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Abstract: In this paper, we develop a time-fractional order COVID-19 model with effects of disease
during quarantine which consists of the system of fractional differential equations. Fractional order
COVID-19 model is investigated with ABC technique using sumudu transform. Also, the determin-
istic mathematical model for the quarantine effect is investigated with different fractional parameters.
The existence and uniqueness of the fractional-order model are derived using fixed point theory. The
sumudu transform can keep the unity of the function, the parity of the function, and has many other
properties that are more valuable. Solutions are derived to investigate the influence of fractional oper-
ator which shows the impact of the disease during quarantine on society.
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1. Introduction

A mathematical model is a helpful tool to recognize the conduct of an infection when it starts to
affect the community and it is useful to analyze under what conditions it can be screened out or to
be continued [1]. A virus is known as infectious when any disease is transferred from one person to
another via different ways of transmission like droplets generated when an infected person coughs,
sneezes, or exhales, or direct contact with another human, water, or any physical product. To analyze
this type of transmission we need some authentic mathematical tools in which few of them are differ-
ence equations, initial conditions, working parameters, and statistical estimation. In this new era, new
mathematical techniques give us more updated and reliable tools to understand many diseases or in-
fections in epidemiology and even give us updated strategies to control disease or infection in different
and suitable conditions [2].

From all of the viruses, the COVID-19 is gradually becoming a watershed pandemic in the antiquity
of the planet. COVID-19 is an abbreviation of Coronavirus disease which started in 2019. In December
of 2019, the first case of COVID-19 was observed in Wuhan, the city of China [3]. The common
symptoms of COVID-19 are loss of smell and taste, fever, dry cough, shortening of breath, fatigue,
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muscle, and joint pain, phlegm production, sore throat, headache, and chills, these symptoms vary
from person to person. The most common incubation period ranges from 1 to 12 days. COVID-19
spreads by physical interaction between individuals. Use of masks, sanitizer, and having a distance of
2 m between individuals results in minimizing the spread of the virus up to much extent [4]. These
vaccines played a bold role in minimizing the spread of COVID-19. The main focused area of this
spread is the working area, schools, offices, markets, and other open circles [5,6].

Fractional derivative was originated in 1695. If we describe the list of fractional derivatives then
it is divided into two types. Caputo, Riemann-Liouville, and Katugampola [7] are fractional deriva-
tives with the singular kernel. Caputo-Fabrizio(exponential) [8] and ABC(Mittag-Leffler) [9] are frac-
tional derivatives without singular kernels. Fractional calculus has very vast application properties in
our daily life. It is being used in chemical, biological, physical, finance, pharmaceutical, engineering
[10,11], and many other fields [12–14]. FFD is mostly used because it gives a realistic way of represen-
tation of our model and hence we have used this same for representing our COVID-19 epidemics [15–
18]. A time-fractional compartmental model for the COVID-19 pandemic [21] and classical SIR model
for COVID-19 in United States is study in [22]. The COVID-19 pandemic (caused by SARS-CoV-2)
has introduced significant challenges for accurate prediction of population morbidity and mortality
by traditional variable-based methods of estimation. Challenges to modeling include inadequate viral
physiology comprehension and fluctuating definitions of positivity between national-to-international
data. This paper proposes that accurate forecasting of COVID-19 caseload may be best preformed
non-perimetrically, by vector autoregressive (VAR) of verifiable data regionally [23]. Fundamental
properties of the new generalized fractional derivatives in the sense of Caputo and RiemannLiouville
are rigorously studied and its related work [24–26]. COVID-19 Decision-Making System (CDMS) was
developed to study disease transmission in [27]. The change in atmospheric pollution from a public
lockdown in Greece introduced to curb the spread of the COVID-19 is examined based on ground-
based and satellite observations and some related issues in [28–30].

2. Basic concepts

The fractional-order derivative of AB in Reimann Liouville-Caputo sense (ABC) [19] is given by

ABC
γ Dγ

t { f (t)} =
AB(γ)
m − γ

∫ t

γ

dm

dwm f (w)Eγ[−γ
(t − w)γ

m − γ
]dw,m − 1 < γ < m (1)

where Eγ is the Mittag-Leffler function and AB(γ) is a normalization function and AB(0) = AB(1) = 1.
The Laplace transform of above is given by

[ABC
γ Dγ

t f (t)](s) =
AB(γ)
1 − γ

sγL[ f (t)](s) − sγ−1 f (0)
sγ +

γ

1−γ

(2)

with the aid of sumudu transformation, we get

S T [ABC
γ Dγ

t f (t)](s) =
B(γ)
1 − γ

(γΓ(γ + 1)Eγ(−
1

1 − γ
νγ)) × [S T ( f (t)) − f (0)] (3)

The ABC fractional integral of order γ of a function f (t) is given by

ABC
γ Iγt { f (t)} =

1 − (γ)
B − γ

f (t) +
(γ)

B(γ)Γ(γ)

∫ t

γ

f (s)(t − s)γ−1ds (4)
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3. Materials and methods

In this section, consider the improved SEIR model given in [20] having compartments SEIQRPD,
where S represents the number of uninfected individuals, E represents infected individuals at the time
t but still in incubation period (without clinical symptoms and low infectivity), I represents the number
of infected individuals at the time t (with obvious clinical symptoms), Q represents the number of
individuals who have been diagnosed and isolated at the time t, R represents the number of recovered
individuals at the time t, P represents the number of susceptible individuals who are not exposed to the
external environment at the time t and D represents the number of death cases at time t.

ABC
0 Dγ

t S (t) = −β1(t)a1(S (t))b1(I(t)) − β2a2(S (t))b2(E(t)) − ρS (t),
ABC
0 Dγ

t E(t) = β1(t)a1(S (t))b1(I(t)) + β2a2(S (t))b2(E(t)) − εE(t),
ABC
0 Dγ

t I(t) = εE(t) − δI(t),
ABC
0 Dγ

t Q(t) = δI(t) − (λ(t) + κ(t))Q(t),
ABC
0 Dγ

t R(t) = λ(t)Q(t),
ABC
0 Dγ

t P(t) = ρS (t)
ABC
0 Dγ

t D(t) = κ(t)Q(t) (5)

here β1(t) = σ1 exp(−σ2t), λ(t) = λ1(1 − exp(λ2t)) and κ(t) = κ1 exp(−κ2t) σ1, σ2, λ1, λ2, κ1 and κ2 are
the parameters which are all positive, here simulation is used by the σ affect of government control.
It should be emphasized that the protection rate ρ for susceptible individuals also reflects the intensity
of government control [18]. ABC

0 Dγ
t , is the ABC sense fractional derivative with 0 < γ ≤ 1. The initial

conditions of the system Eq 5 are:

S 0(t) = S (0), E0(t) = E(0), I0(t) = I(0),Q0(t) = Q(0)

R0(t) = R(0), P0(t) = P(0),D0(t) = D(0) (6)

applying ST operator on both sides, we get

OγEγ(−
1

1 − γ
ωγ)[S T (S (t)) − S (0)]

= S T [−β1(t)a1(S (t))b1(I(t)) − β2a2(S (t))b2(E(t)) − ρS (t)],

OγEγ(−
1

1 − γ
ωγ)[S T (E(t)) − E(0)]

= S T [β1(t)a1(S (t))b1(I(t)) + β2a2(S (t))b2(E(t)) − εE(t)],

OγEγ(−
1

1 − γ
ωγ)[S T (I(t)) − I(0)]

= S T [εE(t) − δI(t)],

OγEγ(−
1

1 − γ
ωγ)[S T (Q(t)) − Q(0)]
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= S T [δI(t) − (λ(t) + κ(t))Q(t)],

OγEγ(−
1

1 − γ
ωγ)[S T (R(t)) − R(0)]

= S T [λ(t)Q(t)],

OγEγ(−
1

1 − γ
ωγ)[S T (P(t)) − P(0)]

= S T [ρS (t)],

OγEγ(−
1

1 − γ
ωγ)[S T (D(t)) − D(0)]

= S T [κ(t)Q(t)] (7)

where Oγ =
B(γ)γΓ(γ+1)

1−γ system Eq 7 becomes

S T [S (t)] = S (0) +
1

OγEγ(− 1
1−γω

γ)

×S T [−β1(t)a1(S (t))b1(I(t)) − β2a2(S (t))b2(E(t)) − ρS (t)],

S T [E(t)] = E(0) +
1

OγEγ(− 1
1−γω

γ)

×S T [β1(t)a1(S (t))b1(I(t)) + β2a2(S (t))b2(E(t)) − εE(t)],

S T [I(t)] = I(0) +
1

OγEγ(− 1
1−γω

γ)

×S T [εE(t) − δI(t)],

S T [Q(t)] = Q(0) +
1

OγEγ(− 1
1−γω

γ)

×S T [δI(t) − (λ(t) + κ(t))Q(t)],

S T [R(t)] = R(0) +
1

OγEγ(− 1
1−γω

γ)

×S T [λ(t)Q(t)],

S T [P(t)] = P(0) +
1

OγEγ(− 1
1−γω

γ)

×S T [ρS (t)],

S T [D(t)] = D(0) +
1

OγEγ(− 1
1−γω

γ)

× S T [κ(t)Q(t)] (8)

taking inverse Sumudu Transform on both sides, we get

S (t) = S (0) + S T−1{
1

OγEγ(− 1
1−γω

γ)
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×S T [−β1(t)a1(S (t))b1(I(t)) − β2a2(S (t))b2(E(t)) − ρS (t)]},

E(t) = E(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [β1(t)a1(S (t))b1(I(t)) + β2a2(S (t))b2(E(t)) − εE(t)]},

I(t) = I(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [εE(t) − δI(t)]},

Q(t) = Q(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [δI(t) − (λ(t) + κ(t))Q(t)]},

R(t) = R(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [λ(t)Q(t)]},

P(t) = P(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [ρS (t)]},

D(t) = D(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

× S T [κ(t)Q(t)]} (9)

Therefore, the following is obtained

S (m+1)(t) = S m(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [−β1a1(S m(t))b1(Im(t)) − β2a2(S m(t))b2(Em(t)) − ρS m(t)]},

E(m+1)(t) = Em(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [β1a1(S m(t))b1(Im(t)) + β2a2(S m(t))b2(Em(t)) − εEm(t)]},

I(m+1)(t) = Im(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [εEm(t) − δIm(t)]},

Q(m+1)(t) = Qm(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [δIm(t) − (λ + κ)Qm(t)]},

R(m+1)(t) = Rm(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)
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×S T [λQm(t)]},

P(m+1)(t) = Pm(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [ρS m(t)]},

D(m+1)(t) = Dm(0) + S T−1{
1

OγEγ(− 1
1−γω

γ)

× S T [κQm(t)]} (10)

Let’s consider Eq 10, and then we get

S (t) = lim
m→∞

S m(t); E(t) = lim
m→∞

Em(t); I(t) = lim
m→∞

Im(t);

Q(t) = lim
m→∞

Qm(t); R(t) = lim
m→∞

Rm(t); P(t) = lim
m→∞

Pm(t)); D(t) = lim
m→∞

Dm(t) (11)

Theorem 3.1: Let (X, |.|) be a Banach space and H a self-map of X satisfying

‖Hr − Hx‖ ≤ θ‖X − Hr‖ + θ‖r − x‖ (12)

for all r, x ∈ X, where 0 ≤ θ < 1. Assume that H is Pichard H-stable
Let us consider Eq 10, and we obtain

1
OγEγ(− 1

1−γω
γ)

(13)

the above equation is associated with the fractional Lagrange multiplier.
Proof
Define K be a self-map is given by

K[S (m+1)(t)] = S (m+1)(t) = S m(0) + S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [−β1a1(S m(t))b1(Im(t)) − β2a2(S m(t))b2(Em(t)) − ρS m(t)]

K[E(m+1)(t)] = E(m+1)(t) = Em(0) + S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [β1a1(S m(t))b1(Im(t)) + β2a2(S m(t))b2(Em(t)) − εEm(t)]

K[I(m+1)(t)] = I(m+1)(t) = Im(0) + S T−1[
1−

OγEγ(− 1
1−γω

γ)

×S T [εEm(t) − δIm(t)]

K[Q(m+1)(t)] = Q(m+1)(t) = Qm(0) + S T−1[
1

OγEγ(− 1
1−γω

γ)
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×S T [δIm(t) − (λ + κ)Qm(t)]

K[R(m+1)(t)] = R(m+1)(t) = Rm(0) + S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [λQm(t)]

K[P(m+1)(t)] = P(m+1)(t) = Pm(0) + S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [ρS m(t)]

K[D(m+1)(t)] = D(m+1)(t) = Dm(0) + S T−1[
1

OγEγ(− 1
1−γω

γ)

× S T [κQm(t)] (14)

Applying the properties of the norm and triangular inequality, we get

‖K[S m(t)] − K[S n(t)]‖ ≤ ‖S m(t) − S n(t)‖ + ‖S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [−β1a1S m(t)b1(Im(t)) − β2a2(S m(t))b2(Em(t)) − ρS m(t)]}

−S T−1{
1

OγEγ(− 1
1−γω

γ)

×S T [−β1a1(S n(t))b1(In(t)) − β2a2(S n(t))b2(En(t)) − ρS n(t)]}‖,

‖K[Em(t)] − K[En(t)]‖ ≤ ‖Em(t) − En(t)‖ + ‖S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [β1a1(S m(t))b1(Im(t)) + β2a2(S m(t))b2(Em(t)) − εEm(t)]}

−S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [β1a1(S n(t))b1(In(t)) + β2a2(S n(t))b2(En(t)) − εEn(t)]}‖,

‖K[Im(t)] − K[In(t)]‖ ≤ ‖Im(t) − In(t)‖ + ‖S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [ε(Em(t)) − δ(Im(t)))]} − S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [εEn(t) − δIn(t)]}‖,

‖K[Qm(t)] − K[Qn(t)]‖ ≤ ‖Qm(t) − Qn(t)‖ + ‖S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [δIm(t) − (λ + κ)Qm(t))]} − S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [δIn(t) − (λ + κ)Qn(t)]}‖
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‖K[Rm(t)] − K[Rn(t)]‖ ≤ ‖Rm(t) − Rn(t)‖ + ‖S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [λ(Qm(t))]} − S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [λQn(t)]}‖,

‖K[Pm(t)] − K[Pn(t)]‖ ≤ ‖Pm(t) − Pn(t)‖ + ‖S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [ρS m(t)]} − S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [ρS n(t)]}‖,

‖K[Dm(t)] − K[Dn(t)]‖ ≤ ‖Dm(t) − Dn(t)‖ + ‖S T−1[
1

OγEγ(− 1
1−γω

γ)

×S T [κQm(t)]} − S T−1[
1

OγEγ(− 1
1−γω

γ)

× S T [κQn(t)]}‖ (15)

K fulfills the conditions associated with theorem 3.1 when

θ = (0, 0, 0, 0, 0, 0, 0), θ =



‖S m(t) − S n(t)‖ × ‖ − S m(t) + S n(t)‖
−‖β1a1(S m(t) − S n(t))b1(Im(t) − In(t))‖
−‖β2a2(S m(t) − S n(t))b2(Em(t) − En(t))‖
−‖ρ(S m(t) − S n(t))‖
×‖Em(t) − En(t)‖ × ‖ − Em(t) + En(t)‖
+‖β1a1(S m(t) − S n(t))b2(Em(t) − En(t))‖
−‖ε(Em(t) − En(t))‖
×‖Im(t) − In(t)‖ × ‖ − Im(t) + In(t)‖
+‖ε(Em(t) − En(t))‖ − δ‖Im(t) − In(t)‖
×‖Qm(t) − Qn(t)‖ × ‖ − Qm(t) + Qn(t)‖
+‖δ(Im(t) − In(t))‖ − (λ(t) + κ(t))‖Qm(t) − Qn(t)‖
×‖Rm(t) − Rn(t)‖ × ‖ − Rm(t) + Rn(t)‖
+‖λ(Qm(t) − Qn(t))‖
×‖Pm(t) − Pn(t)‖ − ‖ − Pm(t) + Pn(t)‖
+‖ρ(S m(t) − S n(t))‖
×‖Dm(t) − Dn(t)‖ − ‖ − Dm(t) + Dn(t)‖
+‖κ(Qm(t) − Qn(t))‖

(16)

and we add that K is Picard K-stable.
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4. Numerical results and discussion

In this section, consider the numerical simulations of the proposed scheme using the ABC technique
for the fractional-order COVID-19 model. Figure 1 shows the simulation S (t) represents the number of
uninfected individuals. Shows a deep decreasing curve till point (20, 0.25) and then becomes constant
and reduced to zero at (100, 0). Figure 2 shows the simulation E(t) of infected individuals but still is in
the incubation period (without clinical symptoms and low infectivity). Figure 3 I(t) which represents
the number of infected individuals. Here the graph shows a rapid increase (10, 9) and then decrease
rapidly with the same rate and then it becomes constant at (100, 0). Figure 4 represents the number of
individuals who have been diagnosed and isolated. Figures 5 and 6 shows the simulation of recovered
individuals and those not exposed to the external environment respectively. Figure 7 shows the simu-
lation D(t), which represents the death due to increasing or decreasing the infection rate of COVID-19
in society. It can be easily observed from all figures the solution will converge to steady-state and lie
in the bounded domain by decreasing the fractional value. Moreover, it has been demonstrated that
physical processes are better well described using the derivatives of fractional order which are more
accurate and reliable in comparison with the classical-order derivatives. Moreover, it can be seen from
all figures that tell that all infected individual comes zero after a few days due to the quarantine effect.
The behavior of the dynamics obtained for different instances of fractional-order was shown in the
form of numerical results has been reported.
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Figure 1. Simulation of S (t) at the time t with parametric value of γ with ABC.
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Figure 2. Simulation of E(t) at the time t with parametric value of γ with ABC.
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Figure 3. Simulation of I(t) at the time t with parametric value of γ with ABC.
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Figure 4. Simulation of Q(t) at the time t with parametric value of γ with ABC.
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Figure 5. Simulation of R(t) at the time t with parametric value of γ with ABC.

AIMS Public Health Volume 9, Issue 2, 316–330



327

0 20 40 60 80 100 120

t

0

0.5

1

1.5

2

2.5

3

3.5

P
(t

)

107 Proposed Method

=1.0
=0.95
=0.90
=0.85

Figure 6. Simulation of P(t) at the time t with parametric value of γ with ABC.
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Figure 7. Simulation of D(t) at the time t with parametric value of γ with ABC.
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5. Conclusions

We consider the COVID-19 model with fractional operator for this work to check the dynamical
behavior of infection of disease in society. In this regard, ABC derivative gave a realistic approach
to analyze the effect of disseise during Quarantine which will be helpful for such type of epidemic.
The existence and unique solution of the fractional-order model was made with the help of fixed point
theory and iterative method. Numerical simulation has been made to check the actual behavior of
the COVID-19 effect during quarantine which shows that infected individuals start decreasing after a
few days. Such kind of results are very helpful for planning, decision-making, and developing control
strategies to overcome the effect of COVID-19 in society.
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