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Abstract: This article aims to examine the evidence on the relationship between gut microbiota (GM), 

leaky gut syndrome and musculoskeletal injuries. Musculoskeletal injuries can significantly impair 

athletic performance, overall health, and quality of life. Emerging evidence suggests that the state of 

the gut microbiota and the functional intestinal permeability may contribute to injury recovery. Since 

2007, a growing field of research has supported the idea that GM exerts an essential role maintaining 

intestinal homeostasis and organic and systemic health. Leaky gut syndrome is an acquired condition 

where the intestinal permeability is impaired, and different bacteria and/or toxins enter in the 

bloodstream, thereby promoting systemic endotoxemia and chronic low-grade inflammation. This 

systemic condition could indirectly contribute to increased local musculoskeletal inflammation and 

chronificate injuries and pain, thereby reducing recovery-time and limiting sport performance. 

Different strategies, including a healthy diet and the intake of pre/probiotics, may contribute to 

improving and/or restoring gut health, thereby modulating both systemically as local inflammation and 

pain. Here, we sought to identify critical factors and potential strategies that could positively improve 

gut microbiota and intestinal health, and reduce the risk of musculoskeletal injuries and its recovery-

time and pain. In conclusion, recent evidences indicate that improving gut health has indirect 
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consequences on the musculoskeletal tissue homeostasis and recovery through the direct modulation 

of systemic inflammation, the immune response and the nociceptive pain.  

Keywords: gut microbiota; sports injuries; intestinal permeability; inflammation; nutrition 

 

1. Introduction 

The musculoskeletal system (bone, cartilage, skeletal muscle, tendon, etc.) enables movement 

and physical activity. Sports injuries, especially those affecting musculoskeletal structures, are 

common among endurance athletes [1] because of their mechanical overuse of joint structures [2], 

tendons [3], and skeletal muscles [4]. These injuries can range from minor sprains to more severe 

traumatic injuries, further impacting athletic performance and overall health [5]. In addition, injuries 

could limit sports practice and physical capacities, thereby affecting psychological well-being. On the 

other hand, the first limiting factor of exercise movement is pain [6,7], which can be associated with 

the alteration of nociceptive cells and neuropathic inflammation [8]. While the causes of sports injuries 

are multifactorial and complex, emerging evidence suggests that a chronic state of systemic 

inflammation may reduce musculoskeletal functions.  

The normal function of intestinal permeability refers to the ability of the intestinal barrier to 

selectively allow for the passage of luminal pathogens, toxins, antigens, nutrients, and water-

electrolytes, while maintaining a barrier function against the entry of harmful substances [9]. In 

contrast, an impairment of permeability, known as ‘leaky gut syndrome’ [10,11], is associated with an 

aberrant immune response [11] and higher inflammatory systemic conditions associated with 

endotoxemia [12,13]. During the last few decades, several studies have reported that impaired gut 

permeability could be related to higher systemic endotoxemia, which promotes a chronic state of 

inflammation and autoimmunity [10,11]. This systemic endotoxemia promotes proinflammatory 

systemic responses, thereby elevating the nociceptive sensitivity to pain [14]. The main causes that 

promote gut leaky syndrome are related to factors such as diet [15], social or environmental stress [16], 

intake of medications [17], toxics [18], and intensive physical activity [19–22].  

Current literature suggests a relationship between leaky gut syndrome and different factors 

influencing musculoskeletal homeostasis and healing. Among them, nutrition interventions 

(including pre- and probiotic intake) promote healthy modulation of the gut microbiota (GM) and 

have been suggested as a promising novel therapeutic intervention to modulate pain and systemic 

inflammation [23–27]. A GM dysbalance has been linked to various intestinal diseases [12] and other 

systemic conditions [13]. Given the potential role of GM and intestinal permeability in human health 

and disease, it is reasonable to consider the potential relationship between gut health and new 

therapeutic treatments for musculoskeletal and joint injuries [28]. The present review focuses on 

alterations in GM directly affecting intestinal permeability and promoting leaky gut conditions. This 

intestinal disruption can be associated with systemic endotoxemia, low-grade systemic inflammation, 

and alterations of the musculoskeletal process of healing and return to homeostasis. Therefore, the 

main aim of this article is to review the available evidence that suggests the importance of maintaining 

gut health and GM homeostasis in order to modulate systemic inflammatory and immune responses 

during the processes of local tissue damage, inflammation and pain. We searched the available 

literature in Pubmed/Medline, Web of Science, and Sport Discus using the terms “gut, leaky, 
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microbiota, athletes, sport, performance and injury”, and their combinations, trying to provide a 

balanced view on the potential relationship between intestinal health and the risk of musculoskeletal 

injuries in athletes. Whenever possible, we tried to propose evidence-based (but also based on the long 

practical experiences of the authors) strategies to prevent the transition from acute to chronic 

musculoskeletal pain and injuries. Finally, different gaps in the literature are reported to stimulate 

future scientific interest in the study of the symbiotic relationship between GM and the host to prevent 

musculoskeletal injuries in both athletes and the general population. 

2. The relationship between the gut microbiota and gut permeability: the role of inflammation 

and pain in adaptive innate immunity 

 

Figure 1. Exercise and diet are two important factors that alter gut microbiota and intestinal 

permeability. In optimal conditions, adaptive exercise promotes increased positive 

commensal bacteria related to positive effects on systemic health and better physical 

performance. In addition, diet can negatively modulate GM and promote gut dysbiosis with 

aberrant consequences for the intestinal epithelium. Leaky gut syndrome is the condition 

where selective intestinal permeability is impaired, and positive and negative metabolites, 

bacteria, and toxins pass to the bloodstream, increasing systemic endotoxemia. In these 

conditions, the immune response promotes a low-grade systemic inflammation that alters 

nociception and pain sensitivity, reducing immune adaptive capacities in musculoskeletal 

tissues and promoting soreness, lack of recovery, and local inflammation. Sports injuries are 

an important cause of underperformance and physical progression in athletes. Direct 

consequences are related to overuse during exercise, but indirect factors such as systemic 

inflammation may contribute to such injuries. In this regard, gut health modulates immune 

and systemic responses related to inflammation and pain. SCFAs (short chain fatty acids); 

sp. (species); GM (gut microbiota); LPS (lipopolysaccharides); E. coli (Escherichia coli); S 

Thermophilus (Streptococcus Thermophilus); FP (Faecalibacterium Praustnitzii).  
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Physical exercise is a determinant factor that can alter gut homeostasis and modulate GM and 

intestinal permeability [1,2]. Exercise elevates inflammatory markers post-exercise, both in the intestines 

and the whole body [28–35], thereby increasing the activation of the sympathetic nervous system and 

causing splanchnic hypoperfusion and intermittent ischemic-reperfusion in the intestines [36]. Ischemia-

reperfusion post-exercise elevates intestinal inflammation of the epithelium and disrupts gene response 

of enterocytes; for example, it induces the chronic activation of HIF-2α with lower HIF-1α expression, 

promoting this persistent inflammation in the epithelium [37]. Moreover, exercise can aggravate 

intestinal damage because an elevated body temperature [38] induces a dehydration state [39], which 

in sum also exacerbates intestinal hypoperfusion, thereby contributing to greater gut leakage 

permeability. In this context, a higher inflammatory response produced by exercise but also 

accompanied by systemic endotoxemia produces an underlying over-immune activation of the 

musculoskeletal structures [3,40–43]. This pro-inflammatory environment promotes higher risks of 

suffering illnesses and/or musculoskeletal tissues injuries [44].  

The GM is the community of microorganisms that inhabit the human digestive tract, including 

bacteria, fungi, and viruses [45]. These microorganisms are crucial in various physiological processes, 

including gut homeostasis, immune modulation, metabolism, and gut barrier integrity [46]. The GM 

is a dynamic ecosystem of microorganisms that are relatively stable during each individual’s life [47]. 

A more balanced GM contributes to average intestinal permeability and systemic health [19]. In this 

regard, it can exert a potent influence on the normal function of intestinal permeability, which plays a 

relevant role in developing and recovering from such injuries [48,49]. 

High-intensive exercise increases both systemic and local acute inflammation, involving 

musculoskeletal tissues, and increasing the risk of suffering from sports overload/injuries. In 

addition, it affects gut homeostasis, and promotes adaptive changes in the GM and intestinal 

epithelium. Previous studies have reported that athletes presenting a previous dysbiosis of the GM 

had more significant levels of systemic inflammation and a lower capacity for recovery from 

intensive exercise [26]. Therefore, when interventions were aimed to improve gut microbiota and 

reduce leaky gut syndrome, a reduction in the risk of injuries was observed [26]. For example, a study 

conducted by Jhun et al. [26], reported that administering a probiotic strain of Lactobacillus could slow 

the progression of osteoarthritis in mice by inhibiting joint pain and any associated inflammation. Until 

the data is available, no exact mechanisms are understood about the relationship between gut 

homeostasis and musculoskeletal injuries. However, it is suggested that gut dysbiosis and gut leaky 

syndrome have a link to higher systemic inflammation and immune dysfunction, which may increase 

the risk of suffering from musculoskeletal pain and tissue degeneration and damage [50]. In fact, some 

publications have described a relationship between levels of specific gut bacteria and local 

inflammation, nociceptive effects, and pain. For example, higher concentrations of Faecalibacterium 

prausnitzii correlated with antinociceptive effects in a rat model [51]; contrarily, increased levels of 

the Streptococcus species were associated with knee osteoarthritis (OA) pain [43] and depleted levels 

of the Coprococcus species depleted were associated with widespread chronic pain [14]. Therefore, 

the modulation of the body’s inflammatory [52] and immune states [24,49] can alter the nociceptive 

perceptions and increase response to pain (hyperalgesia) [23,49]. 

The intestine exerts a functional barrier with the rest of the body through the epithelium and the 

mucous layer [53]. In optimal conditions, the gut barrier selectively recognizes nutrients, metabolites, 

and specific beneficial molecules that pass from the intestinal lumen to the bloodstream [21]. Thus, it 

prevents the translocation of potentially hostile luminal pathogens, antigens, toxins, and other harmful 
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molecules into the body. Therefore, the intestinal barrier acts as a functionally selective and 

immunological organ, protecting the internal body from penetrating pathogens, macromolecules, and 

other toxins [54]. The integrity of normal intestines depends on some components that are in constant 

regeneration (epithelial cells, the mucosa that covers it, the mucus and the microbiota). The intestinal 

mucosa is constantly exposed to different biological stimuli, mainly related to commensal and 

pathogenic bacteria, but also other molecules such as nutrients, toxics, and medication [55]. The 

intestinal mucus represents the first barrier between the intestinal lumen and the mucosal tissue, where 

microorganisms strengthen the barrier function and integrity of the intestinal epithelium [56]. 

The intestinal mucosa comprises mucins (glycoproteins) secreted by the intestinal epithelium 

goblet cells. This layer protects from proteolysis, prevents the attachment of pathogens to the intestinal 

epithelium, is a niche for commensal bacteria, and retains molecules such as host defense peptides, 

IgA, and macronutrients [53]. The enterocytes, which form the epithelium, are interconnected by the 

so-called tight junctions (TJs), which are intracellular proteins that respond to different stimuli, thereby 

producing changes in their integrity [57]. TJs are multiprotein complexes composed of identified 

proteins such as occludins, tricellulin, claudins, junctional adhesion molecule transmembrane proteins, 

and zonula occludens 1 scaffold proteins [57]. The permeable pass of molecules across the intestinal 

epithelium can be produced in two ways: 1) transepithelial or transcellular transport (specific passage 

of solutes through epithelial cells by specialized transporters) and 2) paracellular transport (transport 

through the spaces between epithelial cells). Paracellular permeability is regulated by TJs and is the 

main route for the passive flow of water and solutes across the intestinal epithelium.  

The GM acts as an endocrine organ, and promotes protective, homeostatic, metabolic, and immune 

functions within the other parts of the body [58]. Moreover, the GM has a fundamental role in the 

digestion and absorption of nutrients [22], the production of vitamins [59] and neurotransmitters [60] 

and the protection against pathogens [61]. Moreover, the microbiota has an essential role in developing 

and maintaining the intestinal barrier, which contributes to the organism’s homeostasis [71] and regulates 

systemic inflammation [4,43]. In addition, they play essential roles in the modulation of the oxidative 

stress through various mechanisms of intestinal absorption of antioxidants [62]. Specifically, some 

bacterial species such as Lactobacillus plantarum, Lactobacillus gasseri, Lactobacillus fermentum, 

Lactococcus lactis, Streptococcus thermophilus, Lactococcus, and Bifidobacterium genera have all 

been shown to elevate intestinal antioxidant levels [63].  

The GM ecosystem is highly malleable and rapidly changes according to exposure to intrinsic and 

extrinsic disruptors such as adverse pathogens, poor nutrition, and different environmental conditions 

such as hypoxia and/or heat [64]. Thus, interventions that improve the GM ecosystem could rapidly 

reduce either pain or inflammatory conditions during such conditions or injury processes [27,65].  

Otherwise, the functions of GM are also essential in the maturation of the innate immune system, 

producing circulating metabolites, hormones, neurotransmitters, cytokines, and developing lymphoid 

cells [40]. It is essential for the epithelial cells and the mucosal immune system to distinguish 

pathogenic and non-pathogenic agents to modulate immune responses. Commensal bacteria from 

intestinal microbiota exert a protective effect on the intestinal barrier function, thereby preventing the 

colonization of pathogens and interacting with enterocytes through pathogen-associated-molecular-

patterns (PAMPs) receptors [66]. Bacteria communicate with immune cells such as macrophages, 

dendritic cells, and lymphocytes through molecules such as toll-like receptors (TLRs). TLRs alert the 

immune system to the presence of microbial antigens in PAMPs. For example, the TLR4 receptor 

recognizes lipopolysaccharides and identifies them as pathogenic. Dysbiosis of the GM increases the 
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number of Gram-negative bacteria in the gut, translocate lipopolysaccharides (LPS) across the 

inflamed and impaired intestinal permeability, and promotes systemic inflammation and endotoxemia, 

which finally affects musculoskeletal structures [66,67]. 

Figure 1 depicts how exercise and GM modulate systemic and local inflammation by modulating 

the adaptive immune system and intestinal permeability. Healthy GM contribute to improving physical 

exercise and protects the intestinal barrier by shielding interactions of commensal bacteria with the 

mucosa and mucus. Pain sensitivity is altered through the local and systemic levels of inflammation 

because it activates the immune system and nociceptive receptors. In practice, it is the main limiting 

factor in exercise and motion 

3. Gut leaky syndrome, chronic systemic inflammation and musculoskeletal injuries: a new 

field of study? 

Physical exercise can exert potential health benefits for individuals [68]. However, high volumes 

and/or intensive exercise practice can produce two types of musculoskeletal injuries: 1) mechanical 

overuse/overload injuries and 2) traumatic injuries [69].  

In the last one, a very high force stimulus is applied to the tissue, above its failure strength 

threshold, causing its injury. In this situation, the relationship between the microbiota and injuries is 

questionable. On the other hand, in overuse injuries, motor pattern repetition under injury threshold is 

presented and induces many adaptive and acute inflammatory changes in bones, muscles, tendons, and 

joint structures. The critical nature of the body’s musculoskeletal structures requires constant 

homeostatic activation of the innate immune system to restore equilibrium [70]. In this regard, most 

inflammatory responses prepare the body and tissues to fight against stress and other systemic 

disruptions [71]. In short, acute inflammatory responses can be positive, promoting adaptive 

mechanisms that restore structures and maintain homeostasis in an optimal range. However, when 

chronic local and systemic inflammation states co-exist, an over-activation of the immune system can 

produce aberrant reactivity in tissues and organs [72]. The result of this process is usually pain and 

loss of motor function, as the body reduces its systemic adaptive capacities to fight against stress, 

reducing musculoskeletal repair. For example, during aging, the adaptive capacity of the immune 

system could be impaired by dysbiosis of the GM and leaky gut syndrome [73].  

The present work emphasizes the important relationship between systemic inflammation and the 

higher risk of developing musculoskeletal injuries and impaired recovery and regeneration of 

connective and muscular structures [3,42,74,75]. In the last few years, different studies have postulated 

that the GM exerts an important function in the modulation of the immune and inflammatory response 

in the whole body; however, there is not a concise field of study about the relationship between ‘leaky 

gut syndrome’ associated with GM dysbiosis and musculoskeletal injuries. Taking into account that 

literature is scarce on the topic and longitudinal studies do not exist, this study would summarize the 

main studies that specifically depict the relationship between GM, systemic inflammation, and 

musculoskeletal injuries.  
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Figure 2. Regular exercise promotes local tissue inflammation of musculoskeletal 

structures (muscles, tendons, joints, and bones). In some cases, acute inflammation is a 

positive adaptive response and promotes positive adaptive responses in those tissues. 

However, if a pro-inflammatory response persists, pain perception appears. Pain is an 

unpleasant condition for which athletes should reduce their physical practice. Gut health, 

particularly the gut microbiota, directly communicates with the intestinal epithelium 

through the mucosa. Leaky gut syndrome promotes systemic endotoxemia and may cause 

chronic low-grade inflammation. This chronic response aggravates local inflammation in 

musculoskeletal tissues increasing pain and structural damage, degeneration, fragility, 

stiffness, poor remodeling, lower anabolism, and oxygen-substrate supply. 

3.1. Muscles 

Muscles are highly malleable, plastic tissues that respond to mechanical and physical loading 

stimuli. However, it has been reported that the persistence of a chronic proinflammatory state impairs 

the capacity of satellite cell regeneration and tissue repair [76,77]. Taking into consideration that 

athletes cannot eliminate mechanical load and local inflammation is inherent to the sport itself and its 

specificity, other unresolved systemic disorders may establish systemic inflammatory events and 

impair muscle performance [78]. In fact, it has been described how the aging process hinders the 

adaptive process in tissues and the resolution of local inflammation, as characterized by a 

proinflammatory state [79]. In other chronic pathologies associated with increased systemic 

inflammation, local muscle involvement has also been demonstrated [80]. Based on the literature, 

systemic factors influence the cells involved in skeletal muscle healing and growth, thereby slowing 

the repair process with a reduction in the synthesis and an up-regulation in the degradation of 

contractile proteins in muscle fibers [81]. 

Additionally, the gut-muscle axis has been a growing area of research in recent years [82–84]. It 
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was reported that the GM influences muscular function and modulates the cycle of 

anabolism/catabolism [82]. In mice, increasing bacteria such as Eubacterium rectale, Lactobacillus 

plantarum TWK10, or Clostridium coccoides [85] seems to positively increase muscular function. 

Contrarily, Nay et al. [86] confirmed that treatment with antibiotics impairs the endurance running 

performance and muscle fatigability of mice. In humans, a study reported that older people with higher 

muscular performance presented high levels of genus Prevotella and Barnesiella [87].  

Longer and more intense exercise loads increase the risk of producing muscle injuries [88]. 

Moreover, other systemic conditions associated with chronic inflammation can aggravate muscle 

symptoms such as soreness or injuries [74,80]. As previously mentioned, a disbalanced state of the 

GM can favor ‘leaky gut syndrome’, thereby increasing levels of systemic endotoxemia and a state of 

low-grade chronic inflammation [10,11]. Muscle wasting, understood as a catabolic state of the tissue, 

can be caused by the local inflammation promoted by the exercise itself and moreover by an inadequate 

systemic inflammatory state [89]. Under these conditions, the environment where muscle tissue can 

regenerate, obtain nutrients, or oxygenate itself would deteriorate. These systemic conditions can end 

up deteriorating muscle recovery, regeneration, and anabolism processes, thereby favoring a greater 

risk of injury, acute muscle soreness, or pain [88,89]. In addition, chronic inflammation induces loss 

of muscle mass, a lack of regenerative capacity, and deterioration of oxygenation and metabolism 

processes, influencing tissue health [74].  

As we reported, an acute inflammatory response in muscles is usually coupled with regeneration 

and repair following injury [88] and exercise [90]. After exercise, the inflammatory response is 

crucial for repairing structural damage and for stimulating muscle protein synthesis [91,92]. Indeed, 

it has been shown that accelerated recovery from damage is related to over-expressing IGF-I within 

skeletal muscle [93]. In this regard, it has been reported that the GM contributes to elevating 

circulation levels of IGF-I [94]. The overall beneficial or detrimental effect on the muscle function 

of inflammatory processes is mainly regulated by the tissue response’s magnitude related to the 

previous history of muscle injuries, the systemic and local inflammatory state, and the metabolic and 

hormonal response [88]. High intensity exercises could influence the persistence of inflammation 

maintained in muscle tissue due to overuse. The anti-inflammatory capacity of athletes can restore 

these conditions when there is no exponential increase in sustained systemic inflammation [88]. 

A local and systemic inflammatory state has been shown to decrease insulin sensitivity and 

glucose supply to the muscle [95]. In this aspect, the relationship between microbiota-muscle may be 

an essential field of study to help reduce the chronic inflammatory state in athletes and improve their 

muscle function [96].  

It was shown how the composition of the GM affects muscle function, and how certain bacteria 

increase under optimal conditions of muscle anabolism (Faecalibacterium Prausnitzii, Roseburia 

Hominis, Akkermansia, Bifidobacterium and Lactobacillus spp.), unlike others, which were described 

with sarcopenia (Escherichia Shigella, reducing bacteria and other opportunistic pathogenic bacteria 

such as Citrobacter, Freundii, Enterococcus faecalis, Campylobacter, Helicobacter, and 

Staphylococcus Aureus) [95].  

A dysbiosis of the GM associated with gut barrier dysfunction increases proinflammatory 

cytokines, oxidative stress [97] and impairs muscle function and repair [82,86,95], while SCFA-

producing bacteria (acetate, propionate, and butyrate) promote intestinal homeostasis. In this regard, 

Karl et al. showed how worsening intestinal homeostasis decreased the muscle function and adaptive 

capacity in soldiers with high physiological stress [98]. On the contrary, favourable GM increases 
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levels of SCFAs, which act as hepatic substrates in gluconeogenesis pathways [99], and ultimately as 

substrates (mainly acetate) that reach the muscle. 

3.2. Tendons 

Tendinopathies are the overuse mechanical injuries with the highest proportion among total 

musculoskeletal injuries (30–50%) [100], and they are associated with chronic tissue inflammation, 

degeneration, and high grade of afferent sensitivity and pain. In a tendon injury, a programmed (genetic) 

healing process includes firstly an acute inflammatory period between 1 to 5 days, followed by a 

subsequent period of fibroblastic proliferation (between 6 days and 6 months post-injury), and finally 

a collagen remodelling process that takes place between 6 to 12 months post-injury [100]. 

Tendons require constant remodeling to maintain their tissue architecture and strength levels [100]. 

Although their structural overuse can cause tendinopathy, chronic systemic and low-grade inflammation 

resulting from endotoxemia could be another possible trigger for some forms of chronic inflammatory 

injuries [3,100]. A chronic state of systemic inflammation has been associated with impaired gut health, 

which may drive the onset and progression of tissue damage [101]. Thus, gut leakage permeability is 

a significant risk factor that increases the translocation of pathogenic molecules, thereby exacerbating 

inflammatory responses in tendon structures. This healing process could be potentially perturbed if 

systemic inflammatory conditions exist. However, currently limited evidence exists to support or reject 

this hypothesis [102].  

Previous studies have reported how the gut microbiota state correlates with tendon injury 

regeneration and the healing process [103]. In mice, it was observed how changes in the microbiome 

influence tendon healing through different strategies, such as mechanical load [104] or medication [105]. 

These studies concluded that immunomodulatory changes associated with the GM may promote positive 

tendon healing. Therefore, the modulation of systemic endotoxemia may be an important mechanism to 

reduce local inflammation and pain in tendon injuries. 

3.3. Joint structures 

Joint structures are affected by many factors, such as mechanical overloads, age, gender, intensity 

and volume, increasing the risk of degeneration and the lack of healing during inflammatory processes. 

Osteoarthritis (OA) is a degenerative joint disease with a prevalence in adults of 20% that increases with 

aging up to 50% [106]. The degeneration of cartilage and bone is present in joint structures and is 

accompanied by chronic synovial membrane inflammation. Chronic inflammation is present in all joint 

degenerative processes [14,107], exacerbating the immune response and favoring OA progression [107]. 

In recent years, different studies have reported a direct relationship between the GM and the progression 

of OA [66,108]. Thus, the progression of joint degeneration could be influenced by GM’s dysbiosis and 

leaky gut syndrome [43,109,110]. Leaky gut syndrome promotes the increase of LPS into the 

bloodstream, promoting endotoxic factors, and synovial fluid triggers a proinflammatory response, 

affecting articular cartilage destruction [66]. Boer et al. [43] showed that the elevation of intestinal 

microbiome β-diversity was significantly associated with knee pain and increased Streptococcus spp. 

The metabolites produced by Streptococcus can activate macrophages via TLR and promote higher 

inflammation and pain sensitivity in joint structures [43]. Moreover, Clostridium species have been 

hypothesized to promote sharp pain in OA conditions and, jointly with Streptococcus and other species, 
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activate local or systemic macrophages [10] associated with the serum and synovial presence of LPS-

blinding proteins and pain [66]. Other studies reported an elevation of Fusobacteium and 

Faecalibacterium and a reduction of Ruminococcus in OA [111]. Fusobacterium spp. has also been 

reported to be elevated in different metabolic diseases [112,113], while Ruminococcus seems to have 

protective effects to prevent gut permeability and reduce low-grade chronic inflammation due to its an 

SCFA’s production [114]. The elevation of circulatory LPS in the blood has been related to higher 

proportions of Escherichia/Shigella, Klebsiella, and Citrobacter species in the GM [115]. Wei et al. [116] 

reported that higher systemic inflammation was related to more symptomatic pain symptoms and a 

specific low abundance of positive commensal bacteria such as Roseburia but a high abundance for 

Desulfovibrio and Biophila. On the other hand, the elevation of bacteria such as Clostridia and 

Staphylococcus was related to higher OA symptoms, which decreased after 12 weeks of 

supplementation with green-lipped mussel (GLM) extract or glucosamine sulphate [117]. Therefore, 

it has been confirmed that the OA condition is related to the abundance of species such as Clostridium 

spp. and relative decreases for positive homeostatic bacteria such as Bifidobacterium longum and 

Faecalibacterium prausnitzii [118].  

Bacterial antigens (Pseudomonas sp., Shigella spp., Escherichia coli, Streptococcus thermophilus, 

Chlamydia trachomatis, and Chlamydia pneumonia) within the synovial fluid demonstrate the 

translocation of intestinal bacteria into the joints [119].  

Traditional treatments for joint injuries include the administration of medication to modulate the 

inflammatory processes. However, the chronic and/or regular consumption of analgesics and anti-

inflammatory medications promotes adverse effects on gut health, thereby impairing GM balance [120]. 

In this regard, nutritional interventions that increase GM diversity may influence joint disease 

progression and/or healing [43,109–111,121]. Prebiotics and probiotics provide a promising field of 

study to modulate the positive functions of the GM and improve the prognosis for musculoskeletal 

injuries. Prebiotics can promote the growth of certain bacteria, such as those promoting the synthesis 

of SCFAs, peptide hormones, or neurotransmitters [40]. For example, in obese mice, oligofructose 

supplementation mitigated OA progression due to the increase of anti-inflammatory species such as 

Bifidobacterium pseudolongum and other proinflammatory such as Peptococcaceae and 

Peptostreptococcaceae [122]. Rios et al. [123] confirmed that supplementation with oligofructose and 

exercise delayed OA development and increased positive bacteria such as Bifidobacterium and 

Roseburia. The intake of Lactobacillus casei could also act as a potent modulator of pain, inflammatory 

responses, and cartilage regeneration in the treatment of OA [124]. Another study showed that the 

administration of Bacillus coagulans (2 billion CFU/day) plus green tea extract and a cocktail of vitamins 

and minerals (including vitamins A, B, C, D, E, folic acid, and selenium) can reduce joint pain [125].  

3.4. Bones 

In all bone tissues, the acute inflammatory response is positive and enhances the regulated 

processes of remodeling, healing, and regeneration. Bone remodeling depends on the balance between 

the actions of osteoblasts, osteocytes, and osteoclast. However, under conditions of proinflammatory 

chronicity, it can be detrimental to healing [126]. This process happens because there is resorption and 

suppression of bone formation, with a crosstalk between inflammatory cells (polymorphonuclear 

leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing 

(cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) [127]. 
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In a normal condition, regular exercise with mechanical impact loads increases musculoskeletal 

stress and promotes bone microdamage [128]. Stress fractures are suffered by athletes due to reduced 

bone mass and a lack of equilibrium between bone formation and resorption [129]. Bone homeostasis 

is related to vitamin D levels, the capacity of calcium absorption, and other anabolic hormones such 

as estrogens [129]. During the last decade, emerging evidence has talked about the interaction between 

the specific gut microbiota bacteria and bone health [130]. In this regard, maintaining a healthy gut 

microbiota could be crucial to guaranteeing bone homeostasis, regulating sex hormones, vitamin D 

levels, and calcium absorption [42]. Thus, a decreased GM diversity impairs estrogen production [132] 

and promotes excessive reabsorption [131]. In mice, the intake of probiotics demonstrated how 

different Lactobacillus species [42], Bifidobacterium longum [132], and Lactobacillus reuteri [133] 

seem to be effective in the treatment of bone loss. In contrast, a poor bone remodeling capacity 

predisposes to degeneration, favoring the risk of stress fractures [128]. In addition, it has been reported 

that leaky gut syndrome impairs bone health because it reduces bone mineral density [26,42,134]. 

The intake of nutritional prebiotics and supplemental probiotics has been proven effective in 

preventing bone loss and improving recovery after fractures [135]. The intake of undigestible fiber as 

oligo- and polysaccharides increases gut fermentation in the colon and promotes SCFA’s formation, 

mainly butyrate from the firmicutes and acetate and propionate from the Bacteroidetes [136]. In the 

colon, increasing SCFA reduces intestinal pH, thereby improving calcium and phosphate absorption 

in the intestines [137]. The increased SCFA levels from the GM increase bone formation through 

higher levels of circulating IGF-1 [138]. The increase of species such as Bifidobacterium and 

Clostridium has been reported to increase calcium absorption [137], and probiotics containing 

Lactobacillus and Bifidobacterium are positive for osteoblast activity [137]. Other studies reported 

how patients with osteoporosis presented abundant species such as Blautia, Actinobacillus, 

Oscillospira, Bacteroides, and Phascolarctobacterium, whereas Veillonellaceae, Collinsella, and 

Ruminococcaceae all negatively correlate with the bone disease [139]. Studies with animals and 

humans have reported that the gut leaky condition [140] increases systemic endotoxemia and promotes 

a chronic, low grade systemic inflammation, which predisposes subjects to decreased bone 

reabsorption [134], bone loss, lower bone mineral density, lower hip strength, and bone fragility [141]. 

Finally, Reinke et al. [142] showed that GM dysbiosis could increase the activation of the immune 

system and reduce bone fracture healing. In synthesis, gut health, consisting of maintaining a healthy 

microbiome and effective intestinal permeability, is essential for maintaining bone homeostasis, 

remodelling, and healing functions [42]. 

4. Could musculoskeletal and joint pain sensitivity be modified through nutrition and GM balance? 

As this review noted, gut health is related to microbiota and intestinal permeability and can 

influence sports injuries’ development and/or recovery [21]. Therefore, changing habits that 

modulate gut health can be easily included in sports routines for improving sports injury prognosis. 

In addition, lifestyle factors, including nutrition and specific interventions such as intermittent 

fasting, exposure to toxins and medication, ultra-processed food (additives), exercise training, and 

environmental and social relations, seem to influence the gut microbiota profile and the systemic 

health related to the locomotor structures [143].  

It was reported that well-trained athletes present a higher diversity and abundance of GM than 

sedentary or sick subjects [144–148]. Athletes are advised to eat four or five times per day and even 
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during exercise, which can be considered an overload stimulus for the intestines, forcing them to 

work regularly during digestion. In this regard, based on simple carbohydrates, such diets may 

promote impaired mucosal barrier integrity, thereby elevating gut and systematic tissue inflammation, 

as shown in musculoskeletal injuries [64]. It was reported that nutritional interventions that decrease 

intestinal inflammation and modulate healthy GM could be considered therapeutic to promote 

peripheric tissue repair and joint structures [149,150]. Some studies in animals and humans have 

reported that probiotic strains, mainly Lactobacillus and Bifidobacterium, positively modify the GM 

ecosystem and contribute to regulating effective immune responses, maintaining healthy intestinal 

permeability, and exerting beneficial effects on bone health, joint structures, and tendons. These 

probiotics contribute to restoring average gut permeability, which may reduce systemic inflammation, 

and improve metabolic functions through the administration of butyrate [151] and the reduction of 

sarcopenia with the Lactobacillus group [152–154] (helveticus, casei shirota). Furthermore, specific 

bacteria groups have been reported to improve the synthesis, digestion, and absorption of amino acids 

(Fusobacterium, Bacteroides, Veillonella, Megasphaera elsdenii, Selenomonas ruminantium) [155] 

and de novo synthesis (Streptococcus bovis and Prevotella bryantii) [156]. 

Pain is a primary factor limiting physical performance, reducing regular exercise practice, and 

impairing athletes’ moods. Pain is an unpleasant sensation related to tissue inflammation and damage [8] 

that promotes the reduction of physical and perceptive potential as an innate neural mechanism to prevent 

and protect against more damage. A high grade of local and systemic inflammation is usually related to 

the elevation of nociceptive pain perceptions [157]. In this way, gut dysbiosis and impaired intestinal 

permeability increase the systemic level of inflammation, where the immune system reacts as a 

protective mechanisms increasing pain sensitivity (hyperalgesia) [158,159]. In this context, the gut 

is a critical modulator of the onset and development of neurogenic pain and inflammation [24,160]. 

Several publications have argued how higher levels of Faecalibacterium Prausnitzii [161] and 

Coprococcus [14] increase antinociceptive sensations, while others, such as Streptococcus [43] are 

associated with more severe pain in pathologies such as OA.   

It has been hypothesized that positive daily routines, including specific diet interventions, may 

reduce systemic inflammation and promote a lower activation of nociceptors signaling pain [23]. In this 

way, a positive elevation of commensal bacteria produces elevated levels of specific molecules and 

metabolites (SCFAs), modulating inflammation and pain sensitivity in the gut and whole body [162]. 

These molecules have essential anti-inflammatory properties that are key to gut 

immunomodulation [163,164]. The interaction between some nutrients and GM, including 

polyamines, polyunsaturated fats, Omega 3, polyphenols, flavonoids, and some vitamins and minerals, 

has been demonstrated to be adequate for modulating pain. Polyamines are naturally present in legumes, 

soybeans, cereals, mushrooms, and algae, containing particles of spermidine, spermine, and putrescine, 

which are antinociceptive substances [165]. Polyunsaturated Omega 3 are considered as anti-

inflammatory and antinociceptive molecules [25,166] with analgesic properties in joint pain [167]. Plant-

derived polyphenols present in red wine, straw and blueberries, green tea, soy, and the Zinziberaceae 

family (zerumbone and curcumin) have anti-inflammatory properties [168] regulating the decrease of 

proinflammatory cytokines TNF-α, IL-6, and IL-1β [169]. Flavonoids such as quercetin in red onions, 

berries, broccoli, and apples promote antinociception [170]. Curcumin has positively affected chronic 

musculoskeletal pain and osteoarthritis [171]. Other components, such as nutrients with high doses of 

selenium [172], magnesium [173], vitamin D supplementation [174] and taurine [175] have been 

reported as pain modulators, too.  
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Additionally, some neurotransmitters and hormones synthesized in the gut are essential for 

modulating neural pain and mood. Directly, GM synthesizes high proportions of total 

neurotransmitters in the body. Dopamine regulates inflammation and the immune response and it’s 

a crucial modulator of chronic pain and behavior [176]. Serotonin is an essential mood modulator 

that is synthesized in about 90% in the gut. Strain bacteria such as Clostridia, Bacteroides, and 

Escherichia can alter serotonin levels, affecting tryptophan production [52]. Other neurotransmitters 

such as noradrenaline, glutamate, and GABA produced in the gut are related to pain and 

inflammation, and their production depends on different bacteria such as Lactobacillus, 

Bifidobacterium, and Bacteroides [52].  

Intestinal hormones such as ghrelin and leptin have anti-inflammatory properties that 

participate in nociceptive regulation and immunometabolic inflammation, which are characteristics 

of chronic pain conditions [52]. SCFA production levels relate to the modulation of intestinal 

hormones such as leptin and ghrelin [177]. Ghrelin has anti-inflammatory properties because it 

increases the level of anti-inflammatory cytokines in the serum and mediates pain [178]. Moreover, 

leptin modulates neuropathic pain and may be a promising biomarker for predicting acute pain 

transition to chronic [179]. Therefore, the production of ghrelin and leptin relates to the levels of 

SCFAs in the gut [177]. 

Cortisol is the key stress hormone in humans and influences the GM composition [180]. While it 

does not affect pain, chronic elevation of cortisol impairs the body’s capacity to cope with stress [181]. 

In addition, if stress is maintained chronically, pain perception levels increase due to the maladaptive 

capacity to manage the inflammatory response [52]. 

5. What are the bacteria related to intestinal permeability and musculoskeletal injuries? 

Several studies have shown how some pathologic bacteria may be related to leaky gut syndrome. 

However, most of them are observational studies in which it’s not proven that there’s a direct cause-

and-effect relationship between bacteria and leaky gut syndrome. For example, a significant positive 

association was found between the presence of microorganisms such as Fusobacterium or Prevotella 

and the risk of musculoskeletal injuries [110,182]. Likewise, some bacterial genera, such as 

Firmicutes [19] and Escherichia coli [19,183], were found in greater abundance in individuals with 

excellent intestinal permeability. Additionally, it was observed that Ruminococcus gnavus degrades 

the mucus, inducing the translocation of LPS through the intestinal epithelium and increasing leaky 

gut syndrome [184]. Similarly, the SpvB Salmonella effector redistributes the tight junction proteins 

(occludin and claudin-1), alters the integrity of the intestinal barrier and facilitates Salmonella 

dissemination [185]. Table 1 shows some of the most notable mucolytic bacteria associated with 

intestinal protective functions for permeability and GM balance. 

6. What are the limitations of the current evidence on the relationship between gut microbiota, 

intestinal permeability, and musculoskeletal injuries? 

There are several limitations to the current evidence on the relationship between gut microbiota, 

leaky gut syndrome and musculoskeletal injuries. First, most of the studies are observational, which 

limits the ability to establish causality. Further randomized controlled trials are needed to confirm the 

findings of the observational studies. Second, the studies are heterogeneous regarding the participants 
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studied, the interventions examined, and the outcomes measured, making it difficult to compare the 

results across studies. Third, based on different exercise practices and nutritional routines, it is unclear 

if the findings included here are generalizable to elite, recreational athletes or general populations. 

Fourth, the mechanisms underlying the relationship between gut microbiota, intestinal permeability, 

and sports injuries are not fully understood.  

However, we hypothesize that adaptive innate immunity related to the intestinal epithelium and 

the modulation of the inflammatory response could be essential in managing systemic and local 

inflammation. Finally, most musculoskeletal injuries are disabling, mainly because the neural pain 

related to the inflammatory processes impairs movement. Furthermore, it is essential to consider that 

the microbiota and intestinal permeability are complex and influenced by many factors; therefore, it is 

difficult to determine the influence of a single bacterium or group of bacteria on these processes. 

7. What are the most effective strategies for preventing and recovering from sports injuries 

regarding gut microbiota and intestinal permeability? 

Based on the evidence from the studies included in this review, many factors could be highlighted 

in the accentuation of intestinal permeability (see Figure 3): 

1) Heat stress related to exercise increased core temperatures (hyperthermia> 39ºC), damaging 

the epithelial cells due to a more outstanding contribution of blood flow to the cutaneous vascular 

network [186]. Common heat stroke and exertional heat stroke have been associated with 

gastrointestinal barrier integrity loss and microbial translocation in animal models [187,188], and 

indirectly in humans by the presence in blood of microbial products such as endotoxin, D-glucan and 

procalcitonin [189].  

2) Stress due to splanchnic ischemia (cellular hypoxia) generates more significant redistribution 

of blood flow to the active muscles and peripheral organs (heart and lungs), not reestablishing 

perfusion until the end of physical activity. The degree of damage produced in the mucosa (surface or 

deeper layers) depends on the severity of the ischemia and its duration (edema and bleeding, among 

others) [36]. Similarly, it causes phosphorylation of specific tight junction proteins, promoting 

enterocyte injury and increased intestinal barrier integrity, and therefore microbial translocation, 

especially in endurance high-intensity exercise [190]  

3) Oxidative stress (tissue damage) production by the action of intestinal cytotoxic agents 

(oxygen-free radicals, nitric oxide, and cytosines, among others). Regular exercise is associated with 

an acute increase of oxidative stress and a positive long-term effect on the gut anti-inflammatory 

response [191]. Similarly, in animal models, acute exercise increased oxidative stress but was not 

associated with intestinal inflammation [192]. On the contrary, in the exercise overload context, it is 

essential to note that during the severe splanchnic ischemia and reperfusion phases, many free radicals 

are created, thereby aggravating the damage to the intestinal mucosa [193].  

4) Exercise in altitude or hypoxic conditions has been reported that increase gut permeability 

and intestinal ischemia more than the same activity performed in normoxia. Moreover, in altitude 

conditions, the systemic conditions achieved from the environmental conditions increase fluid loss, 

metabolic stress, and the activation of the sympathetic neural system [194].  

5) For example, chronic high-intensity exercise in cyclist competition of three weeks or ultra-

endurance running events may increase gut stress due to intestinal ischemia, changes in the intestinal 

pH, dehydration, hyperthermia, and systemic inflammation [22,195]. 
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Based on current evidence, promoting a healthy GM can directly improve gut health and intestinal 

permeability. The better modulation of immune response in the gut reduces systemic and local chronic 

inflammation, indirectly benefiting musculoskeletal homeostasis. Moreover, has been suggested that 

interventions on GM may effectively prevent the transition from acute to chronic musculoskeletal 

pain [196]. Accessible practices to improve gut microbiota diversity and intestinal permeability 

relate to nutrition and daily routines (see Figure 3).  

Easy practices to improve GM diversity and intestinal permeability have relation with the 

nutrition and daily routines. Among others, they should promote a high microbiota diversity through 

the intake of prebiotics [197] and probiotics [61]. The reduction of ultra-processed food [61] and non-

steroidal anti-inflammatory drugs (NSAIDs) [17] should be taken to avoid excessive antibiotics 

ingestion, since these can alter the microbiota and increase intestinal permeability [198]. In addition, 

one should consume probiotic foods, potentially through a specific strain of bacteria or with natural 

food probiotics such as yogurt and kefir, which contain live strains of bacteria beneficial to the 

microbiota. In the general population, one should maintain an active and healthy lifestyle since regular 

physical exercise can improve the microbiota and intestinal permeability [199]. Additionally, one 

should avoid stress and insufficient sleep, as they can negatively affect the microbiota and intestinal 

permeability [16]. Adopting stress-management strategies, such as meditation, yoga, or exercise, may 

help to reduce stress levels and improve gut health. One should incorporate rest and recovery periods 

into training regimens: proper rest and recovery are essential for maintaining gut health and reducing 

the risk of musculoskeletal injuries. In addition, massages and other active recovery techniques can 

help reduce muscle damage and inflammation; therefore, they could be important for gut health. One 

should include intermittent fasting for 12-16h to improve metabolic efficiency, reduce inflammation 

and contribute to gut microbiota regulation [150]. Additionally, one should promote the chrono-

nutrition regulating meal time to improve endocrine and gut microbiota processes favoring not eating 

during and immediately post-exercise [200]. 

  

Figure 3. Interventions that can impair/improve gut permeability. 
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8. Conclusions 

In conclusion, emerging evidence suggests that GM and intestinal permeability may play an 

essential role in the adaptive innate immunity of the gut, the modulation of systemic and local 

inflammation, neural sensitivity to pain, and the degeneration of musculoskeletal and joint structures 

related to sports injuries. Furthermore, the literature suggests that gut microbiota-related gut leaky 

alterations may decrease the ability to recover and/or repair musculoskeletal tissues after acute damage, 

inflammation, and injury. Besides, it seems systemic endotoxemia promotes low-grade inflammation 

that reduces the adaptive capacities in tissues and the immune system, as in aging.  

Therefore, athletes must consider maintaining a healthy microbiota and adequate intestinal 

permeability to reduce the risk of suffering more musculoskeletal injuries related to inflammation and 

pain. In general population, musculoskeletal non-traumatic injuries specially associated with 

degenerative processes as osteoarthritis, osteoporosis, tendinopaties or muscular sarcopenia are also 

related to systemic low-grade of inflammation. To prevent the transition to acute to chronic pain effective 

interventions based in modulate immunomodulation could be further explored in the follow years.  

To this purpose, practical recommendations can be stated, such as eating a diet rich in prebiotics, 

consuming probiotics, avoiding excessive consumption of processed and sugary foods, maintaining an 

active lifestyle and healthy, managing stress levels, incorporating rest and recovery periods into 

training regimens, sleeping sufficiently, and avoid overuse of antibiotics, ultra-processed foods 

including sport supplements and NSAIDs. 

It is important to note that the relationship between gut microbiota, intestinal permeability, and 

musculoskeletal injuries is complex and still not fully understood. Therefore, further research is needed 

to determine the mechanisms and specific bacteria underlying this relationship and to develop effective 

strategies for preventing, managing, and recovering from sports injuries in athletes and general 

population. In addition, future studies should consider other potential factors that may affect the 

relationship between gut microbiota, intestinal permeability, and musculoskeletal injuries, such as 

physiopatological condition, age, gender, and type of activities or sport. Moreover, the relationship 

between systemic inflammation and hypothalamic sensitivity to pain may have a relation to intestinal 

endotoxemia and the alteration of nociceptive tolerance and threshold.  

In conclusion, the modulation of pain and musculoskeletal injuries could have a new field of 

treatments based on the intervention with GM and intestinal permeability. In such cases, the analysis 

of the GM both for athletes as also in general populations, is everyday more the present to improve the 

individual measurement of the gut health. Even more, the symbiotic relationship between the GM and 

the host is key to maintaining gut and systemic health. The modulation of inflammatory and immune 

processes after local stress is very important to regulate acute responses related to musculoskeletal 

homeostasis. Therefore, reduce possibilities to achieve chronical musculoskeletal states of inflammation, 

degeneration and pain. According to the specific literature in the topic, local and systemic inflammation 

is related to the leaky gut syndrome, immune system over-activation, and pain sensitivity. 
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