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Abstract: Scholars and experts argue that future pandemics and/or epidemics are inevitable events, 

and the problem is not whether they will occur, but when a new health emergency will emerge. In this 

uncertain scenario, one of the most important questions is an accurate prevention, preparedness and 

prediction for the next pandemic. The main goal of this study is twofold: first, the clarification of 

sources and factors that may trigger pandemic threats; second, the examination of prediction models 

of on-going pandemics, showing pros and cons. Results, based on in-depth systematic review, show 

the vital role of environmental factors in the spread of Coronavirus Disease 2019 (COVID-19), and 

many limitations of the epidemiologic models of prediction because of the complex interactions 

between the new viral agent SARS-CoV-2, environment and society that have generated variants and 

sub-variants with rapid transmission. The insights here are, whenever possible, to clarify these aspects 

associated with public health in order to provide lessons learned of health policy that may reduce risks 

of emergence and diffusion of new pandemics having negative societal impact. 
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1. Introduction 

In 2023, negative effects of the Coronavirus Disease 2019 (COVID-19) pandemic are 

considerably reduced, unlike the early period in 2020, though many people still have to cope with 
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COVID-19 illness [1−14]. In the USA, deaths per day of COVID-19 in the early months of 2023 are 

higher than deaths with a seasonal influenza. These facts suggest that COVID-19, in a different way, 

continues to have a certain impact in society [15].  

A vital aspect for public health and security of nations is to show the lessons learned to face COVID-

19 pandemic crisis, to improve the prevention and preparedness, to stop and/or mitigate, whenever 

possible, the emergence and diffusion of a new virus that infects a lot of people worldwide [16−21]. In 

this context, the goal of this study is a general analysis of the sources and driving factors of Severe 

Acute Respiratory Syndrome Coronavirus 2 or SARS-CoV-2 virus (leading to COVID-19), and an 

examination of prediction approaches, showing pros and cons [22−27]. The prediction and preparation 

to deal with a pandemic, effectively, involve different aspects, such as how new viral agents may 

emerge, behave and mutate in environments, to explain the transmission dynamics, spatial diffusion 

and impact in society [22,28−30]. In the presence of the COVID-19 pandemic, governments have 

largely applied epidemiological models of prediction of cases and/or deaths to guide the effective and 

timely implementation of health policies based on restrictions and/or vast vaccination campaigns [31−34]. 

However, epidemiologic models of COVID-19 have also shown many limitations because of 

unpredictable behavior of the SARS-CoV-2 virus in the environment and society [35].  

Hence, since the source and diffusion of the pandemic are associated with manifold factors and the 

forecasting of pandemic dynamics, using current epidemiologic models can have shortcomings with 

mutant viral agents and/or changes in mitigation and containment policies of nations. The analysis and 

discussion of these aspects can show lessons learned to improve the guidelines in the governance and 

public health of countries, in a post pandemic period, to avoid the emergence of new outbreaks [36]. 

2. Materials and methods 

2.1. Databases and search strategy 

The systematic review used here is based on a search strategy of selected papers published in 

various databases, such as PubMed [37], Scopus [38] and Web of Science [39]. The search strategy 

was formulated and refined in terms of subject keywords by a “Boolean searching” using the operator 

of logical conjunction AND; some of the search strings used here are: COVID-19 AND sources, 

COVID-19 AND “diffusive factors”, COVID-19 AND “prediction models”, etc. Quotation marks were 

used to search in a loose phrase, where the words appear together in a fixed order. 

2.2. Inclusion and exclusion criteria 

Current search engines, with the above strings, provide a high number of papers, including many 

irrelevant resources. Therefore, for effective analyses, the study here follows a systematic search 

strategy that screens and selects the literature to find the relevant papers based on specific criteria. In 

this study, three main inclusion and exclusion criteria are applied for identifying relevant content and 

removing irrelevant papers (Table 1) [40−42]: 

a) The first inclusion criterion is the type of document; published documents are included, 

whereas manuscripts under review and unpublished manuscripts are excluded.  

b) The domain (i.e., the subject area identified for the study) is the second screening criterion; 

papers dealing strictly with factors of emergence and diffusion of COVID-19, and about prediction 
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models for COVID-19 are included, whereas other documents are excluded. 

c) The last screening criterion is the language in which the paper is published; inclusion criterion 

is English; exclusion is non-English language. 

Table 1. Inclusion and exclusion criteria of papers of the study. 

Criterion Inclusion Exclusion 

Document type Published papers Unpublished manuscripts 

Scientific 

domain 

Papers dealing with factors of 

emergence and diffusion of 

COVID-19, and about prediction 

models for COVID-19 

Papers non dealing strictly with factors of 

emergence and diffusion of COVID-19, and 

about prediction models for COVID-19 

Language  English papers Non-English papers 

2.3. Eligibility and inclusion for review and qualitative synthesis of results  

Quality evaluation is conducted to avoid biases and errors. In this study, in the initial phase, more 

than 620 documents were chosen. After an in-depth analysis, using criteria of Table 1, records screened 

and selected are 62 documents that are also the papers assessed for eligibility in this study (10% of the 

total). Papers excluded for the lack of information strictly related to the topics under study here are 31 

documents. Hence, papers selected for the review and the analysis for a qualitive synthesis of results 

are 31 (50% of record selected).  

In this perspective, systematic review here focuses on a method of logic selection of specific 

literature (above) aimed at minimizing bias in order to produce reliable findings that explain drivers 

of new viral agents, factors related to diffusion and societal impact, and points of strength and 

weakness in epidemiological models [43]. The results of this systematic literature review show 

critical findings and lessons learned for both healthcare managers and policymakers of health 

institutions to improve the governance and application of epidemiological models directed to support 

effective health polices in the presence of mutant viruses, and environmental and societal changes  

during pandemic crisis. 

3. Results 

3.1. Factors determining a high risk for the emergence of new viral agents 

3.1.1. Surveillance of wildlife to avoid spillover effects with emergence and diffusion of new viral 

agents in humans 

Daszak et al. [44] argue some risk factors determining the emergence of new viral agents and 

pandemic threats, such as the interaction between humas and wildlife that can foster the transmission 

of dangerous pathogens and spillover effects in human society; a main risk factor is wildlife trade in 

domestic and international markets that, with poor measures of control, can reduce biosecurity and 

increase the spillovers leading to new viral agents in humans [45,46]. In fact, poor surveillance of 
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wildlife can generate evolutionary phases in pathogens that specialize them to transit from animals to 

humans (cf., Table 2). These factors can trigger compounding and cascading events in regions with a 

high population density where new viral agents infect a lot of individuals. In addition, persistence of 

infections, driven by new viral agents, depends on manifold factors, such as: density of population, 

hygienic conditions, level and period of infectivity in hosts, period necessary for host to achieve a 

protective immunity, resistance of pathogens to climate and other environmental factors (e.g., air 

pollution), resistance to pharmaceutical treatments, and continued existence of new viral agents in 

large regions, albeit extinctions in local clusters, etc. [47].  

3.1.2. Biosafety lab risk assessment and protocols to reduce accidents for the emergence and 

diffusion of new viral agents 

Accurate lab risk assessments and security protocols improve biosafety and reduce accidents and 

the probability that a new viral agent can spread in society [48]. Hellman et al. [49] show that two 

percent of accidents is in fabrications rooms and thirteen percent is in other places of research labs 

(Table 2). Van Noorden [50] argues that thirty per cent of people working in labs have assisted with 

serious injury in a period of about twenty years (see Table 2). Ayi and Ho [51] also report that, in 

Canada, about fifteen per cent of people in labs have experienced at least one lesion or mishap. 

Simmons et al. [52] reveal that, at the Iowa State University (U.S.A.), lab incidents are more than 

eighteen percent of total (Table 2). Kou et al. [53] point out that, at the University of Minnesota 

(USA) in a period of five years, scholars reported that the most frequent incidents are the spill of 

hazardous substances, fire and equipment damages that injure lab personnel. These case studies 

reveal that the escape and diffusion of new viral agents, associated with an accident of lab, can have 

a vital role in the emergence of epidemics and pandemics [12]. The reduction of incidents in labs 

that study new viral agents is associated with an accurate activity of lab risk assessments and 

effective protocols for biosecurity. Li Na et al. [54] argue that risk assessment and biosafety in labs 

can be performed with different methods, such as scenario analysis, pre-hazard analysis, hazard and 

operability analysis, fault tree analysis, event tree analysis, matrix analysis, risk mapping, etc. 

However, control measures of biological risks have no fixed modes generalizable for all labs across 

different nations, but they have to be adapted to the specificity of lab and country [22,28]. Moreover, 

information and data of lab accidents should be linked to a national and international surveillance 

system for a real time transmission of biological risks in order to better coordinate national security 

with targeted investigations, and timely interventions in the presence of specific threats and risk for 

the local and global community [55]. Hence, biosafety risk analyses and risk assessments in 

laboratories have to be a recurring activity to improve the security of operation and minimize the 

incidents involving hazardous pathogens and/or aerosol exposure risk to hazardous viral agents that 

can lead to the emergence of new infectious diseases and serious epidemic and/or pandemic threats 

at local and global levels [54,56]. 
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Table 2. Average level of incidents in specific labs of universities. 

Type and percentage of incidents in labs Sources 

2% of accidents in fabrications rooms  

13% in other places of research labs 
Hellman et al. [49] 

30% of people working in labs has assisted with serious injury over a period 

of 20 years 
Van Noorden [50] 

15% of people in labs has experienced at least one lesion or mishap Ayi and Ho [51] 

18% of lab incidents have occurred at the Iowa State University Simmons et al. [52] 

25% of hazard types are spills and fires 

18% of hazard types are for equipment failure or explosion 

16% of hazard types are associated with cryogenics 

15% of hazard types are spills and sharps 

12% of serious incidents has involved a researcher requesting an external help  

12% is “near miss” incidents 

Kou et al. [53] 

A natural zoonosis is a rare event  Coccia [12] 

3.1.3. High air and environmental pollution, and (un)sustainable environment can support pandemic 

emergence and rapid spread 

One of the factors determining a high risk for the diffusion of epidemics and pandemics similar 

to COVID-19 is air and environmental pollution in populated cities [11,57−61]. In general, populations 

living in environments with high air pollution have experienced an increased mortality of COVID-19, 

because of rapid diffusion of SARS-CoV-2 in polluted and highly populated cities [4,6; cf. Figure 1]. 

In fact, high levels of particulate matter and other air pollutants can mix with new pathogens, 

generating mutations and resistance of these new viral agents that increase their transmissibility and 

infectivity with a negative impact on the health of people [2,7,62−65]. 

 

Figure 1. Infected people on population density per km2, considering the groups of cities with 

high or low air pollution (high particulate compounds emissions in the atmosphere). Note: 

Coccia [59] reveals that diffusion of COVID-19 is higher in cities with high air pollution. 



150 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

3.2. Pre-emptively measures of control for reducing widespread diffusion of new viral agents 

3.2.1. Strengthening the early warning system with effective contract tracing system  

An effective contact tracing system and timely isolation can reduce transmission dynamics of 

infectious diseases within, and between, different outbreak areas [66]. This dual strategy plays a basic 

role to stop the spread of infectious diseases having a latent pre-symptomatic phase (Coccia, 2020). 

Moreover, an effective contact tracing system, with a “bidirectional” approach, can reduce the spread 

of new viral agents in society, and improve the timely healthcare in infected individuals to reduce 

severe side effects and also mortality [67,68]. Benati and Coccia [66] show that, during the first wave 

of the COVID-19 pandemic, some regions in Italy have managed pandemic crisis with appropriate 

health policy responses based on: a) a timely and widespread testing of individuals, b) effective units 

of epidemiological investigation in a pervasive contact-tracing system to detect and isolate all infected 

people. Benati and Coccia [66] reveal that widespread and in-depth testing of symptomatic and 

asymptomatic individuals, associated with a timely isolation of infected people, can reduce total 

number of infections and deaths of COVID-19 (Figure 2). Hence, a health policy of timely effective 

contact tracing is basic to face pandemics when there are no effective pharmaceutical treatments, such 

as vaccines and/or appropriate antiviral drugs [66,69]. This evidence by Benati and Coccia [66], in the 

first pandemic wave of COVID-19, provides important lessons when appropriate drugs are not ready, 

and to design health policies based on effective contact tracing systems can constraint pandemic waves 

driven by new viral agents or their variants and sub-variants (Figure 2). Zhan et al. [70] also argue that 

a susceptible-unconfirmed-confirmed-recovered mode can capture transmission dynamics of 

confirmed cases, and that by increasing five times the testing capacity associated with control measures, 

the numbers of COVID-19 infections in people would decrease to 33%.  

 

Figure 2. Trends of COVID-19 deaths in Italian regions (Veneto and Piemonte) with 

effective and non-effective contract tracing systems. Source: Benati and Coccia [66]. 
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3.2.2. Effective public governance improves prevention and preparedness to face pandemic threats  

Effective governance and constant investments in the health sector can support prevention and 

preparedness to pandemic threats with an improvement of: surveillance in the interaction between 

human society and wildlife, protocols for biosafety laboratory risk assessments, overall health system, 

human resources and management in healthcare, new technology that reduces human exposure to new 

vital agents or that improves treatments of new infections, early warning system and containment 

actions to stop rapid diffusion of viral agents in cities. In short, good institutions and effective public 

governance associated with human resources having expertise and availability of new technology in 

health sector, can improve the preparedness of crisis management to face novel viral agents and 

consequential pandemic crisis [71−95]. Benati and Coccia [96] show the positive effects of good 

governance for designing effective policy responses to cope with the COVID-19 pandemic, such as the 

roll out of a timely vaccination plan directed to reduce negative pandemic impact in society (Figure 3). 

 

Figure 3. How the increase of government effectiveness between countries can support 

higher levels of vaccination. Source: Benati and Coccia [96]. 
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Figure 4 summarized critical risk factors for the emergence and diffusion of pandemics. 

 

− Factors determining a high risk for the emergence of new viral agents  

▪ Poor surveillance of the interaction between humans and wildlife 

▪ Incomplete biosafety protocols in labs that increase the probability of accidents  

▪ High air pollution in environments with little wind that can support atmospheric 

stability for diffusion of new viral agents in society driven by a mixture of 

pathogens and particular matter leading to high resistance, infectivity and rapid 

transmission in polluted cities having a high density of people with deteriorated 

immune systems 

− Poor pre-emptively measures of control for reducing the widespread diffusion of 

new viral agents 

▪ Ineffective contact tracing systems and scarce teams for epidemiological 

investigations 

▪ Bad governance of nations leading to poor health systems and health policies 

Figure 4. Factors that increase the opportunities for a pandemic virus to emerge and spread. 

3.2.3. Prediction Models for COVID-19 

Pandemic forecasting plays a vital role to control the pandemic threats and support health policies 

to cope with on-going pandemic crisis [97,98]. In the presence of the COVID-19 pandemic crisis, 

scholars suggest different models for epidemic tracking and forecasting [35]. Reinhart et al. [99] have 

done many efforts in the construction and maintenance of an open repository of real-time and 

geographically detailed COVID-19 indicators in the United States. This repository provides main 

information about COVID-19, such as confirmed cases, hospitalizations, intensive care units, deaths, 

fatality rates, etc. McDonald et al. [100] endeavor to explain if a set of indicators can improve the 

accuracy of COVID-19 forecasting in the short run across regions. KhudaBukhsh et al. [101] analyze 

the support that The Ohio State University offered, in the initial wave of COVID-19, to the Ohio 

Department of Health with epidemic modeling and decision analytics directed to predict statewide 

cases of new infections, as well as potential hospital burdens in the state. The proposed Dynamical 

Survival Analysis (DSA)-based statistical method, for statewide prediction and uncertainty 

quantification, needs fewer parameters and is less computationally expensive than agent-based 

models. However, the DSA method does not provide the flexibility to test arbitrary what-if scenarios 

involving individual human behaviors, because the method is based on population-level equations. 

Hurford et al. [102] analyze an elimination strategy, enacting strict border control and periods of 

lockdowns to end community transmission. A case study in Canada has reported a long period with 

no community cases. They also develop a method to assess alternative plans to relax public health 

restrictions when vaccine coverage is high in regions that have implemented an elimination strategy. 

Khairulbahri [103] suggests a SEIR model capturing the roles of behavioral measures, partial 

lockdowns, hospital preparedness and asymptomatic cases in Sweden. The suggested SEIR model 

successfully reproduces main observed outputs and finds that the effects of partial lockdowns 

Factors determining 

emergence and rapid 

diffusion of pandemics  



153 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

effectively start more than 50 days after the first confirmed case. Hence, behavioral measures and 

partial lockdowns can reduce infected cases of about 22% and 70%, respectively. Sasanami et al. [104] 

endeavor to estimate in Japan the proportion of the population that is immune to symptomatic SARS-

CoV-2 infection with the Omicron variant (immune proportion), considering the waning of immunity 

resulting from vaccination and naturally acquired infection. Results show that vaccine-induced 

immunity, conferred by the second vaccine dose, was estimated to rapidly wane. The resulting 

prediction of the share of the population that is immune to symptomatic SARS-CoV-2 infection could 

aid decision-making processes on when, and for whom, another round of booster vaccination should 

be considered. Li et al. [105] develop a new transmission model via a delay differential system, which 

parameterized the roles of adaptive behaviors and vaccination, allowing to simulate the dynamic 

infection process among people. Results show that for complete prevention, the average proportions of 

people with immunity should be about 76−92% with adaptive protection behaviors, or roughly 77−97% 

without protection behaviors; in addition, the required proportion of vaccinated people is a sub-linear 

decreasing function of vaccine efficiency, with little heterogeneity between different countries.  

Vasconcelos et al. [106] apply a generalized pathway model, with time-dependent parameters, to 

describe the mortality curves of the COVID-19 for several countries that exhibit multiple waves of 

infections. The model is in good agreement with the data for selected cases under study, showing the 

starting and peak dates for each successive wave. In fact, reliable estimates of characteristic points in 

epidemic curves play important aspects for assessing the effectiveness of interventions, and the 

possible negative impact of their relaxation. The study also shows that expected time for an epidemic 

wave to reach a peak seems to be positively correlated with the delay to adopt control measures. The 

study describes efficiency COVID-19 data, but a more detailed analysis about the effectiveness of 

intervention measures is needed to improve predictions. Cherednik [107] proposes a two-phase 

solution for modeling the total number of confirmed cases in COVID-19, and for describing the curves 

of many pandemic waves. A suggested approach shows uniformity of the COVID-19 waves between 

countries, and this result can be used for forecasting the epidemic spread. This approach is very 

different from the classical SID, SIR, SIER models and their variants, and the models used in the 

neighboring directions of invasion ecology. The saturation in the model is a dynamic equilibrium 

between the virus invasion and protective measures, but this is not due to classical herd immunity. 

Moreover, because of a very limited number of parameters in a two-phase solution, the modeling is 

rigid. Since the forecasting of waves can be potentially reduced to finding the factors of initial 

transmission rate and the intensity of hard protective measures, the challenge is to do this at early 

stages of the pandemic waves; likely it is doable near to the turning point of the wave. Currently, these 

parameters are found “manually”. Leonov et al. [108] consider two modifications to the well-known 

SEIR model of epidemic development to analyze the infection curves in COVID-19 pandemic. These 

models can identify external and hidden sources of infection. Numerical experiments show that 

infection curves can be approximated with a high accuracy (2−8%). However, in infection waves 

having a sharp increase, the approximation errors grow tenfold. This problem is solved with an 

additional term that considers external and latent sources of infection (average accuracy here is 2-4%). 

Moreover, because of lack of data, models approximated the infection waves, including the Omicron 

wave, with an accuracy of about 10–30%. Cao et al. [109], using a model, show in a pre-vaccine era 

that policy-related factors guide the spread of COVID-19; in the post-vaccine era, the drivers of policy-

related factors decreased, whereas travel-related factors, variants and vaccine-related factors increased 

the COVID-19 diffusion. However, a quantitative assessment of the combinatorial effect of different 
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factors is needed to effective control the diffusion of COVID-19 over time. Namiki and Yano [110] 

use the total number of individuals as an optimized parameter in the susceptible-infected-quarantined-

recovery (SIQR) model, and propose two methods to simulate multiple epidemic waves (MEWs). 

Numerical results indicate that a logistic model fits MEWs with a good accuracy. A limitation of the 

model is the transition from the delta to omicron variant that generates difficulty of prediction because 

the rate of the infection changes during the epidemic wave. Safaie et al. [111] analyze the factors that 

affect COVID-19 outbreak and expand the basic SEIR model by considering vaccination policy. 

Results suggest that the vital factor that reduces the COVID-19 diffusion is due to increasing 

vaccination plans, rather than decreasing in behavioral risks of people. 

Table 3. Limitations of prediction models for COVID-19. 

 

 

Weaknesses Authors 

▪ Dynamical Survival Analysis-based statistical method does not have the 

flexibility to test arbitrary what-if scenarios involving individual human 

behaviors because the method is based on population-level equations 

KhudaBukhsh et 

al. [101] 

▪ The pathway approach for multi-wave epidemics shows its efficiency in 

describing COVID-19 data, but a more detailed study about the effectiveness of 

intervention measures is needed to improve predictions 

Vasconcelos et al. 

[106] 

▪ The modeling is rigid for limited number of parameters in two-phase solution. 

The key factors of the initial transmission rate and the intensity of hard 

protective measures are found “manually” 

Cherednik [107] 

▪ The approximation errors grow tenfold in pandemic waves with a sharp increase 

of infections. Because of the lack of data, model approximates the infection 

curves with an accuracy of about 10–30% 

Leonov et al. 

[108] 

▪ A quantitative assessment of the combinatorial effect of different control 

measures is needed for accurate prediction of the diffusion of COVID-19 

Cao et al. [109] 

▪ Limitation of the model is the transition from the delta to omicron variant 

because the rate of the infection changes over time in the epidemic wave 

Namiki and Yano 

[110] 

▪ Human behavior and its impact on the progression of epidemics are hard to 

measure and to model 

Mohammadi et 

al. [117] 

▪ Unlike predictions of epidemiologic models, the reduction of control measures 

for COVID-19 did not generate a rapid take off of infections 

Wieland [112] 

▪ Epidemiologic models for COVID-19 generate overestimation of deaths Douglas [113] 

▪ A limitation of models for pandemic prediction is the assumption of a constant 

reproductive number, whereas in real contexts it changes over the course of time 

Korolev [115] 

▪ A lot of models do not consider that the deaths of COVID-19 have a skewed 

distribution towards elderly and susceptible people with comorbidities 

Chen et al. [116] 

▪ A critical limitation of epidemiological models for COVID-19 is that they do 

not consider the behavioral change of people in the presence of a pandemic 

Stangier et al. 

[118] 
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3.2.4. Limitations in epidemiologic model of forecasting 

Different pandemic tracking and forecasting models for COVID-19 crisis support processes of 

decision-making, but they also have limitations (Table 3). For instance, COVID-19 diffusion has 

shown rapid peaks and then infections abruptly fall, regardless of measures of control, generating a 

flop in many prediction modelling. In fact, unlike predictions of different epidemiologic models, the 

reduction of control measures for COVID-19 did not generate a rapid take off of infections [112]. 

Other main problems of epidemiologic models for COVID-19 prediction are due to high 

overestimation of deaths [113−115]. Additionally, a limitation of current models for pandemic 

prediction is the assumption of a constant reproductive number, whereas, in real contexts, it changes 

over the course of time [115]. A lot of models also do not consider that the deaths of COVID-19 have 

a skewed distribution towards elderly and susceptible people with comorbidities [116]. As a 

consequence, appropriate prediction models of COVID-19 should include age-dependent factors.  

Another critical limitation of epidemiological models for COVID-19 forecasting is that they did 

not consider the behavioral change of people in the presence of a pandemic [117]. In fact, people with 

the fear to be infected and/or of die with a new infection, they adapt the behaviour to new situation 

taking provident actions to protect themselves and survive in uncertain environments [118]. A main 

example is in the US economy where the reduction of consumer mobility is due to mainly to private 

responses rather than public obligations [119]. Finally, susceptible-infectious-removed (SIR), 

Susceptible-Exposed-Infected-Recovered-Dead (SEIRD) and other epidemiologic models focus 

mainly on stable and short-run variables, whereas factors driving the pandemic waves have dynamic 

change over time. However, Amaro [120] argues that, in a small number of selected countries, the SIR 

model well describes a basic reproduction number between 3 and 8 units. Overall, epidemiologic 

models are useful approaches for approximate pandemic dynamics but they cannot provide reliable 

long-run forecasting for rapid changes in manifold factors, such as new variants, relaxation of 

containment measures, behavioral change, etc. (Table 3). 

4. Discussion and policy implications for preventing pandemic threats 

Studies of literature review on COVID-19 pandemic crisis have focused on different aspects. 

Noteboom et al. [121], with a literature review, argue that deep learning methods, such as medical 

image screening, can improve diagnosis of COVID-19, in particular, the application of transfer 

learning for chest X-rays and computed tomography. Jordan et al. [122] analyze, with a literature 

review, optimization and machine learning approaches related to aspects of prediction and control of 

COVID-19 pandemic, such as optimization in screening testing strategies, healthcare resource 

management, vaccination prioritization, etc. Shakeel et al. [42] present a systematic literature review 

with results that are vital both for healthcare managers and for prediction model developers to face 

COVID-19 pandemic. Hudda et al. [123] show a systematic review of COVID-19 prediction models 

based on preprint and peer-reviewed published manuscripts, in order to assess the percentage of 

adherence between prediction and effective data. Instead, Zhang et al. [124] systematically examine, 

in COVID-19 research, the application of three simulation approaches given by a system dynamics 

model, agent-based model and discrete event simulation, and their hybrids. Results suggest that hybrid 

simulation models can capture the complexity of pandemic impact to design appropriate interventions 

of health policy. Bhatia and Di Ruggiero [125] review publicly accessible documents of the Canadian 
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Government about the procurement and provision of expert-driven science advice to support timely 

decision-making processes of public health for pandemic crisis. The study clarifies that the federal 

science advice bodies and mechanisms represent main elements of the federal science advice 

“ecosystem”. Moreover, the study suggests, in the presence of pandemic crisis, the necessity in Canada 

to institutionalize science advisory bodies for public health to improve pandemic preparedness, and 

ensure rapid mobilization of well-coordinated and independent advice.  

This study extends this body of knowledge by discussing factors that may trigger pandemic 

threats and the role of pandemic modelling with pros and cons aspects. In particular, systematic review 

here reveals that epidemiologic models for the prediction of COVID-19 have also many limitations 

because of unpredictable dynamics and rapid change in society of the new viral agent SARS-CoV-2 

and its variants and sub-variants. This study also provides, considering the analysis done, some 

recommendations to improve crisis management of pandemics by focusing on key components 

described in Table 4. 

Table 4. Elements for improving crisis management of pandemic threats. 

ELECTRONIC MEDICAL RECORDS (EMR) 

The accurate analytics of real-time data can improve the forecasting of pandemic dynamics. 

Electronic Medical Records (EMR) has a high potential for real-time surveillance streams of 

infections and deaths related to pandemic of new viral agents similar to SARS-CoV-2 

DIFFERENT PHASES OF EPIDEMIC SURVEILLANCE NEED DIFFERENT ANALYTIC 

TECHNIQUES AND APPROACH. 

In the inter-pandemic phase, the monitoring of data streams and consequential events worldwide 

can avoid compounding and cascading events, such as species jumping, mutations and high diffusion 

of viral agents. 

In the containment phase, a threat of a new viral agent has to be intensely monitored, assessed, and 

contained with effective contact tracing systems. A real-time analytics can provide reliable 

estimation of critical epidemiological parameters for assessing and predicting with accuracy 

pandemic trend, and controlling diffusion with appropriate health policies. 

In general, countries should direct their efforts on pre-emptively strategic actions to increase R&D 

investments in new technology, organized infrastructures in health sector, equipment, and education of 

human resources, associated with international collaboration, for improving activities of prevention and 

preparedness to cope timely with unforeseen pandemics and reduce problems of public health [18,22,28]. 

In particular, preventive strategies should minimize risk factors associated with the emergence and 

evolution of a new pandemic virus [126−128]. 

This strategy of pandemic prevention should focus on following vital guidelines:  

• Analytics for detecting factors determining pandemic threat. 

• Reduction of factors associated with emergence and diffusion of new viral agents to 

prevent pandemics. 

• Health policies that mitigate negative impact of outbreaks in society, endeavoring to contain 

and/or stop diffusion in local contexts. 
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This strategy can be implemented with three main actions. 

First, the reduction of interaction between humans and wildlife and/or appropriate protections in 

hazardous environments (e.g., mines) for reducing human exposure to wild animals inducing a high 

risk that a pandemic virus to emerge (e.g., spillover from bats, rats, etc.). 

Second, the improvement of the warning system and prompt containment interventions in the 

initial phase of an outbreak that could prevent chains of transmission in local and global contexts. An 

effective early warning system in the international community can ensure timely detection of suspected 

cases in humans. Laboratories have to receive all data, information and clinical specimens for assessing 

risk factors of a pandemic threat in society and communicate timely appropriate actions to remove 

and/or minimize factors for a diffusion from local to global environments, such as selected restrictions 

in specific places, also considering that asymptomatic people may not be infectious for the surrounding 

people [17,129−131]. International institutions have to timely coordinate global health policies to 

minimize risks of pandemic threat or global crisis. 

Third, governments have to support public and private research labs for drug discoveries of 

effective antivirals and/or vaccines to treat new viral agents [28]. These innovative drugs to face health 

emergency should be delivered to all countries with equity to reduce the takeoff of epidemic/pandemic 

in local and/or global contexts and the generation of new variants that feed the evolution of pandemic 

waves for a longer period of time [8,28,34,66,96,132]. R&D investments should also be directed to 

new vaccines that provide a general and long-run protection of people against mutant viral agents that 

generate variants and sub-variants [2,16,18,19,133,134]. 

Overall, then, R&D investments and good governance in countries can improve the preparedness 

and reduce opportunities of human exposure to hazardous pathogens and risk factors that lead to the 

emergence of a pandemic virus, strengthening the early warning system that decreases/stops 

transmissibility among humans in the initial phase, and also delays its international spread [2,18,28]. 

5. Conclusions 

Lessons learned from the COVID-19 pandemic crisis suggest that governments have to plan 

strategies and policies of public health to prevent and prepare countries to cope with future infectious 

diseases of new vital agents in society [81,135−137]. In a worldwide context, an effective crisis 

management is based, more and more, on an international collaboration in science and public health 

for timely sharing of data and samples for accurate analytics of novel viral agents in order to apply 

appropriate health policy responses that contain hazardous pathogens in local communities and avoid 

the spread between countries [2]. Considering the difficulties of accurate long-run outlook of pandemic 

threats, as well as of exact predictions of on-going pandemic trends because of manifold factors that 

change rapidly, countries have to focus their efforts on planning flexible and resilient strategies that 

prevent the emergence and diffusion of a pandemic virus from local to global environments [28,66,96]. 

As far as the current evolution of COVID-19 in 2023, after almost three years of the health emergence, 

El-Sadr et al. [15] argue a need for unbiased monitoring of transmission and infection rates by means of 

regular testing of sentinel populations or randomly selected representative samples of the general 

population [138]. Moreover, vaccine and booster coverage, availability and utilization of new treatment 

drugs for COVID-19 are critical variables that affect the risk of severe illness in population, numbers of 

deaths from SARS-CoV-2 and its variants, and health system capacity to support a huge burden in a short 

period. Vaccination plan can avoid negative socioeconomic effects driven by unintended results of 
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mitigation measures to face pandemics, such as stay-at-home orders, the shutting down of public venues, 

ban travels, etc. Government and institutional entities need also create clear pathways for vulnerable and 

poor people [139]. One of the key challenges, according to El-Sadr et al. [15], is that public health 

policies should move away, as the pandemic evolves, from universal and general population-wide 

prevention policies to differentiated measures considering characteristics of various communities, places 

and also the evolution of novel viral agents in the environment and society [140]. In short, as the 

pandemic evolves, the control measures and their effects are more complex, and clear guidelines should 

be applied to specific populations, leveraging an effective communication that explains the rationale for 

various recommendations. The post-(COVID-19) pandemic period needs to avoid using alarming and 

misleading language in order to suggest, with effective communication, reasonable solutions to bring 

people with a health security plans towards a new nonemergency phase of the pandemic. 

Overall, the preparation and crisis management to health emergencies have to be planned by 

countries with forward-looking policies that improve institutions, public governance and 

communication in health sectors and not with short-run interventions prepared for pre-, on-going, and 

post pandemic scenarios [141−145]. 

Although this study has described interesting lessons and insights that can support to face future 

pandemics, results are, of course, tentative.  

One of the problems is the difficulty of an accurate prediction of the numbers of reported and 

unreported cases for the COVID-19 pandemic, and similar pandemics for different age classes [146]. 

Second, the change of Reproduction number in the presence of rapid evolutionary changes of viral 

agents in variants and sub-variants should be considered to improve the accurateness of epidemiologic 

modelling of prediction [87,147,148]. Finally, a lot of confounding and situational factors should be 

considered for designing accurate measures of preparedness and prediction for future pandemics. In 

fact, the Global Health Security Index that assesses the preparedness of countries to face a biological 

threat ranked, in 2019, the United States of America and the UK as first and second place, respectively, 

suggesting a strong capability of these countries to face a major biological threat [150,151−174]. 

Instead, these countries have experienced a current fatality rate of 1.08% for the USA and 0.89% for 

the UK, respectively, which is higher than other advanced countries, such as France and Germany.  

Hence, to conclude, prevention, crisis management of pandemics and forecasting of the dynamics 

of novel viral agents is a difficult task in a more and more turbulent world, though we have considerable 

scientific and technological advances. 

Conflict of interests 

I declare that I am the sole author of this manuscript, and I have no known competing financial 

interests or personal relationships that could influence the work reported in this paper. This study 

has no funders. 

References 

1. Chowdhury T, Chowdhury H, Bontempi E, et al. (2022) Are mega-events super spreaders of 

infectious diseases similar to COVID-19? A look into Tokyo 2020 Olympics and Paralympics to 

improve preparedness of next international events. Environ Sci Pollut R 30: 10099−10109. 

https://doi.org/10.1007/s11356-022-22660-2 

https://doi.org/10.1007/s11356-022-22660-2


159 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

2. Coccia M (2020) Factors determining the diffusion of COVID-19 and suggested strategy to 

prevent future accelerated viral infectivity similar to COVID. Sci Total Environ 729: 138474. 

https://doi.org/10.1016/j.scitotenv.2020.138474 

3. Coccia M (2020) Two mechanisms for accelerated diffusion of COVID-19 outbreaks in regions with 

high intensity of population and polluting industrialization: the air pollution-to-human and human-to-

human transmission dynamics. MedRxiv. https://medrxiv.org/cgi/content/short/2020.04.06.20055657v1 

4. Coccia M (2020) Effects of Air Pollution on COVID-19 and Public Health, Research Article-

Environmental Economics-Environmental Policy. ResearchSquare. https://doi.org/10.21203/rs.3.rs-

41354/v1 

5. Coccia M (2021) Recurring waves of Covid-19 pandemic with different effects in public health. 

J Econ Bib 8: 28−45. http://dx.doi.org/10.1453/jeb.v8i1.2184 

6. Coccia M (2021) High health expenditures and low exposure of population to air pollution as 

critical factors that can reduce fatality rate in COVID-19 pandemic crisis: a global analysis. 

Environ Res 199: 111339. https://doi.org/10.1016/j.envres.2021.111339 

7. Coccia M (2021) Effects of the spread of COVID-19 on public health of polluted cities: results of 

the first wave for explaining the dejà vu in the second wave of COVID-19 pandemic and 

epidemics of future vital agents. Environ Sci Pollut R 28: 19147−19154. 

https://doi.org/10.1007/s11356-020-11662-7 

8. Coccia M (2022) COVID-19 pandemic over 2020 (with lockdowns) and 2021 (with vaccinations): 

similar effects for seasonality and environmental factors. Environ Res 208: 112711. 

https://doi.org/10.1016/j.envres.2022.112711 

9. Bontempi E, Coccia M (2021) International trade as critical parameter of COVID-19 spread that 

outclasses demographic, economic, environmental, and pollution factors. Environ Res 201: 

111514. https://doi.org/10.1016/j.envres.2021.111514 

10. Bontempi E, Coccia M, Vergalli S, et al. (2021) Can commercial trade represent the main indicator 

of the COVID-19 diffusion due to human-to-human interactions? A comparative analysis between 

Italy, France, and Spain. Environ Res 201: 111529. https://doi.org/10.1016/j.envres.2021.111529 

11. Akan AP, Coccia M (2022) Changes of Air Pollution between Countries Because of Lockdowns 

to Face COVID-19 Pandemic. Appl Sci 12: 12806. https://doi.org/10.3390/app122412806 

12.  Coccia M (2022) Meta-analysis to explain unknown causes of the origins of SARS-COV-2. 

Environ Res 111: 113062. https://doi.org/10.1016/j.envres.2022.113062 

13. Johns Hopkins Center for System Science and Engineering (2022) Coronavirus COVID-19 

Global Cases. 

14. Núñez-Delgado A, Bontempi E, Coccia M, et al. (2021) SARS-CoV-2 and other pathogenic 

microorganisms in the environment. Environ Res 201: 111606. 

https://doi.org/10.1016/j.envres.2021.111606. 

15 El-Sadr Wafaa M, Ashwin Vasan, Ayman El-Mohande (2023) Facing the New Covid-19 Reality. 

N Engl J Med 388: 385−387. 

16. Coccia M (2023) Effects of strict containment policies on COVID-19 pandemic crisis: lessons to 

cope with next pandemic impacts. Environ Sci Pollut R 30: 2020−2028. 

https://doi.org/10.1007/s11356-022-22024-w 

17. Coccia M (2021) The relation between length of lockdown, numbers of infected people and deaths of 

COVID-19, and economic growth of countries: Lessons learned to cope with future pandemics similar 

to COVID-19. Sci Total Environ 775: 145801. https://doi.org/10.1016/j.scitotenv.2021.145801 

https://doi.org/10.1016/j.scitotenv.2020.138474
https://medrxiv.org/cgi/content/short/2020.04.06.20055657v1
http://www.kspjournals.org/index.php/JEB/article/view/2184
http://dx.doi.org/10.1453/jeb.v8i1.2184
https://doi.org/10.1016/j.envres.2021.111339
https://doi.org/10.1016/j.envres.2022.112711
https://doi.org/10.1016/j.envres.2021.111514
https://doi.org/10.1016/j.envres.2021.111529
https://doi.org/10.3390/app122412806
https://doi.org/10.1016/j.envres.2022.113062
https://doi.org/10.1016/j.envres.2021.111606
https://doi.org/10.1007/s11356-022-22024-w
https://doi.org/10.1016/j.scitotenv.2021.145801


160 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

18. Coccia M (2022) Improving preparedness for next pandemics: Max level of COVID-19 

vaccinations without social impositions to design effective health policy and avoid flawed 

democracies. Environ Res 213: 113566. https://doi.rg/10.1016/j.envres.2022.113566 

19. Coccia M (2022) COVID-19 Vaccination is not a Sufficient Public Policy to face Crisis 

Management of next Pandemic Threats. Publc Organ Rev. https://doi.org/10.1007/s11115-022-

00661-6 

20. Farazmand A (2001) Handbook of crisis and emergency management, CRC Press.  

21. Farazmand A (2014) Crisis and Emergency Management, Theory and Practice. 

22. Coccia M (2022) Preparedness of countries to face covid-19 pandemic crisis: Strategic positioning 

and underlying structural factors to support strategies of prevention of pandemic threats. Environ 

Res 203: 1678. https://doi.org/10.1016/j.envres.2021.111678. 

23. Dai H, Cao W, Tong X, et al. (2022) Global prediction model for COVID-19 pandemic with the 

characteristics of the multiple peaks and local fluctuations. BMC Med Res Methodol 22: 137. 

https://doi.org/10.1186/s12874-022-01604-x 

24. Krechetov M, Esmaieeli Sikaroudi AM, Efrat A, et al. (2022) Prediction and prevention of 

pandemics via graphical model inference and convex programming. Sci Rep 12: 7599. 

https://doi.org/10.1038/s41598-022-11705-8 

25. Kuvvetli Y, Deveci M, Paksoy T, et al. (2021) A predictive analytics model for COVID-19 

pandemic using artificial neural networks. Decis Anal J 1: 100007. 

https://doi.org/10.1016/j.dajour.2021.100007.  

26. Liu Z, Magal P, Webb G (2021) Predicting the number of reported and unreported cases for the 

COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom. J 

Theor Biol 509: 110501. https://doi.org/10.1016/j.jtbi.2020.110501 

27. Šušteršič T, Blagojević A, Cvetković D, et al. (2021) Epidemiological Predictive Modeling of 

COVID-19 Infection: Development, Testing, and Implementation on the Population of the 

Benelux Union. Front Public Health 9: 727274.  

28. Coccia M (2021) Pandemic Prevention: Lessons from COVID-19. Encyclopedia 1: 433−444.  

29. Khandia R, Singhal S, Alqahtani T, et al. (2022) Emergence of SARS-CoV-2 Omicron (B.1.1.529) 

variant, salient features, high global health concerns and strategies to counter it amid ongoing 

COVID-19 pandemic. Environ Res 209: 112816. https://doi.org/10.1016/j.envres.2022.112816 

30. Groh M (2014) Strategic Management in Times of Crisis. Am J Econ Sociol Bus Adm 6: 49–57. 

https://doi.org/10.3844/ajebasp.2014.49.57 

31. Alsobh A (2022) Prediction of COVID-19 Disease by ARIMA Model and Tuning Hyperparameter 

Through GridSearchCV. Emerging Technologies in Data Mining and Information Security: 

Proceedings of IEMIS 2: 543−551. 

32. Keshavamurthy R, Dixon S, Pazdernik KT, et al. (2022) Predicting infectious disease for 

biopreparedness and response: A systematic review of machine learning and deep learning 

approaches. One Health 15: 100439. 

33. Magazzino C, Mele M, Coccia M (2022) A machine learning algorithm to analyze the effects of 

vaccination on COVID-19 mortality. Epidemiol Infect 150: e168. 

https://doi.org/10.1017/S0950268822001418 

34. Coccia M (2022) Optimal levels of vaccination to reduce COVID-19 infected individuals and 

deaths: A global analysis. Environ Res 204: 112314. https://doi.org/10.1016/j.envres.2021.112314 

 

https://doi.org/10.1016/j.envres.2022.113566
https://doi.org/10.1007/s11115-022-00661-6
https://doi.org/10.1007/s11115-022-00661-6
https://doi.org/10.1016/j.envres.2021.111678
https://doi.org/10.1186/s12874-022-01604-x
https://doi.org/10.1038/s41598-022-11705-8
https://doi.org/10.1016/j.dajour.2021.100007
https://doi.org/10.1016/j.jtbi.2020.110501
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56112818500&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57207696583&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57439324800&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56078896600&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85139311988&origin=resultslist&sort=plf-f&src=s&st1=COVID+and+%22forecasting+model%22&sid=f6aa7f9e3dd725784f9bb6120d59d8ca&sot=b&sdt=b&sl=44&s=TITLE-ABS-KEY%28COVID+and+%22forecasting+model%22%29&relpos=3&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85139311988&origin=resultslist&sort=plf-f&src=s&st1=COVID+and+%22forecasting+model%22&sid=f6aa7f9e3dd725784f9bb6120d59d8ca&sot=b&sdt=b&sl=44&s=TITLE-ABS-KEY%28COVID+and+%22forecasting+model%22%29&relpos=3&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85139311988&origin=resultslist&sort=plf-f&src=s&st1=COVID+and+%22forecasting+model%22&sid=f6aa7f9e3dd725784f9bb6120d59d8ca&sot=b&sdt=b&sl=44&s=TITLE-ABS-KEY%28COVID+and+%22forecasting+model%22%29&relpos=3&citeCnt=0&searchTerm=
https://www.scopus.com/sourceid/21100404585?origin=resultslist
https://doi.org/10.1017/S0950268822001418
https://doi.org/10.1016/j.envres.2021.112314


161 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

35. Rosenfeld R, Tibshirani, RJ (2021) Epidemic tracking and forecasting: Lessons learned from a 

tumultuous year. PNAS 118: e2111456118. https://doi.org/10.1073/pnas.2111456118 

36. Collins GS, Ma J, Dhiman P (2021) There are no shortcuts in the development and validation of 

a COVID-19 prediction model. Transbound Emerg Dis 68: 210−211. 

37. PubMed (2023) Search. Available from: https://pubmed.ncbi.nlm.nih.gov/. 

38. Scopus (2023) Strart exploring. Available from: 

https://www.scopus.com/search/form.uri?display=basic#basic. 

39. Web of Science (2023) Documents. Available from: 

https://www.webofscience.com/wos/woscc/basic-search. 

40. Herby J, Jonung L, Hanke SH (2022) A literature review and meta-analysis of the effects of 

lockdowns on COVID-19 mortality. Stud Appl Econ. 

41. Petticrew M, Roberts H (2005) Systematic reviews in the social sciences: A practical guide. 

Malden, MA: Blackwell Publishing. 

42. Shakeel SM, Kumar NS, Madalli PP, et al. (2021) Covid-19 prediction models: A systematic 

literature review. Osong Public Health and Research Perspectives 12: 215−229. 

43. Clarke J (2011) What is a systematic review? Evid-Based Nu 14: 64. 

44. Daszak P, Olival KJ, Li H (2020) A strategy to prevent future epidemics similar to the 2019-nCoV 

outbreak. Biosafety and Health 2: 6−8. http://dx.doi.org/10.1016/j.bsheal.2020.01.003 

45. Anderson RM, May RM (1991) Infectious Diseases of Humans: Dynamics and Control, Oxford 

Univisity Pres. 

46. Dobson AP, Carper ER (1996) Infectious diseases and human population history. Bioscience 46: 

115–126. 

47. Wolfe N, Dunavan C, Diamond J (2007) Origins of major human infectious diseases. Nature 447: 

279–283. https://doi.org/10.1038/nature05775 

48. Ménard AD, Trant JF (2020) A review and critique of academic lab safety research. Nat Chem 12: 

17–25. https://doi.org/10.1038/s41557-019-0375-x 

49. Hellman MA, Savage EP, Keefe TJ (1986) Epidemiology of accidents in academic chemistry 

laboratories. J Chem Educ 63: A267. 

50. Van Noorden R (2013) Safety survey reveals lab risks. Nature 493: 9–10. 

51. Ayi HR, Hon CY (2018) Safety culture and safety compliance in academic laboratories: A 

Canadian perspective. J Chem. Health Saf 25: 6–12. 

52. Simmons HE, Matos B, Simpson SA (2017) Analysis of injury data to improve safety and training. 

J Chem Health Saf 24: 21–28. 

53. Kou Y, Peng X, Dingwell CE, et al. (2021) Learning experience reports improve. Acad Res Saf J 

Che Educ 98: 150–157. 

54. Li Na, Hu LF, Jin AJ, et al. (2019) Biosafety laboratory risk assessment. J Bios Biosecur 1: 90−92. 

https://doi.org/10.1016/j.jobb.2019.01.011 

55. Jia P, Yang SJ (2020) China needs a national intelligent syndromic surveillance system. Nature 

Med 26: 990. https://doi.org/10.1038/s41591-020-0921-5. 

56. Yuan D, Gao W, Liang S, et al. (2020) Biosafety threats of the rapidly established labs for SARS-

CoV-2 tests in China. Environ Int 143: 105964. https://doi.org/10.1016/j.envint.2020.105964  

57. Coccia M (2020) An index to quantify environmental risk of exposure to future epidemics of the 

COVID-19 and similar viral agents: Theory and Practice. Environ Res 191: 110155. 

https://doi.org/10.1016/j.envres.2020.110155 

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=36097775400&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57199108756&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=49863105900&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85092535333&origin=resultslist&sort=plf-f&src=s&st1=%22covid-19+Prediction%22+AND+%22systematic+review%22&sid=f01094193fd66a5331c1414ca2f5788a&sot=b&sdt=b&sl=60&s=TITLE-ABS-KEY%28%22covid-19+Prediction%22+AND+%22systematic+review%22%29&relpos=5&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85092535333&origin=resultslist&sort=plf-f&src=s&st1=%22covid-19+Prediction%22+AND+%22systematic+review%22&sid=f01094193fd66a5331c1414ca2f5788a&sot=b&sdt=b&sl=60&s=TITLE-ABS-KEY%28%22covid-19+Prediction%22+AND+%22systematic+review%22%29&relpos=5&citeCnt=0&searchTerm=
https://pubmed.ncbi.nlm.nih.gov/
https://www.scopus.com/search/form.uri?display=basic#basic
https://www.webofscience.com/wos/woscc/basic-search
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57254705200&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57220995093&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57253903000&zone=
http://dx.doi.org/10.1016/j.bsheal.2020.01.003
https://doi.org/10.1038/nature05775
https://doi.org/10.1038/s41557-019-0375-x
file:///C:/Users/m.coccia/Downloads/J%20Bios%20Biosecur
https://doi.org/10.1016/j.jobb.2019.01.011
https://doi.org/10.1038/s41591-020-0921-5
https://doi.org/10.1016/j.envint.2020.105964
https://doi.org/10.1016/j.envres.2020.110155


162 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

58. Coccia M (2020) How (Un)sustainable Environments are Related to the Diffusion of COVID-19: 

The Relation between Coronavirus Disease 2019, Air Pollution, Wind Resource and Energy. 

Sustainability 12: 9709. 

59. Coccia M (2021) How do low wind speeds and high levels of air pollution support the spread of 

COVID-19? Atmos Pollut Res 12: 437−445. https://doi.org/10.1016/j.apr.2020.10.002 

60. Coccia M (2021) The effects of atmospheric stability with low wind speed and of air pollution on 

the accelerated transmission dynamics of COVID-19. International Journal of Environmental 

Studies 78: 1−2. https://doi.org/10.1080/00207233.2020.1802937 

61. Coccia M, Bellitto M (2018) A critique of human progress: a new definition and inconsistencies 

in society. Quaderni IRCrES-CNR 4: 51−67. http://dx.doi.org/10.23760/2499-6661.2018.017 

62. Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bio aerosol 

concentrations-a review. Sci Total Environ 326: 151e180. 

63. Wei M, Liu H, Chen J, et al. (2020) Effects of aerosol pollution on PM2.5-associated bacteria in 

typical inland and coastal cities of northern China during the winter heating season. Environ pollut 

262: 114188. https://doi.org/10.1016/j.envpol.2020.114188 

64. Zhong J, Zhang X, Dong Y, et al. (2018) Feedback effects of boundary-layer meteorological 

factors on explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 

2013 to 2016. Atmos Chem Phys 18: 247−258. 

65. Rosario DKA, Mutz YS, Bernardes PC, et al. (2020) Relationship between COVID-19 and 

weather: Case study in a tropical country. Int J Hyg Envir Heal 229: 113587. 

66. Benati I, Coccia M (2022) Effective Contact Tracing System Minimizes COVID-19 Related 

Infections and Deaths: Policy Lessons to Reduce the Impact of Future Pandemic Diseases. J 

Public Admin Gov 12: 19−33. https://doi.org/10.5296/jpag.v12i3.19834 

67. Bradshaw WJ, Alley EC, Huggins JH, et al. (2021) Bidirectional contact tracing could 

dramatically improve COVID-19 control. Nat Commun 12: 232. 

68. Yalaman A, Basbug G, Elgin C, et al. (2021). Cross-country evidence on the association between 

contact tracing and COVID-19 case fatality rates. Sci Rep-UK 11: 2145. 

https://doi.org/10.1038/s41598-020-78760-x 

69. Coccia M, Benati I (2018) Rewards in public administration: A proposed classification. J Soc Adm 

Sci 5: 68−80. http://dx.doi.org/10.1453/jsas.v5i2.1648. 

70. Zhan C, Chen J (2021) An investigation of testing capacity for evaluating and modeling the spread 

of coronavirus disease. Inform Sciences 561: 211−229. 

71. Coccia M (2012) Political economy of R&D to support the modern competitiveness of nations 

and determinants of economic optimization and inertia. Technovation 3: 370–379, 

https://doi.org/10.1016/j.technovation.2012.03.005 

72. Coccia M (2014) Driving forces of technological change: The relation between population growth 

and technological innovation-Analysis of the optimal interaction across countries. Technol 

Forecast Soc 8: 52−65. https://doi.org/10.1016/j.techfore.2013.06.001 

73. Coccia M (2018) Classification of innovation considering technological interaction. J Econ Bib 

5: 76−93. http://dx.doi.org/10.1453/jeb.v5i2.1650 

74. Coccia M (2018) General properties of the evolution of research fields: a scientometric study of 

human microbiome, evolutionary robotics and astrobiology, Scientometrics 117: 1265−1283. 

https://doi.org/10.1007/s11192-018-2902-8 

 

https://www.sciencedirect.com/science/journal/13091042
https://doi.org/10.1016/j.apr.2020.10.002
https://doi.org/10.1080/00207233.2020.1802937
http://dx.doi.org/10.23760/2499-6661.2018.017
https://doi.org/10.1016/j.envpol.2020.114188
https://www.emerald.com/insight/search?q=Igor%20Benati
https://www.emerald.com/insight/search?q=Mario%20Coccia
https://www.macrothink.org/journal/index.php/jpag/article/view/19834
https://www.macrothink.org/journal/index.php/jpag/article/view/19834
https://doi.org/10.5296/jpag.v12i3.19834
https://biblioproxy.cnr.it:2301/authid/detail.uri?origin=resultslist&authorId=57221325338&zone=
https://biblioproxy.cnr.it:2301/authid/detail.uri?origin=resultslist&authorId=57211607127&zone=
https://biblioproxy.cnr.it:2301/authid/detail.uri?origin=resultslist&authorId=47661208900&zone=
https://biblioproxy.cnr.it:2301/record/display.uri?eid=2-s2.0-85099265775&origin=resultslist&sort=plf-f&src=s&sid=b2149fb69130cd3e0f695d737b6a1582&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28COVID+AND+tracing%29&relpos=1&citeCnt=2&searchTerm=
https://biblioproxy.cnr.it:2301/record/display.uri?eid=2-s2.0-85099265775&origin=resultslist&sort=plf-f&src=s&sid=b2149fb69130cd3e0f695d737b6a1582&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28COVID+AND+tracing%29&relpos=1&citeCnt=2&searchTerm=
https://biblioproxy.cnr.it:2301/sourceid/19700182758?origin=resultslist
http://dx.doi.org/10.1453/jsas.v5i2.1648
https://doi.org/10.1016/j.technovation.2012.03.005
https://doi.org/10.1016/j.techfore.2013.06.001
http://dx.doi.org/10.1453/jeb.v5i2.1650
https://doi.org/10.1007/s11192-018-2902-8


163 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

75. Coccia M (2018) Types of government and innovative performance of countries. J Soc Adm Sci 

5: 15−33. http://dx.doi.org/10.1453/jsas.v5i1.1573 

76. Coccia M (2019) Comparative Institutional Changes, Global Encyclopedia of Public 

Administration, Public Policy, and Governance, Springer Nature. https://doi.org/10.1007/978-3-

319-31816-5_1277-1 

77. Coccia M (2019) Intrinsic and extrinsic incentives to support motivation and performance of 

public organizations. J Econ Biblio 6: 20−29. http://dx.doi.org/10.1453/jeb.v6i1.1795 

78. Coccia M (2019) Metabolism of Public Organizations, Global Encyclopedia of Public 

Administration, Public Policy, and Governance, Springer Nature. https://doi.org/10.1007/978-3-

319-31816-5_3711-1 

79. Coccia M (2020) Fishbone diagram for technological analysis and foresight. Int J Foresight and 

Innovation Policy 14: 225−247.  

80. Coccia M (2020) The evolution of scientific disciplines in applied sciences: dynamics and 

empirical properties of experimental physics. Scientometrics 124: 451−487. 

https://doi.org/10.1007/s11192-020-03464-y 

81. Coccia M (2021) Comparative Critical Decisions in Management, Global Encyclopedia of Public 

Administration, Public Policy, and Governance, Springer. https://doi.org/10.1007/978-3-319-

31816-5_3969-1 

82. Coccia M (2022) Critical innovation strategies for achieving competitive strategic 

entrepreneurship in ever-increasing turbulent markets, Strategic Entrepreneurship-Perspectives 

on Dynamics, Theories, and Practices, Springer. https://doi.org/10.1007/978-3-030-86032-5_12 

83. Coccia M (2022) Technological trajectories in quantum computing to design a quantum ecosystem 

for industrial change, Technology Analysis & Strategic Management. 

https://doi.org/10.1080/09537325.2022.2110056 

84. Coccia M, Benati I (2017) What is the relation between public manager compensation and 

government effectiveness? An explorative analysis with public management implications. 

Quaderni Ircres-CNR 2: 1−36. http://dx.doi.org/10.23760/2499-6661.2017.001 

85. Coccia M, Mosleh M, Roshani S (2022) Evolution of quantum computing: Theoretical and 

innovation management implications for emerging quantum industry, IEEE Transactions on 

Engineering Management. https://doi.org/10.1109/TEM.2022.3175633 

86. Coccia M, Roshani S, Mosleh M (2021) Scientific Developments and New Technological 

Trajectories in Sensor Research. Sensors 21: 7803. https://doi.org/10.3390/s21237803 

87. Coccia M (2019) Revolutions and Evolutions, Global Encyclopedia of Public Administration, 

Public Policy, and Governance, Springe. https://doi.org/10.1007/978-3-319-31816-5_3708-1 

88. Coccia M, Roshani S, Mosleh M (2022) Evolution of Sensor Research for Clarifying the 

Dynamics and Properties of Future Directions. Sensors 22: 9419; 

https://doi.org/10.3390/s22239419 

89. Mosleh M, Roshani S, Coccia M (2022) Scientific laws of research funding to support citations 

and diffusion of knowledge in life science. Scientometrics 127: 1931–1951. 

https://doi.org/10.1007/s11192-022-04300-1 

90. Núñez-Delgado Avelino, Zhien Zhang, Elza Bontempi, et al. (2023) Editorial on the Topic “New 

Research on Detection and Removal of Emerging Pollutants”. Materials 16: 725. 

https://doi.org/10.3390/ma16020725 

 

http://www.kspjournals.org/index.php/JSAS/article/view/1573
http://dx.doi.org/10.1453/jsas.v5i1.1573
http://dx.doi.org/10.1453/jeb.v6i1.1795
https://doi.org/10.1007/978-3-319-31816-5_3711-1
https://doi.org/10.1007/978-3-319-31816-5_3711-1
https://doi.org/10.1007/s11192-020-03464-y
https://doi.org/10.1007/978-3-319-31816-5_3969-1
https://doi.org/10.1007/978-3-319-31816-5_3969-1
http://dx.doi.org/10.23760/2499-6661.2017.001
https://doi.org/10.3390/s21237803
https://doi.org/10.1007/978-3-319-31816-5_3708-1
https://doi.org/10.3390/s22239419
https://doi.org/10.1007/s11192-022-04300-1
https://doi.org/10.3390/ma16020725


164 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

91. Pagliaro M, Coccia M (2021) How self-determination of scholars outclasses shrinking public 

research lab budgets, supporting scientific production: a case study and R&D management 

implications. Heliyon 7: e05998. https://doi.org/10.1016/j.heliyon.2021.e05998 

92. Pronti A, Coccia M (2021) Agroecological and conventional agricultural systems: comparative 

analysis of coffee farms in Brazil for sustainable development. Int J Sustainable Development 2: 

223–248. https://doi.org/10.1504/IJSD.2020.115223 

93. Roshani S, Bagheri R, Mosleh M, et al. (2021) What is the relationship between research funding 

and citation-based performance? A comparative analysis between critical disciplines. 

Scientometrics 126: 7859–7874. https://doi.org/10.1007/s11192-021-04077-9 

94. Roshani S, Coccia M, Mosleh M (2022) Sensor Technology for Opening New Pathways in 

Diagnosis and Therapeutics of Breast, Lung, Colorectal and Prostate Cancer. HighTech Innov 3: 

356–375. http://dx.doi.org/10.28991/HIJ-2022-03-03-010 

95. Sagan A, Thomas S, McKee M, et al. (2020) COVID-19 and health systems resilience: lessons 

going forwards. Eurohealth 26. 

96. Benati I, Coccia M (2022) Global analysis of timely COVID-19 vaccinations: Improving 

governance to reinforce response policies for pandemic crises. Int J Health Gov. 

https://doi.org/10.1108/IJHG-07-2021-0072 

97. Ajelli M (2018) The RAPIDD Ebola forecasting challenge: Model description and synthetic data 

generation. Epidemics 22: 3–12. 

98. Johansson MA, Apfeldorf KM, Dobson S, et al. (2019) An open challenge to advance probabilistic 

forecasting for dengue epidemics. Proc Natl Acad Sci USA 116: 24268–24274. 

99. Reinhart A, Brooks L, Jahja M, et al. (2021) An open repository of real-time COVID-19 indicators. 

Proc Natl Acad Sci USA 118: e2111452118. 

100. McDonald DJ (2021) Can auxiliary indicators improve COVID-19 forecasting and hotspot 

prediction? Proc Natl Acad Sci USA 118: e2111453118. 

101. KhudaBukhsh WR, Bastian CD, Wascher M, et al. (2023) Projecting COVID-19 cases and 

hospital burden in Ohio. J Theor Biol 561: 111404. 

102. Hurford A, Martignoni MM, Loredo-Osti JC, et al. (2023) Pandemic modelling for regions 

implementing an elimination strategy. J Theor Biol 561: 111378. 

103. Khairulbahri M (2023) The SEIR model incorporating asymptomatic cases, behavioral measures, 

and lockdowns: Lesson learned from the COVID-19 flow in Sweden. Biomed Signal Proces 81: 

104416. 

104. Sasanami M, Fujimoto M, Kayano T, et al. (2023) Projecting the COVID-19 immune landscape 

in Japan in the presence of waning immunity and booster vaccination. J Theor Biol 559: 111384. 

105. Li Z, Zhao J, Zhou Y, et al. (2023) Adaptive behaviors and vaccination on curbing COVID-19 

transmission: Modeling simulations in eight countries. J Theor Biol 559: 111379. 

106. Vasconcelos GL, Pessoa NL, Silva NB, et al. (2022) Multiple waves of COVID-19: a pathway 

model approach, Nonlinear Dyn. https://doi.org/10.1007/s11071-022-08179-8 

107. Cherednik I (2022) Modeling the Waves of Covid-19. Acta Biotheor 70: 8. 

https://doi.org/10.1007/s10441-021-09428-w 

108. Leonov A, Nagornov O, Tyuflin S (2023) Modeling of Mechanisms of Wave Formation for 

COVID-19. Epidemic Math 11: 167. https://doi.org/10.3390/ math11010167 

109. Cao Z, Qiu Z, Tang F, et al. (2022) Drivers and forecasts of multiple waves of the coronavirus 

disease 2019 pandemic: A systematic analysis based on an interpretable machine learning 

https://doi.org/10.1016/j.heliyon.2021.e05998
https://doi.org/10.1007/s11192-021-04077-9
http://dx.doi.org/10.28991/HIJ-2022-03-03-010
https://doi.org/10.1108/IJHG-07-2021-0072
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57190680542&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56736139500&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57218374830&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85146191625&origin=resultslist&sort=plf-f&src=s&st1=covid-19+AND+preparedness&sid=d4db3746639e03d7a9a3d9b127a7660f&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28covid-19+AND+preparedness%29&relpos=8&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85146191625&origin=resultslist&sort=plf-f&src=s&st1=covid-19+AND+preparedness&sid=d4db3746639e03d7a9a3d9b127a7660f&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28covid-19+AND+preparedness%29&relpos=8&citeCnt=0&searchTerm=
https://www.scopus.com/sourceid/29663?origin=resultslist
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=14822154600&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57215968721&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57204698901&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85145712051&origin=resultslist&sort=plf-f&src=s&st1=covid-19+AND+preparedness&sid=d4db3746639e03d7a9a3d9b127a7660f&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28covid-19+AND+preparedness%29&relpos=10&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85145712051&origin=resultslist&sort=plf-f&src=s&st1=covid-19+AND+preparedness&sid=d4db3746639e03d7a9a3d9b127a7660f&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28covid-19+AND+preparedness%29&relpos=10&citeCnt=0&searchTerm=
https://www.scopus.com/sourceid/29663?origin=resultslist
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=58071573700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57365095100&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57819619900&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57206249335&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85144404410&origin=resultslist&sort=plf-f&src=s&st1=covid-19+AND+preparedness&sid=d4db3746639e03d7a9a3d9b127a7660f&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28covid-19+AND+preparedness%29&relpos=16&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85144404410&origin=resultslist&sort=plf-f&src=s&st1=covid-19+AND+preparedness&sid=d4db3746639e03d7a9a3d9b127a7660f&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28covid-19+AND+preparedness%29&relpos=16&citeCnt=0&searchTerm=
https://www.scopus.com/sourceid/29663?origin=resultslist
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=58003018400&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57670258500&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=58003018500&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85143916298&origin=resultslist&sort=plf-f&src=s&st1=covid-19+AND+preparedness&sid=d4db3746639e03d7a9a3d9b127a7660f&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28covid-19+AND+preparedness%29&relpos=17&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85143916298&origin=resultslist&sort=plf-f&src=s&st1=covid-19+AND+preparedness&sid=d4db3746639e03d7a9a3d9b127a7660f&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28covid-19+AND+preparedness%29&relpos=17&citeCnt=0&searchTerm=
https://www.scopus.com/sourceid/29663?origin=resultslist
https://doi.org/10.1007/s11071-022-08179-8
https://doi.org/10.1007/s10441-021-09428-w


165 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

framework. Transbound Emerg Dis 69: e1584–e1594. https://doi.org/10.1111/tbed.14492 

110. Namiki M, Yano R (2022) A numerical method to calculate multiple epidemic waves in COVID-

19 with a realistic total number of people involved. J Stat Mech 2022: 033403 

111. Safaie Nasser, Kaveie Maryam, Mardanian Siroos, et al. (2022) Investigation of Factors Affecting 

COVID-19 and Sixth Wave Management Using a System Dynamics Approach, J Healthc Eng. 

https://doi.org/10.1155/2022/4079685 

112. Wieland T (2020) A phenomenological approach to assessing the effectiveness of COVID-19 

related nonpharmaceutical interventions in Germany. Safety Sci 131: 104924. 

113. Douglas WA (2022) Covid-19 Lockdown Cost/Benefits: A Critical Assessment of the Literature. 

Int J Econ Bus 29: 1−32.  

114. Biggs AT, Littlejohn LF (2021) Revisiting the initial COVID-19 pandemic projections. The Lancet 

Microbe 2: E91−E92. 

115. Korolev I (2021) Identification and estimation of the SEIRD epidemic model for COVID-19. J 

Econometrics 220: 63−85. 

116. Chen C, So M, Liu FC (2022) Assessing government policies’ impact on the COVID-19 pandemic 

and elderly deaths in East Asia. Epidemiol Infect 150: e161. 

https://doi.org/10.1017/S0950268822001388 

117. Mohammadi Z, Cojocaru MG, Thommes EW (2022) Human behaviour, NPI and mobility 

reduction effects on COVID-19 transmission in different countries of the world. BMC Public 

Health 22: 1594. 

118. Stangier U, Kananian S, Schüller J (2022) Perceived vulnerability to disease, knowledge about 

COVID-19, and changes in preventive behavior during lockdown in a German convenience 

sample. Curr Psychol 41: 7362–7370 

119. Goolsbee A, Syverson C (2021) Fear, lockdown, and diversion: Comparing drivers of pandemic 

economic decline 2020. J Public Econ 193: 104311. 

120. Amaro JE (2023) Systematic description of COVID-19 pandemic using exact SIR solutions and 

Gumbel distributions. Nonlinear Dyn 111: 1947–1969. https://doi.org/10.1007 

121. Noteboom CB, Zeng D, Godasu R, et al. (2021) Applications of deep learning augmented systems 

for Covid-19 predictions- A literature review. 

122. Jordan E, Shin DE, Leekha S, et al. (2021) Optimization in the Context of COVID-19 Prediction 

and Control: A Literature Review. IEEE Access 9: 130072−130093. 

https://doi.org/10.1109/ACCESS.2021.3113812 

123. Hudda MT, Archer L, van Smeden M, et al. (2023) Minimal reporting improvement after peer 

review in reports of COVID-19 prediction models: systematic review. J Clin Epidemiol 154: 

75−84. https://doi.org/10.1016/j.jclinepi.2022.12.005 

124. Zhang W, Liu S, Osgood N, et al. (2023) Using simulation modelling and systems science to help 

contain COVID-19: A systematic review. Syst Res Behav Sci 40: 207–234. 

https://doi.org/10.1002/sres.2897 

125. Bhatia D, Allin S, Di Ruggiero E (2023) Mobilization of science advice by the Canadian federal 

government to support the COVID-19 pandemic response. Hum Soc Sci Commun 10: 19. 

https://doi.org/10.1057/s41599-023-01501-8 

126. Bundy J, Pfarrer MD, Short CE, et al. (2017) Crises and Crisis Management: Integration, 

Interpretation, and Research Development. J Manage 43: 1661–1692. 

https://doi.org/10.1177/0149206316680030 

https://doi.org/10.1155/2022/4079685
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57268118800&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7007080879&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6603411035&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85136233841&origin=resultslist&sort=plf-f&src=s&st1=COVID+and++%22mask+wearing%22&sid=36b6a7e989827b4dd0e31e99cc1aca17&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28COVID+and++%22mask+wearing%22%29&relpos=3&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85136233841&origin=resultslist&sort=plf-f&src=s&st1=COVID+and++%22mask+wearing%22&sid=36b6a7e989827b4dd0e31e99cc1aca17&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28COVID+and++%22mask+wearing%22%29&relpos=3&citeCnt=0&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6701439321&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57200518058&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57222167014&zone=
https://doi.org/10.1007
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56110663800&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57218848039&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57220835852&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85118633181&origin=resultslist&sort=plf-f&src=s&st1=%22covid-19+Prediction%22+AND+%22literature+review%22&sid=dd18d199e9ee2c1f8978a73b720b9b49&sot=b&sdt=b&sl=60&s=TITLE-ABS-KEY%28%22covid-19+Prediction%22+AND+%22literature+review%22%29&relpos=2&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85118633181&origin=resultslist&sort=plf-f&src=s&st1=%22covid-19+Prediction%22+AND+%22literature+review%22&sid=dd18d199e9ee2c1f8978a73b720b9b49&sot=b&sdt=b&sl=60&s=TITLE-ABS-KEY%28%22covid-19+Prediction%22+AND+%22literature+review%22%29&relpos=2&citeCnt=0&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57263830300&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57262566500&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=14623002900&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85115184713&origin=resultslist&sort=plf-f&src=s&st1=%22covid-19+Prediction%22+AND+%22literature+review%22&sid=dd18d199e9ee2c1f8978a73b720b9b49&sot=b&sdt=b&sl=60&s=TITLE-ABS-KEY%28%22covid-19+Prediction%22+AND+%22literature+review%22%29&relpos=3&citeCnt=11&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85115184713&origin=resultslist&sort=plf-f&src=s&st1=%22covid-19+Prediction%22+AND+%22literature+review%22&sid=dd18d199e9ee2c1f8978a73b720b9b49&sot=b&sdt=b&sl=60&s=TITLE-ABS-KEY%28%22covid-19+Prediction%22+AND+%22literature+review%22%29&relpos=3&citeCnt=11&searchTerm=
https://www.scopus.com/sourceid/21100374601?origin=resultslist
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57191830824&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57220058602&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55580255200&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57820879000&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=36080877000&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6604064345&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85138522290&origin=resultslist&sort=plf-f&src=s&st1=%22covid-19+Prediction%22+AND+%22systematic+review%22&sid=f01094193fd66a5331c1414ca2f5788a&sot=b&sdt=b&sl=60&s=TITLE-ABS-KEY%28%22covid-19+Prediction%22+AND+%22systematic+review%22%29&relpos=1&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85138522290&origin=resultslist&sort=plf-f&src=s&st1=%22covid-19+Prediction%22+AND+%22systematic+review%22&sid=f01094193fd66a5331c1414ca2f5788a&sot=b&sdt=b&sl=60&s=TITLE-ABS-KEY%28%22covid-19+Prediction%22+AND+%22systematic+review%22%29&relpos=1&citeCnt=1&searchTerm=
https://doi.org/10.1002/sres.2897
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57211602321&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=8869443900&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6506330735&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85146442390&origin=resultslist&sort=plf-f&src=s&st1=covid-19+AND+preparedness&sid=d4db3746639e03d7a9a3d9b127a7660f&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28covid-19+AND+preparedness%29&relpos=1&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85146442390&origin=resultslist&sort=plf-f&src=s&st1=covid-19+AND+preparedness&sid=d4db3746639e03d7a9a3d9b127a7660f&sot=b&sdt=b&sl=40&s=TITLE-ABS-KEY%28covid-19+AND+preparedness%29&relpos=1&citeCnt=0&searchTerm=
https://www.scopus.com/sourceid/21101018925?origin=resultslist


166 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

127. Seeger MW, Sellno TL, Ulmer RR (1998) Communication, organization and crisis. 

Communication Yearbook 21: 231–275. https://doi.org/10.1080/23808985.1998.11678952 

128. Mahmoudi J, Xiong C (2022) How social distancing, mobility, and preventive policies affect 

COVID-19 outcomes: Big data-driven evidence from the District of Columbia-Maryland-Virginia 

(DMV) megaregion. PloS One 17: e0263820. https://doi.org/10.1371/journal.pone.0263820 

129. Cao S, Gan Y, Wang C, et al. (2020) Post-lockdown SARS-CoV-2 nucleic acid screening in nearly 

ten million residents of Wuhan, China. Nat Commun 11: 5917. https://doi.org/10.1038/s41467-

020-19802-w 

130. Tsiotas D, Magafas L (2020) The Effect of Anti-COVID-19 Policies on the Evolution of the 

Disease: A Complex Network Analysis of the Successful Case of Greece. Physics 2: 325−339. 

https://doi.org/10.3390/physics2020017 

131. Warren GW, Lofstedt R, Wardman JK (2021) COVID-19: the winter lockdown strategy in five 

European nations. J Risk Res 24: 267−293. https://doi.org/10.1080/13669877.2021.1891802 

132. Crow DA, Albright EA, Ely T, et al. (2018) Do disasters lead to learning? Financial policy change 

in local government. Rev Policy Res 35: 564–589. https://doi.org/10.1111/ropr.12297 

133. Kapitsinis N (2020) The underlying factors of the COVID-19 spatially uneven spread. Initial 

evidence from regions in nine EU countries. Reg Sci Policy Pract 12: 1027−1045. 

https://doi.org/10.1111/rsp3.12340 

134. Williams GA, Ulla Díez SM, Figueras J, et al. (2020) Translating evidence into policy during the 

covid-19 pandemic: bridging science and policy (and politics). Eurohealth 26: 29−33. 

135. Newby JM, O’Moore K, Tang S, et al. (2020) Acute mental health responses during the COVID-

19 pandemic in Australia. PloS One 15: e0236562. https://doi.org/10.1371/journal.pone.0236562 

136. Sirois FM, Owens J (2021) Factors Associated With Psychological Distress in Health-Care 

Workers During an Infectious Disease Outbreak: A Rapid Systematic Review of the Evidence. 

Front Psychiatry 11: 589545. https://doi.org/10.3389/fpsyt.2020.589545 

137. Whittaker C, Kamaura LT, Takecian PL, et al. (2021) Three-quarters attack rate of SARS-CoV-2 

in the Brazilian Amazon during a largely unmitigated epidemic. Science 371: 288–292. 

https://doi.org/10.1126/science.abe9728 

138. Christie A, Brooks JT, Hicks LA, et al. (2021) Guidance for implementing COVID-19 prevention 

strategies in the context of varying community transmission levels and vaccination coverage. 

MMWR Morb Mortal Wkly Rep 70: 1044−1047. 

139. Bleser WK, Shen H, Crook HL, et al. (2022) Health policy brief: pandemic-driven health policies 

to address social needs and health equity. Available from: 

https://www.healthaffairs.org/do/10.1377/hpb20220210.360906/. opens in new tab. 

140. Overton D, Ramkeesoon SA, Kirkpatrick K, et al. (2021) Lessons from the COVID-19 crisis on 

executing communications and engagement at the community level during a health crisis. 

Washington, DC: National Academies of Sciences, Engineering, and Medicine. 

141. Ackoff RL, Rovin S (2003) Redesigning Society, Stanford University Press, Stanford. 

142. Gigerenzer G, Todd PM (1999) Ecological rationality: the normative study of heuristics, 

Ecological Rationality: Intelligence in the World, New York: Oxford University Press, 487–497.  

143. Janssen M, van der Voort H (2020) Agile and adaptive governance in crisis response: Lessons 

from the COVID-19 pandemic. Int J Inform Manage 55: 102180. 

144. Kahneman D, Slovic P, Tversky A (1982) Judgment Under Uncertainty: Heuristics and Biases, 

Cambridge University Press. 

https://doi.org/10.1038/s41467-020-19802-w
https://doi.org/10.1038/s41467-020-19802-w
https://doi.org/10.3390/physics2020017
https://www.tandfonline.com/doi/abs/10.1080/13669877.2021.1891802
https://www.tandfonline.com/doi/abs/10.1080/13669877.2021.1891802
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55893246200&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85091303979&origin=resultslist&sort=plf-f&src=s&st1=%22health+expenditure%22+AND+COVID-19&st2=&sid=d9c3c546ff5bb1e28c2e7f2e4f32e8dc&sot=b&sdt=b&sl=48&s=TITLE-ABS-KEY%28%22health+expenditure%22+AND+COVID-19%29&relpos=3&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85091303979&origin=resultslist&sort=plf-f&src=s&st1=%22health+expenditure%22+AND+COVID-19&st2=&sid=d9c3c546ff5bb1e28c2e7f2e4f32e8dc&sot=b&sdt=b&sl=48&s=TITLE-ABS-KEY%28%22health+expenditure%22+AND+COVID-19%29&relpos=3&citeCnt=1&searchTerm=
https://doi.org/10.1371/journal.pone.0236562
https://doi.org/10.3389/fpsyt.2020.589545
https://doi.org/10.1126/science.abe9728
https://www.healthaffairs.org/do/10.1377/hpb20220210.360906/
https://biblioproxy.cnr.it:2301/authid/detail.uri?authorId=16199813000&amp;eid=2-s2.0-85086838104
https://biblioproxy.cnr.it:2301/authid/detail.uri?authorId=7003539458&amp;eid=2-s2.0-85086838104
https://books.google.com/?id=_0H8gwj4a1MC&pg=PR8&dq=tversky+and+kahneman+heuristics#v=onepage&q=tversky%20and%20kahneman%20heuristics&f=false


167 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

145. Weible CM, Nohrstedt D, Cairney P, et al. (2020) COVID-19 and the policy sciences: initial 

reactions and perspectives. Policy Sci 53: 225–241.  

146. Liu XX, Fong SJ, Dey N, et al. (2021) A new SEAIRD pandemic prediction model with clinical 

and epidemiological data analysis on COVID-19 outbreak. Appl Intell 51: 4162–4198. 

https://doi.org/10.1007/s10489-020-01938-3 

147. Chen B, Zhao Y, Jin Z, et al. (2023) Twice evasions of Omicron variants explain the temporal 

patterns in six Asian and Oceanic countries. Bmc Infect Dis 23: 25. 

https://doi.org/10.1186/s12879-023-07984-9 

148. Milanesi S, Rosset F, Colaneri M, et al. (2023) Early detection of variants of concern via funnel 

plots of regional reproduction numbers. Scientific reports 13: 1052. 

https://doi.org/10.1038/s41598-022-27116-8 

149. Cameron EE, Nuzz JR, Bell JA (2019) GHS Index Building. Global Health Security Index. 

Collective Action and Accountability. Johns’ Hopkins University, Washington, USA. 

150. Stribling J, Clifton A, McGill G, et al. (2020) Examining the UK Covid-19 mortality paradox: 

pandemic preparedness, healthcare expenditure, and the nursing workforce. J Adv Nurs 76: 3218–

3227. https://doi.org/10.1111/jan.14562. 

151. Coccia M (2019) Comparative World-Systems Theories, Global Encyclopedia of Public 

Administration, Public Policy, and Governance, Springer. https://doi.org/10.1007/978-3-319-

31816-5_3705-1 

152. Coccia M (2018) World-System Theory: A sociopolitical approach to explain World economic 

development in a capitalistic economy. J Econ Pol Econ 5: 459–465, 

http://dx.doi.org/10.1453/jepe.v5i4.1787 

153. Coccia M (2017) The source and nature of general purpose technologies for supporting next K-

waves: Global leadership and the case study of the U.S. Navy’s Mobile User Objective System. 

Technol Forecast Soc 11: 331–339. https://doi.org/10.1016/j.techfore.2016.05.019 

154. Coccia M (2015) General sources of general purpose technologies in complex societies: Theory 

of global leadership-driven innovation, warfare and human development. Technol Soc 42: 199–

226, http://doi.org/10.1016/j.techsoc.2015.05.008 

155. Coccia M (2019) The Role of Superpowers in Conflict Development and Resolutions, Global 

Encyclopedia of Public Administration, Public Policy, and Governance, Springer. 

https://doi.org/10.1007/978-3-319-31816-5_3709-1 

156. Coccia M (2020) Destructive Technologies for Industrial and Corporate Change, Global 

Encyclopedia of Public Administration, Public Policy, and Governance, Springer. 

https://doi.org/10.1007/978-3-319-31816-5_3972-1 

157. Coccia M (2019) Theories of Development, Global Encyclopedia of Public Administration, 

Public Policy, and Governance, Springer. https://doi.org/10.1007/978-3-319-31816-5_939-1 

158. Coccia M (2014) Converging scientific fields and new technological paradigms as main drivers 

of the division of scientific labour in drug discovery process: the effects on strategic management 

of the R&D corporate change. Technol Anal Strateg 26: 733–749, 

https://doi.org/10.1080/09537325.2014.882501 

159. Coccia M (2016) Radical innovations as drivers of breakthroughs: characteristics and properties 

of the management of technology leading to superior organizational performance in the discovery 

process of R&D labs. Technol Anal Strateg 28: 381–395, 

https://doi.org/10.1080/09537325.2015.1095287 

https://doi.org/10.1186/s12879-023-07984-9
http://dx.doi.org/10.1453/jepe.v5i4.1787
https://doi.org/10.1016/j.techfore.2016.05.019
http://doi.org/10.1016/j.techsoc.2015.05.008
https://doi.org/10.1007/978-3-319-31816-5_3709-1
https://doi.org/10.1007/978-3-319-31816-5_3972-1
https://doi.org/10.1007/978-3-319-31816-5_939-1
https://doi.org/10.1080/09537325.2014.882501
https://doi.org/10.1080/09537325.2015.1095287


168 

AIMS Public Health  Volume 10, Issue 1, 105−128. 

160. Coccia M (2020) Asymmetry of the technological cycle of disruptive innovations. Technol Anal 

Strateg 32: 1462–1477. https://doi.org/10.1080/09537325.2020.1785415 

161. Coccia M (2021) Evolution and structure of research fields driven by crises and environmental 

threats: the COVID-19 research. Scientometrics 12: 9405–9429. https://doi.org/10.1007/s11192-

021-04172-x 

162. Coccia M (2019) Metabolism of public research organizations: how do laboratories consume state 

subsidies? Publc Organ Rev 19: 473–491. https://doi.org/10.1007/s11115-018-0421-y 

163. Coccia M (2021) Effects of human progress driven by technological change on physical and 

mental health. Studi Di Sociologia 2: 113–132. https://doi.org/10.26350/000309_000116 

164. Coccia M (2018) Motivation and theory of self-determination: Some management implications in 

organizations. J Econ Bib 5: 223–230. http://dx.doi.org/10.1453/jeb.v5i4.1792 

165. Coccia M (2017) New directions in measurement of economic growth, development and under 

development. J Econ Pol Econ 4: 382–395. http://dx.doi.org/10.1453/jepe.v4i4.1533 

166. Coccia M (2010) Foresight of technological determinants and primary energy resources of future 

economic long waves. Int J Foresight Innov Policy 6: 225–232. 

https://doi.org/10.1504/IJFIP.2010.037468 

167. Coccia M (2009) A new approach for measuring and analyzing patterns of regional economic 

growth: empirical analysis in Italy, A New Approach for Measuring and Analysing Patterns of 

Regional Economic Growth. https://doi.org/10.3280/SCRE2009-002004 

168. Coccia M, Benati I (2018) Comparative Evaluation Systems, Global Encyclopedia of Public 

Administration, Public Policy, and Governance, Springer. https://doi.org/10.1007/978-3-319-

31816-5_1210-1 

169. Coccia M (2021) How a Good Governance of Institutions Can Reduce Poverty and Inequality in 

Society?Legal-Economic Institutions, Entrepreneurship, and Management: Perspectives on the 

Dynamics of Institutional Change from Emerging Markets, Springer. https://doi.org/10.1007/978-

3-030-60978-8_4 

170. Coccia M (2018) Competition between basic and applied research in the organizational behaviour 

of public research labs. J Econ Lib 5:118–133. http://dx.doi.org/10.1453/jel.v5i2.1652. 

171. Coccia M (2018) Economic inequality can generate unhappiness that leads to violent crime in 

society. Int J Happiness and Development 4: 1–24. https://doi.org/10.1504/IJHD.2018.090488 

172. Coccia M (2022) Probability of discoveries between research fields to explain scientific and 

technological change. Technol Soc 68:101874. https://doi.org/10.1016/j.techsoc.2022.101874 

173. Coccia M (2021) Technological Innovation, The Blackwell Encyclopedia of Sociology, John 

Wiley & Son. https://doi.org/10.1002/9781405165518.wbeost011.pub2 

174. Coccia M, Benati I (2018) Comparative Studies, Global Encyclopedia of Public Administration, 

Public Policy, and Governanc, Springer. https://doi.org/10.1007/978-3-319-31816-5_1197-1 

© 2023 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1007/s11192-021-04172-x
https://doi.org/10.1007/s11192-021-04172-x
https://doi.org/10.1007/s11115-018-0421-y
https://doi.org/10.26350/000309_000116
http://www.kspjournals.org/index.php/JEB/article/view/1792
http://www.kspjournals.org/index.php/JEB/article/view/1792
http://dx.doi.org/10.1453/jeb.v5i4.1792
http://dx.doi.org/10.1453/jepe.v4i4.1533
https://doi.org/10.1504/IJFIP.2010.037468
https://doi.org/10.1007/978-3-319-31816-5_1210-1
https://doi.org/10.1007/978-3-319-31816-5_1210-1
https://www.springer.com/978-3-030-60977-1
https://www.springer.com/978-3-030-60977-1
http://dx.doi.org/10.1453/jel.v5i2.1652
https://doi.org/10.1016/j.techsoc.2022.101874
https://doi.org/10.1002/9781405165518.wbeost011.pub2

