. [109] (2022)

IoT, Federated Learning and
blockchain technology

Privacy preservation of IoT healthcare data
using Federated Learning and blockchain
technology

Privacy preservation of data using the latest
technology

Only focuses on Data pri-
vacy.

Ahmed et
al. [110] (2022)

Explainable Artificial Intelli-
gence

Artificial Intelligence for sustainable smart
healthcare

Explainable artificial intelligence in smart
healthcare

Sustainable development
only.

Verma et
al. [111] (2022)

Internet of Things, ML and Arti-
ficial Intelligence

Continuous information exchange and
physiological data replacement using
Internet of Things, ML, and artificial
intelligence technologies

Smart Healthcare Cyber-Physical Systems
(SHCPS) are the systems of the future that
can help the medical community deal with
pandemic situations successfully

Universal acceptability and
reliability are the main
drawbacks.

Rahman et
al. [112] (2022)

Federated Learning (FL), Arti-
ficial Intelligence (AI), and Ex-
plainable Artificial Intelligence
(XAI)

The combination of FL, AI, and XAI ap-
proaches may be able to reduce a number
of systemic constraints and difficulties

The current issues, such as security, privacy,
stability, and dependability, may be handled
by combining and classifying FL-AI with
healthcare technologies

Healthcare is not limited to
only AI and FL techniques.

Dwivedi et
al. [113] (2022)

IoMT, ML, Previous data Robots, sensors, telemedicine, remote mon-
itoring, and other related technologies have
all assisted in solving a variety of issues
with IoMT.

IoMT-based smart gadgets are becoming
more and more prevalent, especially in
the wake of the worldwide pandemic, and
healthcare is no longer solely reliant on
these methods

These procedures are not
the only ones used in
healthcare.

Ghosh et
al. [114] (2022)

Statistical and deep learning-
based feature analysis with ML

Used facial pain expression databases along
with cutting edge techniques during experi-
mentation

Smart sentiment analysis system for pain
detection

Medical science is not lim-
ited to pain expression
only, it needs to address
many more fields.

Javaid et al. [43]
(2022)

ML and Artificial Intelligence ML-based techniques assist in detecting
early indicators of an epidemic or pandemic

In order to determine if the illness may spi-
ral out of control, the system employs ML to
examine satellite data, news and social me-
dia reports, and even video sources.

Treatment using previous
data is not always enough.

Kondaka et
al. [115] (2022)

ML, iCloud Assisted Intensive
Deep Learning (iCAIDL)

By bridging between IoT and cloud com-
puting it generates iCAIDL

An intensive healthcare monitoring
paradigm by using IoT based ML concepts

Universal operation of this
method is not accepted.

Unal et al. [116]
(2022)

IoMT, ML and security Wireless communications, wearable de-
vices, and big data enables continuous su-
pervision of a patient’s medical indicators

Continuous monitoring of a patient’s med-
ical indicators is made possible by an e-
healthcare system, making routine patient
follow-ups easier and boosting human pro-
ductivity

Need to address more med-
ical issues.

Verma et
al. [117] (2022)

ML CNN, Random Forest, Artificial Neural
Network (ANN),logistic regression, and
Support Vector Machine (SVM)

Review several ML algorithms, applica-
tions, techniques, opportunities, and chal-
lenges for the healthcare sector

Critical healthcare problem
solutions haven’t proposed
yet.

Kumari et
al. [118] (2022)

ML and IoT Deployment of ML Based Internet of
Things Networks for Tele-Medical and Re-
mote Healthcare

This study offers a thorough collection of
IoT- and ML-based treatments for patients
and telemedicine.

Usable for remote treat-
ment only.

Rehman et
al. [119] (2022)

ML, Federated ML and
blockchain

Blockchain technology entangled with fed-
erated learning technique

RTS-DELM-based secure healthcare 5.0
system

Estimation of intrusion de-
tection.

Kute et al. [120]
(2022)

IoT and ML Application availability, information man-
agement, storage, and storage integrity, au-
thentication, trust, and confidentiality

E-healthcare based on the internet of things
and ML faces , privacy, security, and trust
challenges.

Need to address more
scope and solutions.

Talaat et
al. [121] (2022)

IoT and ML with EPRAM and
Fog computing

Prediction algorithm with fog computing
for smart healthcare

EPRAM uses a real-time resource alloca-
tion and prediction system to try to man-
age resources effectively in a foggy environ-
ment

Automated prescription
systems need to be incor-
porated.

Swain et
al. [122] (2022)

Deep learning, ML and H-ToT Information collected through healthcare-
IoT devices and then DL and ML are ap-
plied on them

The majority of the statistical ML (ML)
frameworks that are optimized and drive
better clinical service delivery are covered
in this study.

No measurement of accu-
racy.

Shakila et
al. [123] (2022)

Nature-inspired algorithm, ML Used Nature-inspired algorithm for feature
subset selection and ML for PD classifica-
tion

Presented a comprehensive analysis of fea-
ture selection algorithms and ML models
for Parkinson disease diagnosis

Only experimented with
ML, DL could be used

Mohanty et
al. [124] (2021)

Decision tree, ML, and Random
forest

Supervised ML, SVM, , Artificial Neural
Network,Decision Tree,K-Nearest Neigh-
bor, Random Forest, and Logistic Regres-
sion and “Pima Indians (PIDD) dataset”

Utilize historical data analysis to forecast
the development of chronic diabetes by han-
dling patients with care.

Universal interoperation is
still not established.

AIMS Public Health Volume 11, Issue 1, 58–109.



79

Table 4. Analysis of current study based on DL in smart healthcare.
Works Technologies Used Techniques and Tools Focusing Points Drawbacks
Gupta et
al. [125]

Deep learning using edge com-
puting

Deep neural network forecasting for
health surveillance with cutting-edge
computing

The combination of edge computing and
IoT concepts are used in a CNN-based
forecasting framework.

Result is shown on specific data.

Kumar et
al. [39]

Blockchain, Deep learning,
IoMT

Deeper Sparse AutoEncoder (DSAE)
combined with Bidirectional Long
Short-Term Memory (BiLSTM) is a
blockchain-orchestrated deep neural
network technique for safe transmission
of information in healthcare applications.

A neural networks technique controlled
by cryptocurrency for safe data transfer
in an IoT-enabled medical facility

Tested for specific dataset only.

Ahmed et
al. [126]

IoT, Cloud Computing and Arti-
ficial Intelligence

The combination of derived attributes
from neural network topologies is ac-
complished using the concurrent great-
est covariance methods, and feature se-
lection is accomplished using a multi-
logistic regression controlled entropy
variance approach.

To improve the diversity of the knowl-
edge set, data enlargement is performed,
while neural network algorithms such as
VGG-19 and Inception-V3 are used in
conjunction with transfer learning ap-
proaches to obtain attributes.

Result is for specific diseases
only.

Ravi et al. [127] Deep learning, Malware detec-
tion

Utilizing the portable executable (PE)-
Header, PE-Image, PE-Imports , or ap-
plication programming interface (API)
calls, artificial intelligence (AI) is uti-
lized to detect infections.

Hyper-spectral attention-based deep
learning framework for malware detec-
tion in smart healthcare systems

In intelligent medical facili-
ties, there is a lack of multi-
view attention-based deep learn-
ing frameworks and powerful
feature fusion approaches for
recognizing malware.

Jiao et al. [128] Capsule network, Deep learning,
Convolutional neural network

The vital feature extraction ability of
neural networks can extract ECG features
to solve many problems

The spatial and temporal components of
the ECG are extracted using a 1D con-
volutional neural network (CNN) and a
long short-term memory (LSTM) net-
work as an integrated extraction of the
features layer.

Accuracy not measured

Ahmed et
al. [129]

H-IoT, Deep learning The technology use the model known as
YOLOv3 to detect motion and irritation.

For obtaining the spatial and temporal
properties of the ECG, a parallel feature
extraction layer comprising long short-
term memory (LSTM) network and 1D
convolutional neural network (CNN) is
implemented.

No measurement of accuracy.

Parida et
al. [130]

DL-based detec-
tion/classification of diseases

Deep learning based diseases detection
and patient monitoring

Deep learning (DL), defeats the limita-
tions of the visual evaluation and the con-
ventional ML

No measurement of accuracy.

Hammad et
al. [131]

Deep learning, H-Iot, convolu-
tional neural network (CNN)

Deep Learning Models for Arrhythmia
Detection in IoT Healthcare

After representing the input ECG signals
in 2D format, the generated pictures are
fed into the suggested DLMs for classifi-
cation.

Efficiency calculated based on
noisy data only.

Sujith et
al. [132]

Deep Learning, Artificial intelli-
gence

Smart health monitoring using deep
learning and Artificial intelligence

By utilizing various IoT, GSM, and SHM
modules, DL is beneficial for gathering
in-depth information on many important
patients, notably those who are coma suf-
ferers.

No measurement of accuracy.

Refaee et
al. [133]

Deep learning, Artificial intelli-
gence, IoT

Data are collected from various IoT
wearable devices; these data are prepos-
sessed and applied iForest for outlier de-
tection with linear time complexity and
high precision

It integrates deep learning, and the inter-
net of things for effective disease diagno-
sis

Result is outstanding for specific
diseases only.

Moqurrab et
al. [134]

IoT, cloud computing, Fog com-
puting and Artificial Intelligence

Propose a new model using IoT, cloud
computing, Fog computing and Artificial
Intelligence

Deep learning is used in a fog-enabled
privacy-preserving model to enhance the
healthcare system.

Result is for specific diseases
only.

Awotunde et
al. [135]

Deep learning, IoMT, Artificial-
Intelligence

A real-time NF-ToN-IoT dataset for IoT
applications that gathered telemetry, op-
erating system, and network data was
used to assess the system’s performance.

Because IoMT-based devices have a lim-
ited capacity for storage and computa-
tion, patient health data must be sent to
cloud database storage and external com-
puter equipment for processing.

Model attains 89% accuracy
over the ToN-IoT dataset only.

Sahu et al. [136] Deep learning, IoMT, Artificial
Intelligence

Constant Verification based on deep
learning algorithms for an IoT-enabled
medical facility

The system collects data from clients
and verifies them using a Deep Learning-
based short-term and long-term memory
algorithm for categorization that has only
been tested on a single dataset.

Tested for specific dataset only

Munnangi et
al. [137]

Deep learning, IoMT Enhanced Deep Learning-Based Ap-
proach for Medical Data Analysis in IoT
Systems

As a result, the inference of IoT knowl-
edge necessitates the use of effective,
lightweight methodologies that are ap-
propriate for this compromise and to val-
idate with limited resources in IoT de-
vices such as wearables.

Result is shown on specific data.
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5. ML and DL in smart healthcare: Applications

5.1. ML-based Applications in Healthcare

The majority of ML applications are employed in the healthcare sector to improve patient outcomes
and the level of care, despite the fact that new applications are constantly being developed. You can
specialize on ML, which has many applications in the healthcare industry [138]. Figure 10 shows how
ML is used in the healthcare sector.

• Disease prediction: ML can be used to find patterns, make connections, and make judgments
based on large datasets. Two instances of this are anticipating disease outbreaks in communities
and keeping an eye on patient behaviors that worsen health.
• Visualization of biomedical data: ML can be used to create three-dimensional visualizations of

biomedical data, including Ribonucleic acid (RNA) sequences, protein structures, and genetic
profiles.
• Improved diagnosis and disease identification: Early disease detection will be aided by the dis-

covery of previously unknown symptom patterns and comparison with larger datasets.
• More accurate health records: Improved health record accuracy assures that patients’ records are

up to date, accurate, and easily accessible for doctors, nurses, and clinic staff.
• AI-assisted surgery: Assist surgeons by doing challenging tasks during surgery, enhancing their

comprehension of their work area, and offering procedural completion examples.
• Personalized treatment options: ML may be used to assess multi model data and develop treat-

ment regimens tailored to each patient based on all of the options.
• Medical research and clinical trial improvement: Clinical trial participant selection, data collec-

tion techniques, and result analysis can all be enhanced by ML.
• Developing medications: ML can be used to identify new avenues for medication development

and to produce innovative therapies that can treat a variety of illnesses.

5.2. DL-based applications in healthcare

Nowadays, a lot of DL news stories focus on preliminary research projects or small-scale trials.
However, DL is gradually making its way into groundbreaking technology with highly beneficial
medicinal applications. Moreover, some of the most intriguing use examples involve cutting-edge
patient-facing applications and a few surprisingly well-established techniques for improving the user
experience of health IT [139]. Figure 11 illustrates the DL applications in the healthcare sector.

• Drug Development: DL helps the pharmaceutical business develop new medicines. The tech-
nology looks into the patient’s medical background and makes recommendations based on that
information. Additionally, this method extracts data from patient tests and symptoms.
• Imaging in Medicine: MRI, CT and Electrocardiogram (ECG)scans are among the medical imag-

ing technologies that can be used to diagnose heart problems, cancer, and brain tumors. DL helps
doctors better understand ailments, which enables them to treat patients more effectively.
• Insurance Swindle: Statements involving medical insurance fraud are analyzed using DL. With

the use of predictive analytics, it might be able to forecast fraud claims that are anticipated to
happen in the future. With the use of thorough education, the insurance business may be able to
provide discounts and promotions to its target patient population.
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• Alzheimer’s Disease: Alzheimer’s disease is one of the main issues the medical sector is currently
facing. DL is used to power an algorithm for early Alzheimer’s disease identification.
• Personalized Medical Treatments: In order to examine people’s medical histories, symptoms, and

tests, healthcare institutions may use DL algorithms to provide patients with tailored care. Natural
Language Processing, or NLP, extracts essential information from free-text medical data for the
most common surgical procedures.
• Responding To Patient Queries: Conversational agents that use DL can assist patients or medical

staff in identifying trends in a patient’s symptoms.
• Audit of Prescriptions: By comparing prescriptions to patient health data, DL algorithms may be

able to identify and fix any diagnostic or treatment errors.
• Studying Mental Health: DL models are being used by researchers to enhance mental health

clinical practice. Neural networks that are deep are being used in research that seeks to better
comprehend the impact of mental illness and other illnesses on the nervous system.

Figure 11. DL applications in healthcare system.

5.3. ML-DL-based applications in healthcare

Every problem may be admitted by dint of DL, and performance based on data is constantly supe-
rior. Traditional DL can create quick and effective ML for language acquisition while assuring accurate
patient data since ML is nonlinear. Patient information or data can be displayed in a variety of forms,
including text and images, much like how a patient’s status is shown in real time [140]. Real-time
results are crucial in IoT applications for healthcare and other industries; therefore, this has been a
major problem [141,142]. DL has the ability to enhance the engineering system for worth control. ML
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allows for the evaluation of a dynamic system that is capable of changing its environment and recog-
nizing data in various formats. Clinical professionals can diagnose patients’ diseases using DL and
ML, which can identify normal and abnormal patient data. The basis of DL models is CNN learning, a
sort of ANN used for image visualization, including ultrasound, MRI, CT scan and X-ray. In addition
to the least, Figure 15 provides a summary of the taxonomy of the ML-DL learning approach used in
healthcare applications.

However, ML-DL supports so many alternative techniques, and they are updating their performance
from time to time. In Table 5, there is an overview of various techniques that are used in different case-
solving purposes in the vast area of healthcare. Again, Table 6, discusses the datasets that have been
utilized by the researchers for the task of solving critical issues in healthcare sectors. In Figure 12,
there is a brief analysis of the varieties of techniques mostly used in this field. In addition, according
to this figure, the X-axis describes the name of the methods, and the Y-axis explains the frequently
used methods. The observation is collected from the Table 5 data along with some others studies
from [51, 117, 122, 143–154]. The CNN model is used for the maximum time. On the other hand,
data analysis in ambiguous sectors is a sweltering concern. In Figure 13, a large-scale analysis of the
accuracy rate generated from different methods and techniques incorporated with ML-DL in healthcare
is presented. Studies from [37, 155–164] are plotted in the graph to make an analysis that different
methods return different accuracy. The X-axis represents the study in the field of healthcare, and the
Y-axis represents the accuracy level found from those studies.

Figure 12. Analysis of commonly utilized methods in the domains of healthcare using ML
and DL.
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Table 5. Overviews of various techniques and Methods used in ML, DL in Healthcare.

References Techniques of ML-DL Applications areas specificationCNNs LSTMs RNNs GANs RBFNs MLPs SOMs DBNs RBMs Autoencoders
Hamdi Altaheri et
al.(2023) [165]

✓ ✓ ✓ ✓ X ✓ X ✓ ✓ ✓ classification of electroencephalo-
gram

Rasheed et al.(2022)
[166]

✓ X ✓ ✓ X ✓ X X X X Providing comprehensive arguments
about stabled and trusted areas of ML
in healthcare

Kanika Goel et
al.(2022) [167]

✓ X X X X X X X X ✓ Diagnosing COVID-19 in an auto-
mated manner

Van der Velden et
al.(2022) [168]

✓ ✓ ✓ X X X X X X ✓ Analyzing medical image using ex-
plainable artificial intelligence

Matteo Chieregato et
al. (2022) [169]

✓ X X X X X X X X X Supporting clinical decision with the
help of hybrid model

Messina et al.(2022)
[170]

✓ X X ✓ X X ✓ X X ✓ Automatic report generation from
medical image

Tharindu Fernando et
al.(2021) [164]

✓ ✓ ✓ ✓ X X X ✓ X ✓ medial anomaly detection.

Castiglioni et al. (2021)
[171]

✓ ✓ ✓ ✓ X ✓ X X X ✓ Contrast between ML and DL in med-
ical imaging.

Shahab Shamshirband
et al. (2021) [143]

✓ X ✓ X X X X ✓ X ✓ Provide accuracy and applicability of
DL model in healthcare solution

Wei Li et al.(2021)
[172]

X X X X X X ✓ X X X Induced big data analysis in smart
healthcare

Laith Alzubaidi et
al.(2021) [163]

✓ ✓ ✓ ✓ ✓ X X ✓ ✓ ✓ Wide range of traditional application
of DL

Yakub Kayode Saheed
et al. (2021) [173]

X X ✓ X X X X X X X Building efficient internet of medical
thinks

Irene Y. Chen et al.
(2021) [174]

X X X ✓ X X X X X ✓ Probabilistic ML model for Advanced
healthcare

Khan Muhammad et al.
(2020) [175]

✓ X X ✓ X X X X X X Brain tumor stage detection for assist-
ing radiologist accurately

Qayyum et al. (2020)
[176]

✓ X ✓ ✓ X X X X X ✓ Ensuring a squired state in clinical
settings.

Astha Parihar et
al.(2020) [177]

✓ X X ✓ X X X X ✓ X Examining the current situation of
healthcare

akeshi Nakaura et
al.(2020) [178]

✓ ✓ ✓ ✓ X ✓ X X X ✓ Understanding radiology with ML
and DL

Farman Ali et al.(2020)
[179]

✓ ✓ X X X X X ✓ X X Heart Disease Prediction

Khansa Rasheed et
al.(2020) [180]

✓ ✓ ✓ ✓ X ✓ ✓ X X X Detection and prevention of Epileptic
Seizures

Esteva et al.(2019)
[181]

✓ X ✓ X X ✓ X X X X Applying computer vision in medical
image processing.

Retson et al.(2019)
[182]

✓ X X X X ✓ X X X X Thoracic and Cardiovascular Imaging
evaluation

Arwinder Dhillon et al.
(2019) [183]

✓ ✓ X X X ✓ X ✓ X ✓ Analyzing different type of healthcare
data

Luca Saba et al.(2019)
[184]

✓ X ✓ X ✓ ✓ X ✓ X ✓ DL applications in radiology
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Table 6. Overviews of various datasets utilized in ML, DL, and healthcare.

References Data Sets Used Applications FieldsDiscussion of Data Sets ML DL Healthcare
Huang et al [185]
(2023)

Skin Cancer Classification from ISIC dataset, a pub-
lic dataset

✓ ✓ ✓ Classification of skin cancer for assisting dermatol-
ogists.

Hu et al. [186]
(2023)

Skin Cancer Detection from ISIC 2018 dataset, an
open source dataset

✓ ✓ ✓ A chatbot for detecting seven types of skin cancer.

Soni et al. [187]
(2023)

The model was tested using two freely accessible
datasets: WISDM and UCI-HAR.

X ✓ ✓ Human Activity Recognition Using Deep Learning
in Health care.

Kanagala et
al. [188] (2023)

Numerous IoT gadgets create massive amounts of
info, which is analyzed in order to obtain cognitive
data using data analytics.

✓ ✓ ✓ Efficient digital safety solution for optical informa-
tion safety for medical applications.

Khan et al. [189]
(2023)

Brain tumor Detection from Brats2018, BraTs2019
& BraTs2020, Publicly available dataset

✓ ✓ ✓ an automated method for identifying brain tumors
using three publicly available, unrestricted datasets.

Dua et al. [190]
(2023)

Most datasets are collected via IMU, GPS, or ECG
while most datasets are used to recognize physical
activity or daily activities

X ✓ ✓ Human Activity Recognition with Wearable Sen-
sors.

Wang et al. [191]
(2023)

In FRESH, physiological data are collected from in-
dividuals by wearable devices

X ✓ ✓ Architecture for collaborative learning in smart
medical facilities while protecting confidentiality.

Baji et al. [192]
(2023)

An automated brain tumour identification from the
whole brain atlas database

✓ X ✓ To improve brain tumour detection method using k-
means clustering and local binary pattern technique.

Hassan et al. [193]
(2023)

Cleveland heart disease dataset(open access) ✓ X ✓ For heart disease prediction.

Doshi et al. [194]
(2023)

Brain tumor detection from BraTS dataset a publicly
available dataset of brain tumour.

✓ X ✓ This approach separates the regions of interest in
MRI images to minimize dimensionality.

Hu et al. [195]
(2023)

Landsat-BSA datastet for burn patient images (Open
source)

✓ X ✓ Burn case treatment.

Ogundepo et al.
[196] (2023)

Publicly available Cleveland heart disease dataset ✓ X ✓ Heart disease prediction areas.

Minda et al. [197]
(2023)

Medical data X ✓ ✓ Forecasting Algorithm for Multiple Diseases Based
on the Finest Deep Learning method.

Raheja et al. [198]
(2023)

Cloud-centric data ✓ X ✓ For the diagnosis of cardiac disorders, an IoT-
enabled, encrypted clinical health care architecture
is used.

Sengar et al. [199]
(2023)

RFMiD dataset which is publicly available dataset ✓ X ✓ Assists eye specialists for detection of rental dis-
eases.

Uzun et al. [200]
(2023)

Dataset from web scrapping from websites that are
publicly available

✓ X ✓ Rapid detection of monkeypox to reduce the spread
of the virus.

Jagadeesha et al.
[201] (2023)

Fitzpatrick skin type (FST) dataset (open access) ✓ X ✓ Skin tone detection for assisting dermatologists.

Balaha et al. [202]
(2023)

HAM10K dataset of Melanoma Classification ✓ X ✓ To aid dermatologists for skin cancer diagnosis from
skin images.

Bordoloi et
al. [203] (2023)

UCI Dermatology dataset (Public) ✓ X ✓ Skin treatment cases related to skin disorder.

Dileep et al. [204]
(2023)

Dataset regarding cardiovascular conditions at UCI
(Public) and real-time dataset

✓ X ✓ An automated system for heart disease prediction.

Suha et al. [205]
(2022)

An accessible database of patient administrative
hospital records from the New York State Depart-
ment of Healthcare.

✓ X ✓ Patient length of stay forecasting through Random
forest model to aid the hospital management system
for predicting the proper treatment plan for a patient.

Kundu et al. [206]
(2022)

Monkeypox detection from an open source dataset
available at kaggle.

✓ ✓ ✓ a comparison of deep learning and ML methods for
monkeypox viral identification.

Rahman et
al. [207] (2022)

An accessible database of patient administrative
hospital records from the New York State Depart-
ment of Healthcare.

✓ ✓ ✓ Predicting the time a patient is hospitalized using a
distributed learning approach will help to keep data
safe.

Suha et al. [208]
(2022)

Kaggle burn patient dataset an open source database. X ✓ ✓ Classification of burn patient images into 3 cate-
gories based on severity.
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Table 7. Existing study analysis of ML-DL with healthcare based on main idea, approaches,
and open challenges and further opportunities.

Authors Main Idea Approaches & Applica-
tions

Critical Drawback Open Issues and Further Opportu-
nities

Kundu et al.
[206]

Monkeypox detection to re-
strict the spread of the virus

Vision transformer and con-
ventional ML based ap-
proaches.

Insufficient Dataset of the mon-
keypox disease

To overcome the challenge of the
shortage of data GAN can be applied
for producing simulated data.

Rahman et al.
[207]

Patient Length of stay
(LOS) Prediction for assist-
ing healthcare professionals
in finding a proper treatment
plan.

Federated learning with a
linear regression model.

Only linear models have been
used.

The model can be tested for other
datasets as well.

Solanki et al.
[209]

Development of virtual as-
sistant for healthcare sector

Machine earning based
chatbot for medical care
system.

To gain patients’ trust Provide the ethical part of the system
to gain trust of users.

Chen et
al. [210]

Leveraging DL for the de-
tection of pancreatic cancer
without human intervention

Convolutional neural
netwrok with integrated
CAD based methods.

A CT scan of the abdomen
misses around forty percent of
pancreatic cancers that are less
than 2 cm.

Collection of real-time data is a chal-
lenging task for many countries.

Siar et
al. [211]

Brain tumour detection
through deep learning
model.

CNN, and as a classifier
softmax classifier has been
used.

Data collection as it may include
sensitive information

As it includes healthcare data it re-
quires the security measures needs
further consideration.

Awotunde et
al. [212]

Breast cancer detection. Hybrid rule-driven decision-
making technique to find
five significant insights.

Patients’ data privacy is not en-
sured.

To collaborate with a large number of
patient data from patient all around
the world.

Özdil et al.
[213]

Fatty liver classification CNN with texture-based
feature selection method

The investigation of feature se-
lection using texture is less thor-
ough.

Pre-processing task of thermal images
needs further improvements.

Qadri et al.
[214]

An automated spine seg-
mentation method through
deep learning model

Steps involves preprocess-
ing, regression with sigmoid
post processing

To identify fractured vertebrae. Model needs further improvement to
identify some cases for example frac-
tured vertebrae.

Chieregato et
al. [169]

Using CNN and Cat-
Boost classifiers, a model
that can assist clinical
decision-making completely
combines imaging and
non-imaging data on top of
this networking approach.

CNN and catBoost classifier
for clinical decision-making
tasks.

Clinical decision-making de-
pends on data, but collecting
datasets of medical is difficult.

Security needs further discussion, es-
pecially for healthcare-based systems.

Saheed et al.
[173]

Using DRNN and SML
models, an efficient and ef-
fective IDS for classifying
and foreseeing unexpected
cyberattacks in the IoMT
environment was presented.

DRNN and SML for cyber-
attack detection in the IoMT
area.

Test within the real-time environ-
ment is critical

Further study for Testing within a
real-time scenario.

Astha Pari-
har, Shweta
Sharma [215]

using unlabeled data
and substantial learning
throughout the prepara-
tion. AI examines how the
genomic landscape inter-
acts across characteristics,
whereas DL, MRI, and CT
scans are used for illness
identification and diagnosis.

AI-based methods for dis-
ease diagnosis.

Integration of AI in the health-
care sector requires a vast
dataset.

Explainability of such a model helps
better comprehend the prediction
model’s result.

Bhardwaj et
al. [216]

Explainable deep learning
model for valvular heart dis-
ease classification

Deep learning visualization
method, CNN architecture
for heart disease detection.

Model explainability needs to get
the trust of the end user.

Proper training sessions to make the
model trustworthy for the end user.

Tasin et
al. [217]

A model for diabetes predic-
tion.

SHAP and LIME for model
explainability and SMOTE
analysis for restricting the
class minimization in the
area of heart disease detec-
tion

dataset contains only 203 sam-
ples which might be a critical
drawback for model explainabil-
ity.

Integration of different hospital
datasets for diabetes tests may im-
prove the data quality.

Tasnim et al.
[218]

A explainable model for
mortality prediction

DL methods with integrated
SHAP model for explain-
ability of the decision pro-
vided by the model for pre-
diction of mortality rate for
heart failure based cases.

Security analysis of the model is
challenging.

To make the model available for rural
areas, the explainability of the model
needs further improvement.

Nancy et al.
[219]

Smart healthcare monitoring
especially for heart disease
cases.

IoT with integrated Deep
learning model for heart dis-
ease prediction

IoT devices memory manage-
ment is difficult as the devices
have limited memory spaces.

Methods that can erase the data saved
on the device or a method that does
not require saving data, such as Fed-
erated learning.

AIMS Public Health Volume 11, Issue 1, 58–109.



86

Figure 13. Analysis of the latest studies on various approaches, including their correspond-
ing rates of accuracy.

6. ML and DL in smart healthcare: Challenges and opportunities

6.1. Open issues and challenges

To build a solid model and address some significant medical issues, ML or DL approaches for
the healthcare system need real-time datasets. However, gathering data is a challenging endeavour,
particularly for the medical system, as it may include patient parties or occasionally hospital authority
private information. As a result, there is less interest in data sharing from both patients and hospital
staff. The introduction of federated learning [220, 221], which eliminates the need for data transfers
from the source, or the use of Blockchain-based security measures for secure and transparent data
transfers from source to destination are two privacy measures that need to be focused on in order to
deal with this issue [222, 223].

The weight of the model is yet another issue with DL deployment. DL produces a heavy model
since it uses numerous layers. This substantial model integration becomes extremely challenging in
other situations, such as those involving the IoT and wireless sensor networks [224]. To circumvent
this difficulty, a lightweight DL model that can perform just as well as typical DL models but is less
physically demanding must be used, such as Vision Transformer [225, 226]. Advanced ML or DL
models, on the other hand, need a substantial amount of real-time data. However, gathering healthcare
data is a difficult task. Thanks to cutting-edge AI techniques that offer data augmentation methods
[227, 228]. This augmentation methodology, such as the GAN or time series GAN (ts-gan) [229]
method, enables the generation of synthetic data from the already-existing real-time data. In this
situation, CNN might be improved in some way and evaluated. Before using the models in the field,
a cost analysis for them should be conducted using specific statistical techniques. Figure 14 displays
an overview of the use-case sectors and challenges of the ML-DL method in the healthcare system and
Table 7 shows existing research in the field of machine and DL technology and its associated research
gaps and future directions in this research field.

AIMS Public Health Volume 11, Issue 1, 58–109.



87

Figure 14. Scopes and challenges of ML-DL method in healthcare system.

Figure 15. Taxonomies of the ML-DL learning approach applied to healthcare applications.
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6.2. Overall discussion and limitations

6.2.1. Overall discussion

The aforementioned study aids in understanding how DL and ML automate a number of crucial
elements and procedures that medical infrastructure depends on and cannot function without. For
example, we find that AI can find every possible way to predict the root cause of an incurable disease
and find a related antigen to dissolve it, thereby mitigating its effect; that NLP can automate hospital
management processes while saving a significant amount of time and resources; that DL could speed
up the diagnosis process. Applications of DL and ML solutions span a range of healthcare domains and
tackle contemporary problems in their respective fields of study. Diagnosing different frequent diseases
and ailments is one such subfield that adds to the annual rise in the worldwide death rate. A significant
portion of this issue can be resolved by utilizing AI-based solutions, particularly DL. Doctors and other
workers would also find it challenging to do their work as efficiently at this high pace of population
growth due to overwork and a lack of free time. Hospitals can therefore use ML and DL to assist
them in overcoming this issue. These technologies can learn to predict every conceivable outcome
at every stage with the least amount of error, allowing for the acceleration of further processes while
saving crucial time and resources. Using a virtual assistant would be cost-effective, even for hospitals.
Thus, it is possible to adopt DL and ML-based systems for diagnosis without a significant financial
investment.

Though there are certain restrictions on the use of such cutting-edge technology that would be in
charge of making crucial decisions pertaining to people’s lives, there might be some difficulties in
replacing all of the antiquated or conventionally used technical methodologies that are being used in
the current healthcare infrastructure. These problems won’t be resolved until every component of
the current infrastructure—including the medical staff—supports enhancing the circumstances and the
available resources. DL and machine learning-based technologies have the potential to solve many
of the most pressing issues in healthcare, and their advancements open up a wide range of interesting
and intriguing medical applications that could raise the standard and effectiveness of healthcare de-
livery. Nevertheless, much study in this area is still needed to fully realize the technology’s promise.
Moreover, one of the main challenges and obstacles to achieving it is the requirement for a sizable
dataset.

6.2.2. Limitations

We draw attention to the following limitations that we believe will be encouraging for DL in health-
care in the future.

• Feature Enrichment: Since there are only so many patients in the world, we should make every
effort to learn as much as we can about them in order to better comprehend them and come up
with creative solutions for managing them all at once. To develop those qualities, information
from EHRs, social media, wearable technology, environment, surveys, online communities, ge-
netic profiles, omics data (including proteomes), and other sources must be used. A crucial and
challenging research question would be how to successfully use such incredibly diverse data and
incorporate it into a DL model.
• Federated Inference: Every clinical facility has a unique patient base. In this context, developing a
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DL model that uses patients from several sites while protecting their private information becomes
a critical challenge. Consequently, another key area of research that will interact with other
mathematical fields like cryptography is how to securely learn deep models in this federated
situation.
• Model Privacy: Privacy is a key consideration when growing the usage of DL (using cloud com-

puting services, for example). DL models are much harder to maintain privately since there are
more parameters to secure however, some recent efforts have made considerable advancements
in this field. Nonetheless, given the amount of private information that deep models are antici-
pated to handle in clinical applications, the implementation of intelligent technologies for next-
generation healthcare has to evaluate these dangers and strive toward establishing a differential
privacy norm.
• Including Expert knowledge: For medical issues, the utilization of current expert information

is quite beneficial. Research on the incorporation of expert knowledge into DL is essential to
steer it in the proper direction given the dearth of medical data and the myriad quality issues that
accompany it. To maximize the overall efficiency of the systems, credible content that might
be integrated into the deep architecture should be retrieved, for instance, from online medical
encyclopedias and PubMed abstracts.
• Temporal Modeling: Training a swift DL model is crucial for improving understanding of the

patient’s state and providing prompt clinical decision support, since time plays a major role in
many healthcare-related issues, especially those requiring monitoring devices and EHRs. For this
reason, the resolution of healthcare problems requires temporal DL.
• Interpretable Modeling: Interpretability and model performance are critical when discussing

health care issues. Medical practitioners are not likely to embrace a system that they do not
completely comprehend. We believe that both ways of assisting the networks with currently
available tools to explain the predictions of data-driven systems and algorithms for explaining the
deep models—that is, the rationale behind the hidden units of the networks’ decisions to turn on
and off during the process—will be covered in future research directions.

6.3. Future aspects

6.3.1. ML with AI

Future developments in ML and AI are anticipated to have a substantial impact on a variety of
industries, including healthcare, finance, transportation, and many more. It is anticipated that AI will
advance even further, eventually taking on activities that were previously thought to be solely humanly
feasible. The following are some major factors that will probably influence how AI and ML develop
in the future:

Edge AI: The increasing need for real-time AI processing and decision-making at the network
edge will stimulate the rise of edge AI. Since data processing happens locally on the edge device,
there’s less need to transmit sensitive information to the cloud. This can enhance privacy and secu-
rity, particularly in applications where data confidentiality is a priority of healthcare with low latency.
Devices like wearable health monitors or medical imaging equipment can benefit from local AI pro-
cessing. Real-time patient monitoring, remote diagnostics, predictive analytics for patient outcomes,
emergency response systems, are the optimized results brought up with the help of edge AI.
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Explainable AI (XAI): XAI refers to a set of strategies and methods designed to make AI systems’
decisions and processes comprehensible and interpretable by humans. The lack of transparency in
some AI models, particularly DL and complicated machine learning algorithms, can be a substantial
impediment to their adoption in essential applications requiring trust and responsibility. Explainable AI
seeks to overcome this issue by revealing how AI systems make certain decisions or predictions. Some
common strategies used in XAI are explanation through features, local interpretable model-agnostic
explanations (LIME), shapley additive explanations (SHAP), decision trees, and rule-based models.
As AI systems become more intricate and pervasive, there will be a greater demand for the openness
and explicability of their decision-making processes.

DL on Graphs: This is a brand new field of study that concentrates on using graph-structured data
for DL models.

RL: RL is anticipated to become more crucial in AI, particularly in fields like robotics and au-
tonomous systems. Overall, ML and AI have a bright future and are expected to make significant
advances in a wide range of industries and applications.

6.3.2. XAI with healthcare

The healthcare sector may undergo a change thanks to XAI, which increases the openness, account-
ability, and reliability of AI systems. Future uses for XAI include:

Enhance diagnosis and treatment strategies: By explaining their predictions and suggestions,
XAI algorithms can assist medical professionals in making judgments that are more accurate and well-
informed.

Increase patient participation and training: By using XAI, patients can receive more individual-
ized information about their health and available treatments.

Simplify clinical studies and research: XAI can aid in the discovery of trends and connections in
immense quantities of clinical evidence, facilitating the discovery of novel therapeutic approaches and
treatments. Moreover, XAI may boost trust in AI systems by creating them to be more accessible and
understandable, which would encourage healthcare practitioners to use them with more assurance.

6.3.3. DL with 6G in cyber-physical system

The efficiency and effectiveness of cyber-physical systems (CPS) could be significantly increased
by integrating DL and 6G. Future applications of this pairing include:

Strengthen monitoring and efficiency: In order to improve governance and increase the effective-
ness of CPSs, DL algorithms may be used to examine the enormous volumes of data that these systems
produce.

Boost safety and dependability: It will be feasible to improve security and reliability by collecting
and analyzing data in instantaneously utilizing 6G’s high speed, low latency, and high throughput
capabilities. This will enable quicker and more informed decisions [230].

Boost cybersecurity: DL may be used to recognize and stop potential safety risks, and 6G’s en-
crypted communication features can assist in assuring the privacy and protection of sensitive files.
Again, integrating DL and 6G in CPSs can greatly enhance their capabilities and bring new levels of
efficiency and safety to various industries.
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6.3.4. Federated learning with 6G in healthcare

The usage and sharing of healthcare data has the potential to be completely changed by the merging
of federated learning and 6G. Future applications of this mixture encompass:

Enhance customized drug: By analyzing patient data from many sources using federated learning
algorithms, more individualized treatment plans based on a wider variety of data are possible.

Improved data privacy: This is possible because of 6G’s strong encryption features, which may
help make sure that private patient information is secured when it is transferred amongst healthcare
professionals.

Streamline clinical trials and drug discovery: Federated learning can aid in the discovery of
trends and connections in vast volumes of medical studies, making it simpler to locate potential new
remedies and cures.

Facilitate telecare: The deployment of telehealth apps that can bring direct remote consultations
between healthcare practitioners and patients can be supported by 6G’s high bandwidth and low delay.

6.3.5. XAI with 6G in healthcare applications

The openness, accountability, and trustworthiness of AI systems in the healthcare industry might
be significantly increased with the integration of Explainable XAI with 6G. Future applications of this
pair tend to involve:

Improve outcome: XAI programs can offer more clear and explicable suggestions and forecasts to
healthcare professionals, assisting in increasing the precision and knowledge of their choice.

Enhance patient participation and skills training: 6G’s high speed and low latency can support
the deployment of telemedicine petitions that can enable real-time remote counseling sessions between
healthcare providers and patients. XAI can be used to educate patients while also providing them with
more personalized information regarding their treatment and care alternatives.

Aid to the invention or development of new Medicine: XAI and 6G may be used to evaluate
enormous volumes of clinical data, making it simpler to uncover potential new treatments and cures
while still guaranteeing the confidentiality and safety of critical material. This will streamline clinical
trials and drug development.

6.3.6. 6G-based security in smart healthcare

The integration of 6G-based security in intelligent healthcare has the potential to significantly en-
hance patient data protection and confidentiality. Potential developments of 6G’s security features
usually involve:

Privacy of Data: Improved data privacy is possible because of 6G’s secure communication and
data storage capabilities, which may help guarantee that private medical information is safeguarded
and kept private.

Boost networked medical equipment’ confidentiality: 6G’s encrypted communication capabili-
ties can assist in preventing hacking and unauthorized access to medical devices, ensuring their safe
and trustworthy functioning.
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Reliable Telehealthcare: Facilitate the implementation of secure telemedicine apps that can enable
real-time virtual consultations between medical physicians and patients while simultaneously protect-
ing the privacy and security of sensitive data. 6G’s rapid adoption and reduced latency can facilitate
this.

Safeguard Clinical Trials: 6G’s secure messaging capabilities may help ensure the confidentiality
and preservation of sensitive trial information, making it simpler to carry out big clinical studies and
create novel treatments and medications.

7. Conclusion

In this article, we conducted three different fields, including ML, DL and healthcare. This study
thoroughly mines a massive amount of information based on tremendous areas such as ML, DL, and
smart healthcare. Most significantly, we go into great depth on how ML and DL methods are now
being used in smart healthcare applications. We presented vital features of ML, DL, and healthcare
in a state of the art manner and significantly incorporated among them as ML-DL, ML-Healthcare,
DL-Healthcare, and ML-DL-Healthcare. Notably, we focused on applications, challenges, and future
opportunities efficiently. Though we have provided both ML and DL processes for the smart healthcare
industry and classified them into various solutions, healthcare is wider than just ML and DL areas.
Still, numerous issues and challenges need to be handled adequately. In the future, we plan to include
security, privacy, and relevant issues with special attention. In addition, we provide further prospective
study directions in this area.
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