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Abstract: The issue in respiratory sound classification has attained good attention from the clinical 
scientists and medical researcher’s group in the last year to diagnosing COVID-19 disease. To date, 
various models of Artificial Intelligence (AI) entered into the real-world to detect the COVID-19 disease 
from human-generated sounds such as voice/speech, cough, and breath. The Convolutional Neural 
Network (CNN) model is implemented for solving a lot of real-world problems on machines based on 
Artificial Intelligence (AI). In this context, one dimension (1D) CNN is suggested and implemented to 
diagnose respiratory diseases of COVID-19 from human respiratory sounds such as a voice, cough, and 
breath. An augmentation-based mechanism is applied to improve the preprocessing performance of the 
COVID-19 sounds dataset and to automate COVID-19 disease diagnosis using the 1D convolutional 
network. Furthermore, a DDAE (Data De-noising Auto Encoder) technique is used to generate deep 
sound features such as the input function to the 1D CNN instead of adopting the standard input of MFCC 
(Mel-frequency cepstral coefficient), and it is performed better accuracy and performance than previous 
models. Results: As a result, around 4% accuracy is achieved than traditional MFCC. We have classified 
COVID-19 sounds, asthma sounds, and regular healthy sounds using a 1D CNN classifier and shown 
around 90% accuracy to detect the COVID-19 disease from respiratory sounds. Conclusion: A Data De-
noising Auto Encoder (DDAE) was adopted to extract the acoustic sound signals in-depth features 
instead of traditional MFCC. The proposed model improves efficiently to classify COVID-19 sounds for 
detecting COVID-19 positive symptoms. 
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Abbreviations: CNN: Convolutional Neural Network; DDAE: Data De-Noising Auto Encoder; 
MFCC: Mel-frequency Cepstral Coefficient; DL: Deep Learning; ML: Machine Learning; AI: 
Artificial Intelligence; SVM: Support Vector Machine; LVQ: Learning Vector Quantization; MLR: 
Multivariate Linear Regression; MRI: Magnetic Resonance Imaging; SSP: Speech Signal 
Processing; LSTM: Long Short-Term Memory; TDSN: Tensor Deep Stacking Network; CRD: 
Compression of Range Dynamically; BN: Background Noise; ST: Stretching Time; SP: Shift Pitch; 
ReLU: Rectified Linear Unit; MUDA: Musical Data Augmentation; JAMS: JSON Annotated Music 
Specification; 

1. Introduction 

As of 23rd January 2021, the COVID-19 epidemic is declared as a pandemic by the World 
Health Organization (WHO) on March 11th, 2020, and it claims over 2,098,879 lives worldwide [1]. 
As of 23rd January 2021, a global situation was confirmed with 2,098,879 cases of COVID-19, 
including 2,098,879 deaths as shown in Figure 1. Experts in microbiology believe that data 
collection is critical for isolating infected people, tracing connections, and slowing the spread of the 
virus. Although progress in testing has made these methods more popular in recent months, it is 
imperative to have affordable, simple, and scalable COVID-19 screening technologies. The 
seriousness of COVID-19 disease is classified into three categories: extreme, middle/moderate, and 
mild. The problem of respiratory sound classification [2,3] and diagnosis of COVID-19 disease has 
received good attention from the clinical scientists and researchers community in the last year. In this 
situation, many AI-based models [4–6] entered into the real-world to solve such problems; and 
researchers have provided different machine learning, signal processing, and deep learning 
techniques to solve the real-world problem [7,8].   

 

Figure 1. The COVID-19 situation reported to WHO (World Health Organization) as of 
23rd January 2021.  

Nowadays, the COVID-19 pandemic exists in the entire real-world and generates fear in 
communicating physically. There are several ways to diagnose COVID-19 disease, and one of them 
is through human respiratory sounds. Clinical experts use respiratory sounds generated by the human 
body like vibration, voice, lung sound, heart, food absorption, breathing, cough, and sighs to 
diagnose the disease [9]. To date, such signals are typically obtained during scheduled visits via 
manual auscultation. Technological researchers and medical scientists have now begun using 
electronic technologies to collect sound from the human body (like Digital- Stethoscopes) [10] and 
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carry out an automated examination of the human sounds data, e.g., recognition of wheeze in asthma. 
Researchers pilot the use of the human voice to aid early detection of several diseases: Alzheimer’s 
disease corresponds with normal to slur [11], stammer, repeat, and use incomplete phrases and words 
(The beloved one can have trouble forming clear phrases or recognizing conversations), Parkinson’s 
Disease (PD) may have many effects on the voice (several people with PD talk softly and they don’t 
show enough feeling in one tone, speaking voice breathy or hoarse occasionally, and the end of a 
phrase, people with Parkinson’s could slur sentences, mumble or trail off) [12,13], frequency of 
speech with coronary heart disease (people can develop neck pain, fatigue, voice disorder) [14,15], 
invisible conditions such as battle fatigue, brain trauma, and psychological situations correlate with 
sound pitch, vocal tone, speech rhythm & frequency, and voice sound volume. The diagnostic tool 
for various diseases is the use of human respiratory sound. It provides enormous potential for early 
detection and cheap solutions for products rolling into the masses. It is valid for people that the 
solution can be tracked in their everyday lives by various people. The efficiency of the respiratory 
sound classification COVID-19 sounds dataset is enhanced in the last year by applying separate ML 
(Machine Learning) techniques [16] such as SVM (Support Vector Machine), LVQ (Learning Vector 
Quantization), and MLR (Multivariate Linear Regression). 

A one-dimensional CNN model is currently proposed and applied to classify the human sound 
signs based on respiratory signs in familiar and unusual ways, regardless of cough, voice, and 
breathing. In addition, a Data De-noising Auto Encoder (DDAE) algorithm is used as an input 
instead of following the traditional MFCC (Mel-frequency Cepstral Coefficient) to obtain depth 
features of respiratory sounds/voice, which is the basic input function to the 1D convolution. The 
functionality of the 1D Convolutional Neural Network (1D CNN) subsequently transformed the 
depth input features derived by the DDAE (Data De-noising Auto Encoder) method and then 
executed pooling activity. Finally, using a ‘Softmax’ classifier, the processed signals are categorized. 
The DDAE is derived in-depth feature respiratory sound signals in contrast with the standard MFCC 
feature extraction method [17–19]; the usefulness of the fundamental function of this analysis 
throughout the classification of respiratory sounds is thus demonstrated. The accuracy of 
classification with 1D CNN has a high ‘𝐹1’ Score which for the diagnosis of COVID-19 is slightly 
increased. An electronic/digital stethoscope can obtain the human respiratory sounds; the presented 
model is applicable and demonstrates good robustness [13,16]. 

Recent research has begun to investigate how the respiratory sounds recorded by smart devices 
from patients who have confirmed positive cases of COVID-19 in the clinic vary with the respiratory 
sound signs of healthy people (e.g., breath sound, cough sound, and voice) [20,21]. Lung 
auscultation digital stethoscope data can be used for diagnosis of COVID-19 disease; a COVID-19 
related cough detection analysis obtained with iOS/Android phones is presented using a group of 
forty-eight (48) patients with COVID-19 symptoms other clinical coughs trained in a series of 
models. Until then, it is only possible for the system to automatically classify the patient’s health 
fitness and analyze the symptoms of the affected patient’s respiratory sounds from clinical patients. 
It is not the case in our work, which includes studying human respiratory sounds in crowdsourced, 
unregulated data for the diagnosis of COVID-19 disease. 

Various COVID-19 sounds in the name of “COVID-19 crowdsourced sounds data” are 
collected by us from Cambridge University with mutual agreement. The dataset is obtained through 
an android/iOS mobile app and internet in the form of voluntary speech, cough, and respiratory and 
clinical samples with background and signs. This iOS/Android app also collects information on 
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whether the user is tested with a positive COVID-19 case before or not. To date, this COVID-19 
sounds dataset has collected around 8000 unique users in order of 12,000. Although there are other 
attempts to gather user-related data, they are mostly either narrow in reach or size. To our 
understanding, this is the world's most significant unregulated, crowdsourced data set of COVID-19 
based sounds. All these data are collected from Cambridge University with mutual agreement. This 
is a specific reason to collect the COVID-19 sounds dataset and perform 1D convolutional with 
augmentation method to diagnose the disease as well. In this paper, we briefly described the COVID-
19 data, COVID-19 Sound Analysis, and proposed 1D CNN approach in Section 1; Section 2 
illustrates literature reviews of each author and background study for this research; Section 3 
describes the proposed 1D convolutional method, dataset collection, and augmentation process; 
Section 4 outlines the result analysis and discussions concerning the proposed model, and we have 
concluded this research with the best accuracy.   

2. Background works 

Researchers and scientists have long recognized the utility of sound as a potential predictor of 
actions and health. For example, independent audio recorders [22] were used for the reason in digital 
stethoscopes to identify sounds from the human respiratory. Highly trained clinicians felt that 
compared to other methodologies such as MRI (Magnetic Resonance Imaging), and sonography, it 
was effortless to listen to sounds and then interpret them. However, recent work on automated sound 
modeling and interpretation has the potential to deal with these methods and provide the respiratory 
sound as an alternative that is relatively inexpensive and easily distributed. The microphones were 
recently exploited for sound processing on goods and product-based machines such as android/iOS 
devices (smartphones) and wearables technologies. 

In [23], Brown C et al. proposed an Android/iOS app to collect COVID-19 sounds data from 
crowdsourced sounds respiratory data of more than 200 positives for COVID-19 from more than 7k 
unique users; Brown C et al. used general parameters and 3 major set COVID-19 tasks based on breath 
and cough sound. The parameters are: i) positive COVID-19/negative COVID-19; ii) positive COVID-19 
with cough/negative COVID-19 with cough; iii) positive COVID-19 with cough/non-COVID asthma 
cough. Task 1 achieved 80% accuracy with 220 on dealing with the combination of cough and breath; 
task 2 achieved 82% of accuracy with 29 users on dealing with a cough only; finally, task 3 achieved 
80% accuracy with 18 users on dealing breath. Recall function is slightly low (72%) because of not 
having a specialized net to detect every COVID-19 cough. Brown C et al. used an SVM classifier to 
analyze the sound signals. In this case, instead of SVM, we proposed a 1D CNN and augmentation 
approach with a data de-noising method to classify and diagnose the COVID-19 disease. 

In [24], Han J et al. conducted an intelligent analysis of COVID-19 speech data by considering 
four parameters, such as: i. Sleep Quality; ii. Severity; iii. Anxiety; iv. Fatigue. Kun Q et al. collected 
data from the “COVID-19 sounds app” launched by scientists and researchers from Cambridge 
University and the “Corona voice detect App” launched by researchers from Mellon University. 
After data processing, people have obtained 378 total segments. From this preliminary study, they 
have taken 260 recordings for future analysis. These 256 sound pieces were collected from 50 
COVID-19 infected patients. For future study, poly impulses with a sample rate of 0.016MHz were 
converted. They have considered two acoustic feature sets in this study, namely ComParE & 
eGeMAPS. Both feature sets achieved 69% accuracy. In this paper, the authors have taken COVID-
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19 affected patient speech data to classify sleep quality, severity, anxiety, and fatigue. However, in 
our research, we used different respiratory sounds to train the disease model and diagnosis. 

In [25], Orlandic L et al. implemented the “COUGHVID” crowdsourced dataset for cough 
analysis with COVID-19 symptom; More than twenty thousand crowdsourced cough recordings 
reflected a broad range of topic gender, age, geographic locations, and COVID-19 status was given 
in the COUGHVID dataset. They have collected a series of 121 cough sounds and 94 no-cough 
sounds first-hand to train the classifier includes voice, laughter, silence, and various background 
noises [26]. They have taken self-reported status variables (25% of recording sounds with healthy 
values, 25% sound recordings with COVID values, 35% sound recordings with symptomatic value, 
and 15% sounds recordings with non-reported status; It ensured that all three reviewers labeled 15% 
of cough sounds for the selection of the recordings. The percentage of COVID positive symptoms of 
COVID-19 and healthy subjects were 7.5%, 15.5, and 77% from 65.5% males and 34.5% females, 
respectively. In this paper, the authors have collected cough sounds with the name “COUGHVID” 
and detected COVID-19 from cough sounds only. In the present approach, cough, breath, and 
continuous speech are considered for analysis COVID-19 disease identification. 

In [2], Wang Y et al. proposed a method to classify large-scale screening of people getting 
infected with COVID-19. This work was to identify various breathing patterns. In this paper, first, a 
new and robust RS (Respiratory Simulation) Model is introduced to fill the gap between a massive 
amount of training data and inadequate actual data from the real-world to consider the features of 
accurate respiratory signals. To identify six clinically significant respiratory patterns, they initially 
applied bidirectional neural networks like the GRU network attentional tool (BI_at_GRU) 
(Tachypnea, Eupnea, Biots, Cheyne-Stokes, Bradypnea, and Central-Apnea). In comparative studies, 
the acquired BI_at_GRU specific to the classification of respiratory patterns outperforms the existing 
state-of-the-art models. The proposed deep model and design concepts have enormous potential to be 
applied to large-scale applications such as sleeping situations, public environments, and the working 
environment. In this paper, the authors have collected different breathing patterns to detect the 
disease from collected respiratory sounds. However, in the proposed approach, three (breathing 
patterns, voice sound patterns, cough sound patterns) and a combination of all respiratory sounds are 
collected and analyzed. 

In [3], a portable non-contact system was proposed by Jiang Z et al. to track the health status of 
individuals wearing masks by examining features of the respiratory system. This device consists of 
mainly a thermal imaging camera with FLIR (Forward-looking Infrared) and an Android device. 
Under realistic situations such as pre-screening in institutions and clinical centers, this can help 
distinguish those possible COVID-19 patients. In this work, they performed health screening using 
thermal and RGB videos from DL architecture-based cameras. Firstly, they used pulmonary data 
analysis techniques to recognize mask-wearing people to obtain the health screening outcome, and a 
BI_at_GRU function is applied to pulmonary disease results. As a result, 83.7% accuracy is achieved 
to classify the respiratory health conditions of a diseased patient. In this, thermal images and 
breathing patterns were collected to predict the COVID-19 disease symptoms, but in the current 
system, only three significant respiratory sounds related to COVID are collected for detecting the 
COVID-19 disease.  

In [4], Imran A et al. implemented an AI (Artificial Intelligence) based screening solution to 
detect COVID, transferable through a smart mobile phone application. The application was 
suggested, developed, and finally tested. The mobile app called AI4COVID-19 records and sends to 
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an AI-based cloud running in the cloud triple 3-second cough sounds and comeback reaction within 
two minutes. Generally, cough is a primary indication of over 30 medical conditions associated with 
non-COVID-19. By investigating morphological direction changes with dissimilarities from cough 
respiratory sound accuracy of 88.76% achieved in this paper, the authors collected 3-seconds cough 
sound data for detecting COVID-19 disease, whereas in the proposed system, cough, breath, and 
continuous speech are collected for analysis and detection of the COVID-19 disease and 1D CNN is 
implemented for classification of single input vector audio file.  

In [17], Bader M et al. proposed a significant model with the combination of Mel-Frequency 
Cepstral Coefficients (MFCCs) and SSP (Speech Signal Processing) to extract samples from non-
COVID and COVID and find the person correlation from their relationship coefficients. These 
findings indicate high similarity between various breathing respiratory sounds and COVID cough 
sounds in MFCCs, although MFCC speech is more robust between non-COVID-19 samples and 
COVID-19 samples. Besides these provisional findings, it is possible to remove the various patient 
voices with COVID-19 for future analysis. They have collected three female, four male voices from 
seven healthy patients, and two female, five male voices from 7 COVID-19 patients were obtained 
from their dataset. They were obtained COVID-19 infected patient's data from Zulekha hospital in 
Sharjah. The data is four times cough from each speaker, the voice of numbers counting from 1 to 10 
of each speaker, and 4 to 5 times deep breath of each speaker. Besides, when recording their speech 
signals, the patients must sit with their heads straight in a comfortable way to extract three recordings 
for each speaker from smartphone devices. In this, the authors have collected very small data 
samples and performed all necessary operations, whereas a large dataset from Cambridge University 
with mutual agreement in the name of COVID-19 sounds data was collected for detecting the 
COVID-19 disease with desirable accuracy.  

Hassan A et al. [27] implemented a system to diagnose COVID-19 positive by using the RNN 
model. Authors have illustrated the significant impact of RNN (Recurrent Neural Network) with the 
use of SSP (Speech Signal Processing) to detect the disease and specifically, this LSTM (Long 
Short-Term Memory) is used to evaluate the acoustic feature maps of patients’ cough, breathing, and 
voice, in the process of early screening and diagnosing the COVID-19 virus. Compared to both 
coughing and breathing sound recordings, the model findings indicated poor precision in the speech 
test. In this work, the authors have collected a small dataset and performed the LSTM approach, and 
it was obtained with less accuracy. However, in our research, a large dataset was collected and is 
trained appropriate Deep Learning (DL) technique to achieve a better result on the COVID-19 
sounds dataset. 

Chaudhari G et al. [28] show that crowdsourced cough audio samples were collected worldwide 
on smartphones. In this process, various groups have gathered several COVID-19 cough recording 
datasets and used them to train machine learning models for COVID-19 detection. Each of these 
models was trained on data from a variety of formats and recording settings, which were collected 
with additional counting and vocal recordings. These datasets come from various sources, such as 
collecting data from clinical environments, crowdsourcing, and public media interview extraction, 
and are combined with COVID-19 status labels to create an AI algorithm that correctly predicts 
COVID-19 infection with a 77.1 percent ROC-AUC (75.2 percent–78.3 percent). In addition, 
without more training using the relevant samples, this AI algorithm can even generalize 
crowdsourced samples from Latin America and clinical samples from South Asia. In this work, the 



246 
 

AIMS Public Health                                                                                                                    Volume 8, Issue 2, 240–264. 

authors have collected cough data and obtained less accuracy, but the proposed approach obtains 
better accuracy on three respiratory sounds (human voice, breath, and cough). 

Ismail MA et al. [29] proposed a model with an analysis of vocal fold oscillation to detect 
COVID-19; most symptomatic COVID-19 patients have mild to extreme respiratory function 
impairment hypothesize that through analyzing the movements of the vocal folds, COVID-19 
signatures might be detectable. The authors’ objective is to confirm this hypothesis and 
quantitatively characterize the changes observed to enable voice-based detection of COVID-19. 
Authors use a dynamic system model for vocal fold oscillation for this and use our recently 
developed ADLES algorithm to solve it to generate vocal fold oscillation patterns directly from 
recorded speech. Experimental findings on COVID-19 positive and negative subjects on a 
scientifically selected dataset show characteristic patterns of vocal fold oscillations associated with 
COVID-19. A data collection obtained under clinical supervision and curated by Merlin Inc., a 
private firm in Chile, was used for this research. The dataset contained recordings of 512 individuals 
who were tested for COVID-19, resulting in either positive or negative COVID-19 results. Among 
these, we only selected the recordings of those people who were reported within seven days after 
being medically examined. Only 19 citizens met this criterion. Of these, there were ten females and 
nine males. COVID-19 was diagnosed in 5 women and four men, and the remainder tested negative. 
91.20 percent is the efficiency of logistic regression on extended vowels and their combinations. In 
this work, the authors have collected voice sound and predict COVID-19 with vocal sounds. In our 
approach, we have collected a large dataset with cough, voice, and breathing sounds.  

Laguarta J et al. [30] proposed an AI (Artificial Intelligence) model from cough sound recordings 
to detect the COVID symptoms. This model provided a solution to pre-screen COVID-19 sound 
samples country-wide with no cost. It has achieved 97.1% accuracy to predict the COVID positive 
symptom from cough sounds, and 100% of accuracy to detect asymptomatic based on cough sounds of 
5320 selected datasets is compared with chest X-ray image data [31]. Quartieri TF et al. [32] proposed 
a framework structure to identify COVID-19 symptomatic conditions with Signal Processing (SP) and 
Speech modeling techniques. This technique relied on the complexity of neuromata synchronization 
over speech/sound respiratory subsystem inside in the articulation, breathing, and phonation, driven by 
the existence of COVID symptom involving upper inflammation versus lower respiratory 
inflammation tract. Well-growing evidence for pre-exposure of COVID (pre-COVID) and post-
COVID is provided by researcher analysis with voice meetings of 5 patients. This proposed method 
offered a possible capacity for flexible and continuous study to show the dynamics of patient activity in 
real-life settings for advanced warning and monitoring of COVID-19. In this work, the authors created 
one framework to identify COVID-19 symptoms but not diagnosed the exact disease. However, in our 
approach, COVID-19 disease is detected with good accuracy.   

Sajjad A et al. proposed an end-to-end CNN approach [33] to classify environmental sounds 
that directly identify and describe the audio sound signal. As it breaks the signal into overlapping 
frames using a kernel function, the proposed solution has dealt with recorded audio sound signs of 
any duration. Different architectures were evaluated by considering multiple input lengths, namely 
initialization with a Gamma tone filter bank of the first convolutional layer for human hearing filter 
reflection in the labyrinth. This proposed approach has achieved around 89% accuracy by classifying 
urban sounds using the urban sounds 8k dataset. In this proposed approach, the authors have not used 
the augmentation approach and data de-noising approaches to reduce overfitting and noise reduction 
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from the sound file, but the proposed work executed both methods to attain better audio input in 
order to classify appropriate respiratory sound.  

Li Y et al. proposed a 1D CNN model with no attention mechanism [34] to extract the speech 
features from continuous speech and obtained around 88%, 65%, 75% accuracy in Emo-DB, 
IEMOCAP, and RAVDESS datasets. This non-attention mechanism has not given the best results in 
large datasets, but the proposed 1D CNN and augmentation technique with data de-noising is ready 
to give better and transparent results. Li F et al. proposed 1D CNN [14] for the classification of heart 
sound signals to extract heart sound features for attaining desired good accuracy. The 1D CNN 
model has been implemented for signal processing applications such as ECG classification of a 
patient [35,36], power electronics anomaly detection, monitoring of patient’s health, and detection of 
fault tolerance. Salamon J et al. proposed a DNN and augmentation model [37] to classify 
environmental sounds and have shown a better performance with this model.  

Aditya K et al. proposed CNN with a tensor deep tracking approach [38] to classify the 
environmental sounds and obtained 49% and 77% accuracies on the ECS-10 dataset with CNN and 
56% on the ECS-10 dataset with TDSN (Tensor Deep Stacking Network). Chen X et al. proposed 1D 
CNN to identify flight state and obtained useful features dynamically from the basement of a newly 
built body wing via wind tunnel observations [39]. Pons J and Serra X proposed the CNN model for 
music sounds classification [40]. They have classified three sounds from the piano, drums, and flute 
to classify audio streaming and obtained 70% accuracy with the CNN model. Aykanat M et al. 
proposed the CNN model for lung sound classification [41] with collected respiratory sounds 
through a digital stethoscope and obtained around 80% accuracy for respiratory-based sound 
classification and 62% for audio-based classification.  

Actually, many clinical health issues and problems (e.g., brain cancer diagnosis, prostate cancer 
diagnosis, etc.) are focused on Artificial Intelligence (AI) approaches. Deep learning methods can 
expose features of an image that are not visible in the actual image data. Primarily, CNN has been 
shown to be immensely helpful in the detection and training of features and has therefore been 
widely implemented by the scientific community. The convolutional model has been used to 
improves the quality of the image in low-light frames from very speed video endoscopy and was 
used to classify the existence of respiratory cysts through Image data, detection of pediatric TB 
(Tuberculosis) through respiratory X-ray images data, automatic marking of nodules during 
endoscopy images, cystoscopy of video image analysis. Deep learning strategies [42,43] on chest X-
Rays are becoming famous with the development of deep Convolutional network and the results 
obtained that have been shown in various applications. In addition, a variety of data is required for 
the training of various learning models. The machine learning models significantly eased the method 
by rapidly retraining a Convolutional network with a relatively low number of images in the dataset. 

In general, a number of innovative studies on the approach of classification tasks for the 
identification of COVID-19 from limited X-ray images and CT-scan data [44,45] were reported with 
promising results, but these would have to be checked on a large dataset. Some groups have 
upgraded or well-qualified systems to achieve better performance, while some groups use capsule 
networks. Mostly in this situation of a decentralized learning process, a comprehensive study on a 
large pulmonary disease of COVID-19 and non-COVID-19 communities is minimal and lacking. 
One detection model was trained to distinguish standard X-ray image data [46] and COVID, while 
others were trained to identify traditional images of viral infections and COVID-19 signs. In order to 
evaluate the effect of the necessary changes on this particular problem, both parts of the study were 
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analyzed with and without an image improved technique. All these related studies show that there is 
no accurate model for diagnosing the symptoms of COVID-19 disease. So, we tend to implement the 
1D CNN model and augmentation and Data De-noising Auto Encoder (DDAE) to perform better 
with the COVID-19 sound dataset in diagnosing COVID-19 disease, achieving better results. 

3. Materials and methods 

3.1. Dataset collection 

COVID-19 sounds dataset is collected from Cambridge University with mutual agreement for a 
research purpose.  This dataset is approved at Cambridge University, Dept. of Computer Science and 
Tech., by adhering to the policies and regulations of the committee. 

Brown C et al. [23] implemented one android app and web-based application to collect COVID-
19 sounds. The main attributes of these applications are mostly similar. They have collected the past 
health history of a user for those who have been admitted before into the clinic. Users then entered 
their symptoms and reported breathing sounds (if there are any). They collected cough three times 
sounds, breathed heavily via their mouth 3–5 times, and read a brief statement within 30 seconds on 
the mobile/computer screen. Finally, they were checked for COVID-19 users and were questioned to 
obtain a position sample on the agreement. Besides, iOS and Android applications prompts users 
every two days to input additional sounds and symptoms, offering a particular chance to examine the 
breakthrough of sound-based patient well-being. This data is very securely encrypted in Cambridge 
University servers and then stored the collected data. The data was then transmitted from the 
telephones by connecting to Wi-Fi.  

3.1.1. COVID-19 sounds from the crowdsourced dataset 

At the end of May 2020, University of Cambridge researchers have specifically collected 
around 4.5k unique from a web-based application and 2.5k samples from the android based 
application [23]. The authors have collected around 5k and 6k samples from different countries. 
Among these, around 300 users are declared COVID-19 positive patients from both web-based and 
android applications. The android app collects more than one sample from various users, leading to 
redundancies and becoming a large dataset. Hence our future work is to remove the redundancy to 
improve performance. They have collected and analyzed general data (past and current medical 
history, age, gender) along with three different sounds (vocal sound, cough, breath) from unique uses 
in both web-based and android applications. A dry cough is a symptom most commonly seen in this 
group, and the most common combination of symptoms is cough and throat. Interestingly, the most 
commonly affected signs are wet and dry cough, loss of ability to smell, and chest tightness 
(breathing) which are also considered to be the most typical combined symptoms. This is consistent 
with knowledge from the COVID-19 symptom monitor. The fact that coughs are one of the most 
documented symptoms of the COVID-19, but it also is a frequent sign of many other diseases, 
provides more incentive for the use of sounds as a particular symptom. Hence, the proposed 1D CNN 
model is to classify and diagnosis the COVID-19 from these all symptoms. 
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3.1.2. Data Augmentation 

We tested five incremental sets and provided the following information. Each deformation is 
directly applied to the sound signal before converting it into the input data, often used to train the 
neural network [37]. The deceleration parameters are necessary for any increase so as to maintain the 
functional weight of the label. The following steps define the augmentation pair sets: 

i. Stretching Time (ST): To Increase or reduce the sample sound signal (to unchanged running 
pitch). Based on the four factors {0.80, 0.94, 1.06, and 1.24} the duration is stretched. 

ii. Shift Pitch1 (SP1): Sound/audio samples can be increased or decreased (to unchanged 
running pitch), and every sample can be shifted differently by four values (−1, −2, −2, −1).  

iii. Shift Pitch2 (SP2): To build a second augmentation package, since our initial tests show that 
pitch shifting especially increases. Every sample is pitch moved by four higher values (in various 
sizes and shapes) this time (−2.5, −3.5, 3.5, and 2.5). 

iv. Compression of Range Dynamically (CRD): These 4 parameters are compressed online with 
one taken from the “ICECAST” streaming server (it is an accessible software server for streaming 
multimedia), and three from standard Dolby E (it is a digital sound/audio stream processed by a 
regular stereo pair of digital sound/audio tracks). 

v. Background of Noise (BN): The sample is paired with some other sequence of various kinds 
of audio scenes containing background noises, four sound scenes are combined for each sample 
(while taking respiratory sounds—environmental sound noise is combined). The mixed or combined 
value is generated as ‘c’.  

So, 𝑐 =  (1 − r) ×  (a +  r٠b), where, a—audio signal original sample, b—background noise 
signal, r—random weight parameter (0.10, 0.50). Using the MUDA library, the augmentations are 
added, to which the reader is referred for more information on the execution of each deformation. 
MUDA selects the audio recording and the accompanying JAMS format annotation directory and 
produces the deformed audio along with the improved JAMS data containing all the deformation 
parameters used. In this study, actual metadata given with the audio sound dataset is imported and is 
utilized for evaluation into JAMS files and made accessible on the internet together with the JAMS 
files after deformation.  

3.1.3. Data De-noising Auto Encoder (DDAE) 

In addition, a Data De-noising Auto Encoder (DDAE) algorithm is used for the input function 
of the 1D convolution instead of standard input like MFCC (Mel-frequency Cepstral Coefficient) to 
obtain deep feature maps of respiratory sounds. The 1D CNN algorithms are then recycled to 
transform the input sound signal depth features to derive from the DDAE and run the pooling 
process. Finally, a “Softmax” classifier is used to classify the processed signal. The functionality of 
1D convolution (1D CNN) is subsequently transforming the depth input features derived by the 
DDAE (Data De-noising Auto Encoder) method and execute pooling activity. Finally, using a 
Softmax classifier, the processed signals are categorized. The DDAE is derived in-depth feature 
respiratory sound signals by contrasted with traditional MFCC feature extraction method, the 
usefulness of the fundamental function of this analysis throughout the classification of respiratory 
sounds is thus demonstrated in section 3.2.2. The block diagram of the DDAE with 1D CNN 
architecture is shown in Figure 2. 
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Figure 2. A structural architecture for proposed system with sound Data De-noising Auto Encoder. 

3.2. Proposed 1D convolutional model 

The 1D Convolutional model proposed in the present research specifically classifies respiratory 
sound/voice signs into usual and unusual independently of cough, voice, and breathing sounds. An 
augmentation-based mechanism is applied to improve the preprocessing performance of the COVID-
19 sounds dataset to automatic COVID-19 disease diagnosis using the 1D convolutional network 
architecture. In this research, COVID-19 respiratory sound signals are extracted as input depth 
features by adopting of DDAE technique instead of MFCC. The proposed 1D convolutional network 
model is depicted in Figure 3.  

 

Figure 3. The proposed 1D Convolution Neural Network (CNN) architecture with augmentation. 

3.2.1. Variable length of audio 

There are some issues in using the 1D CNNs model for sound analysis. Indeed, the size of the 
input sequence must be fixed, but there exist different durations of the sound recorded from the human 
respiratory. Even though the COVID-19 crowdsource dataset is having a fixed size duration of each 
sample, but while testing, automatic sample signals may vary. Hence, the input audio length is to be 
fixed. Furthermore, to use it for sound signals of various lengths, it is appropriate to customize a CNN. 
Also, for the endless detection background noise of our respiratory input sound, CNN should be used. 
Splitting the voice/sound signal spectrum l into multiple buffer structures of specified size by adopting 
a kernel function of sufficient scope is the only way to overcome this restriction provided by the input 
convolutional layer. We use a dynamic size frame in our methodology to restrict the sound/voice signal 
to the input layer of a suggested 1D convolutional approach. 

The channel size varies based on the sampling rate of the sound s signal. In addition, successive 
sound frames may also have a specific ratio of duplication aiming at optimizing the use of data. 
Ascertain pieces of the voice signals are reused; we inevitably grow the number of recordings. It is 
considered to be one kind of data augmentation. The frame structure and method of grouping the 
voice signal into suitable frames are shown in the Figure 4. In addition, the sampling frequency of 
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respiratory sound signals input has a significant impact mainly in the depth of the input features and, 
ultimately, on the design model computation complexity. A great trade here between the input sound 
signal’s performance and the operational expense of the process is assumed to be a sampling rate of 
0.016 MHz for respiratory sounds. 

 

Figure 4. Several frames of input audio signal (𝑟, 𝑟 + 1) with the overlapping percentage 
are appropriately 50%. 

3.2.2. 1D CNN model 

The 1D CNN network flow architecture is shown in Figure 2 takes an input of the input layer 
kernel values as time-series signals. To extracting features and process signal layer by layer, we have 
used the convolutional layer and pooling layer for layer-by-layer evaluation. 1D CNN is composed 
of different convolutional kernels of the same size for each CNN layer. Followed by pooling layers 
with average pooling technique, outcomes are classified by the fully connected layer. Our model is 
built based on a fully connected network of 1D CNN.  

The primary novel considerations of the analysis encompass: 
1. Customized 1D CNN framework with input data using Data De-noising Auto Encoder (DDAE) 

is optimized for automated feature learning rather than individual feature extraction technique. 
2. Self-adapting 1D CNN is suggested for automated parameter determination rather than 

depending on individual experience. 
3. The DDAE will provide the input features to the 1D CNN model as a spectrum. 
4. An average pooling layer accompanies the feature vector in the 1DCNN framework to 

readjust performance in each level in order to prevent various implications of features between 
training and validation results. 

5. The 1D CNN architectural model can diagnosis the COVID-19 disease by analyzing human 
respiratory sound parameters. 

The 1D Convolutional model architecture is built with a fully-connected neural network to 
avoid different computational sharing of the in-depth features for training data and testing data. 
Batch normalization is used in each 1D CNN layer to normalize each layer output. The activation 
function, ReLU (Rectified Linear Unit), is used for network sparsity to decrease parameter 
interdependence and alleviate the incidence of over-fitting problems. Six 1D convolutional layers are 
in the model. The function values are compressed into a single-column matrix in order to fit them 
into the fully-connected layer after the 6th 1D convolutional layer output. Subsequently, the layer is 
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flattened with two dense cells and two dropout layers, and then finally applied an activation function 
is “Softmax” for classification of the positive COVID-19 cough and negative COVID-19 cough, and 
in a similar fashion same process is applied to compute the remaining tasks. In this work, a model is 
constructed with six 1D CNN layers and 2-dense layers with 2-dropout cells. The new model 
architecture implementation process is shown in Figure 2. 

 

Figure 5. Neural network structure for the proposed 1D convolutional model. 

The architectural model is constructed with a fully connected 1D convolutional network. A 1 × 256 
dimension vector is given as an input to 1D CNN and is trained as a 2D convolutional model [47]. The 
model has 10-network connection features in the convolutional layer with a sigmoid transfer function. 
The max-pooling layer is used to generate the pooling sheet with stride 2. Finally, the Softmax classifier 
is used to classify each class preliminary result disease probability from COVID-19 data. The 1D CNN 
structure is illustrated in Figure 5 using a six-layer structure with a 1 × 12 kernel size. The 1D 
convolutional kernel sizes are extended based on column expansion in the 2D convolutional network. 
While preserving the convolutional filters with the same length for both networks, the outcome of various 
kernel sizes of a convolutional network is tested on the output of 2D and 1D Convolutional models. The 
length of kernel size 24 is represented in Table 1, as 1 × 24. The model framework is designed with the 
hyperparameters of six 1D CNN hidden layers, categorical cross-entropy loss function, “Adam” 
optimizer, 32 batch size, ReLU activation, Softmax classifier, dropout is 0.5, the number of epochs is 
fixed to 66, applied max-pooling after two hidden layers, and average pooling for successive hidden 
layers. The total trainable parameters are 87,624, and non-trainable parameters are zero. The 
hyperparameter objective function was updated depending on the outcomes from the first analyses, and 
subsequent better models were examined. 

The one-dimensional convolution is similar to a standard convolutional network, except that it 
has raw data instead of labeled data. In order to learn a correct set of inputs, source sound data is 
collected across many convolution layers. According to the “local connectivity” principle, the cells 
in a network are connected to a particular area of the previous layer. The location of connectivity is 
termed the receptive field. The dataset is describing the audio sound wave by defining it as X, and it 
is the input to the 1D CNN output. As per functional extracting features given by  𝐸𝑞. (1), the 
framework is proposed to learn a set of parameters to connect the input to the estimation Y. 
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𝑌 = 𝐹(𝑋|𝜃) = 𝑓𝑘 (…….𝑓2 (𝑓1 (𝑋|𝜃1)| 𝜃2)|𝜃𝑘)                                     (1) 

where the ‘𝑘’ is the total number of a hidden layer of a network and the 𝑘𝑡ℎ  layer of the operations 
can be expressed as  𝐸𝑞. (2), 

𝑌𝑘 = 𝑓𝑘(𝑋𝑘|𝜃𝑘) = ℎ(𝑤𝑗 ʘ 𝑋𝑘 +b), …………… 𝜃𝑘=[𝑤𝑗 , 𝑏]                            (2) 

where ‘ʘ’ is kernel operation of convolution layer and 𝑋𝑘 denoted the ‘𝑘’ kernels are used for input 
array to extracting the features, հ (٠) indicates an activation operator, and b—bias function. The 
structure of 𝑌𝑘, 𝑋𝑘 , and 𝑤𝑗 are (𝑝¸ 𝑑) ¸ (𝑝¸ 𝑞) and (𝑝¸ 𝑑 − 𝑞 + 1) correspondingly. We have applied 
different pooling layers in-between each convolution layer to expand one of the following fields. The 
final convolution kernel layer output is flattened and used different fully connected layers are 
denoted as 𝐸𝑞. (3): 

𝑌𝑘 = 𝑓𝑘(𝑋𝑘|𝜃𝑘) = ℎ(𝑤𝑗  ٠ 𝑋𝑘 +b), …………… 𝜃𝑘=[𝑤𝑗 , 𝑏]                           (3) 

The output of the kernel shape is defined as mentioned in 𝐸𝑞. (4), and where OL is indicated 
Output Length, IL defines Input Length, ‘𝑘’ is the kernel filter size, ‘𝑃’ indicates Padding, and ‘𝑆’ 
defines Stride in 𝐸𝑞. (4). 

𝑂𝐿 =
𝐼𝐿−𝐾+2×𝑃

𝑆
 + 1                                                                   (4) 

The suggested 1D CNN has broad temporal information during the first convolutional network 
model, as it is assumed that the first layer would have a much more comprehensive view of the sound 
sign. Furthermore, the ambient sound signal is non-stationary about time, i.e., the amplitude or spectral 
quality of the signal varies. Narrower filters do not provide a general view of the spectral quality of the 
signal. The last pooling layer output is smoothed for all function maps and is used as an input to a 
fully-connected layer. After the activation feature of each convolution sheet, batch normalization is 
applied to decrease over-fitting [48]. Ten neurons have the last completely connected layer. Mean 
logarithmic error squared, as represented in 𝐸𝑞. (5) is used as a function for loss ( £ ): 

£ =  
1

𝑇
 ∑ log (

𝑝𝑐𝑖+1

𝑎𝑐𝑖+1
)

2
𝑇
𝑖                                                              (5) 

where  𝑝𝑐𝑖 ,  𝑎𝑐𝑖  are the predictive and actual classes, and ‘𝑇’ is the total number of samples to 
calculate the loss function. 

4. Results and discussion 

We are performing three comparative experiments in this section. The first compares various 
kernel convolution forms, the second compares different features, and the third compares other 
network-layer numbers. The 𝐹1Score shows the specificity of a test in the statistical study of binary 
classification. The average mean value of recall & accuracy is defined as 𝐹1 score, where the 
optimum value of the 𝐹1Score is achieved at 100% and worst at 0%. In this analysis, we use the 
accuracy rate & 𝐹1score for recognition to measure the method’s efficiency. The following equations 
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[𝐸𝑞. (6) and  𝐸𝑞. (7)] are used to calculate the 𝐹1Score and accuracy. Where PT signifies Positive 
True, PF denoted Positive False, NT indicates Negative true, NF implies Negative False. Table 1 
shows the accuracy and 𝐹1Score for comparison of different kernel types along with CNN kernel size 
and shape of the CNN. The comparison of 1D convolution and 2D convolution concerning accuracy 
is shown in Figure 6.   

𝐹1𝑆𝑐𝑜𝑟𝑒 =  
𝑃𝑇

𝑃𝑇+𝑃𝐹
 × 

𝑃𝑇

𝑃𝑇+𝑁𝐹
𝑃𝑇

𝑃𝑇+𝑃𝐹
 × 

𝑃𝑇

𝑃𝑇+𝑁𝐹

                                                             (6) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑃𝑇+𝑁𝑇

𝑃𝑇+𝑁𝑇+𝑃𝐹+𝑁𝐹
 × 100                                               (7) 

4.1. The impact of hyperparameters on results 

The convolution layer in 1D CNN plays an essential role in the identification of abnormalities 
in the sound. The number of convolution layers for the base network model was calculated in an 
observational analysis by using COVID-19 crowdsourced sound dataset audio files. Sound files were 
divided into 13k samples, followed by 50 percent overlapping frames. 10% of the data has been used 
as a test dataset, 10 percent of the data was used as a validation set, and 80% data were used for 
training with 32 batch size for 66 epochs (the training model is saturated after 66 epochs).  

Table 1. Different convolutional kernels comparison according to hyper-parameters 
(kernel size, kernel shape, kernel type) with results. 

CNN Kernel Type CNN Kernel Size CNN Kernel Shape Percentage of Accuracy (%) F1Score (%) 
1D Convolution 12 1 × 12 88.36 89.78 
2D Convolution 1 × 12 86.89 87.24 
1D Convolution 24 1 × 24 89.48 91.26 
2D Convolution 2 × 12 85.26 86.13 
1D Convolution 36 1 × 36 88.86 89.13 
2D Convolution 3 × 12 83.13 84.89 
1D Convolution 48 1 × 48 87.96 88.62 
2D Convolution 4 × 12 82.60 83.76 
1D Convolution 60 1 × 60 86.89 87.12 
2D Convolution 5 × 12 80.56 82.67 

The accuracy obtained by CNN 1D with one to five convolutional model test performance was 
88.36%, 89.48%, 88.86%, 87.96, and 86.89%, respectively. Five 1D CNN layers are the maximum 
bound as the function map’s minimum size on this layer was already exceeded. The same method 
was also used to determine the best number of convolutional layers and also their parameters for 
many other parameters extracted from the base model. 
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Figure 6. The accuracy comparison of 1D CNN and 2D CNN with different CNN kernel shapes. 

Previously researchers have used the MFCC feature extraction approach to verify sound 
features to diagnosis COVID-19 disease. Table 2 summarizes the experimental findings. Table 2 
shows that there are favorable recognition rates for the deep feature maps extracted in this analysis.  
Suggestions are made on the deep sound feature extracting method to extract the deep features of an 
audio sound file, filter the disturbance and noise in sounds, and respond favorably to the 1D 
convolutional network architecture features. The comparison results of the 1D convolutional model 
with MFCC and DDAE is based on deep sound features are depicted in Figure 7.  

Table 2. 1D CNN features a comparison with the results. 

CNN Kernel Shape Features Types Percentage of Accuracy (%) F1Score (%) 
1 × 12 Mel-frequency (MFCC) 82.34 84.26 

Deep sound features 88.36 89.78 
1 × 24 Mel-frequency (MFCC) 83.59 82.63 

Deep sound features 89.48 91.26 
1 × 36 Mel-frequency (MFCC) 81.13 82.54 

Deep sound features 88.86 89.13 
1 × 48 Mel-frequency (MFCC) 80.89 81.23 

Deep sound features 87.96 88.62 
1 × 60 Mel-frequency (MFCC) 79.82 81.76 

Deep sound features 86.89 87.12 

 

Figure 7. The comparison of the 1D CNN model with MFCC and deep sound features. 



256 
 

AIMS Public Health                                                                                                                    Volume 8, Issue 2, 240–264. 

A proposed 1D convolutional model is proposed to achieve good performance and then joined 
another layer of a 1D convolutional network to design three 1D CNN layers. The pooling layers and 
convolution layers intermittently appear in the CNN structure. There are added pool and convolution 
layers. Finally, to obtain the output, the layers are completely related. The neural network output 
within various layers is measured. It is noticed that the network output retains almost the same when 
the number of hidden layers exceeds 5. The experimental results are presented in Table 3. The 
findings suggest that the growth in the neural network in this research enhanced the identification 
including accuracy of the sound signal also for various tests. The 3-layer and 5-layer 1D CNN model 
comparison results with different 1D CNN kernel sizes are depicted in Figure 8. 

Table 3. The various feature type convolutional layer results in the 1D CNN model. 

CNN Kernel Shape Features Types Percentage of Accuracy (%) F1Score (%) 
1 × 12 3 1D CNN layers 85.64 87.28 

5 1D CNN layers 88.36 89.78 
1 × 24 3 1D CNN layers 86.48 88.89 

5 1D CNN layers 89.48 91.26 
1 × 36 3 1D CNN layers 84.68 86.12 

5 1D CNN layers 88.86 89.13 
1 × 48 3 1D CNN layers 83.96 85.62 

5 1D CNN layers 87.96 88.62 
1 × 60 3 1D CNN layers 80.89 82.12 

5 1D CNN layers 86.89 87.12 

 

Figure 8. The accuracy comparison 3-layer and 5-layer 1D convolutional with different 
CNN kernel sizes. 

The experimental findings indicate that additional information on COVID-19 sound signals is 
preserved by the in-depth features used for the present model by enhancing classification efficiency. 
The findings in Table 1 indicate that the COVID-19 sound signals used in this analysis can classify 
better with the proposed 1D convolutional network compared with the 2D convolutional network. 
This is observed when the kernel size is lower than 48 since a border kernel filter raised the 
performance time and progressively time space-intensive. The latter is almost 5 percent greater than 
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that of the former in the correct rate of classification process recognition by contrasting the typical 
voice deep characteristics (feature maps) and MFCC characteristics (feature maps) obtained in this 
analysis. The deep function collected in this work is much more appropriate than the MFCC for 
reflecting COVID-19 sound signals. In addition, the precision of identification is immense whenever 
the total number of hidden convolutional layers has become enormous. Anyhow, as the number of 
convolutional network hidden layers increases, the sum of the estimation rises marginally, and the 
period of classification recognition is extended. 

The collection of the deep sound features does not need preprocessing in comparison with the 
conventional input for any duration of COVID-19 based respiratory sounds. The respiratory sounds 
can thus be entered explicitly into the classification methods. Applying the 1D CNN model instead 
of 2D CNNs in this study is greatly enhances the ability of the entire system model to interpret 
COVID-19 sound signals without ever using X-ray, CT scanning, and any other reports. The 
proposed method achieved reliable identification efficiency based on acoustic features. The 
framework developed in this work is being used for regular research in everyday life or treatment 
modalities for the general public. If a disorder happens, then it is best to visit the clinic for more 
examination. This technique can only distinguish COVID-19 positive, non-COVID-19, and asthma 
from respiratory sounds (cough, voice sample, breath). At present, the technique could be succeeded 
with a limited number of samples. Therefore, in clinical practice, it has not been implemented, but it 
could be used for advanced detection of illness with COVID-19. This COVID-19 crowdsource data 
was applied in clinical practice to diagnose COVID-19 disease by Cambridge University research 
people [23], and with the obtained dataset from the university, an initial attempt was made to 
improve the performance. Further, develop the algorithms will be developed, and sample selection 
for clinical practice will be made in the near future. 

4.2. Differentiating COVID-19 positive users with non-COVID-19 users from respiratory sounds 

Table 4 represents the classification results of five different tasks (positive cough of 
COVID-19/negative cough of COVID-19, positive symptoms of COVID-19/negative symptoms 
of COVID-19, positive cough of COVID-19/negative COVID-19 cough with asthma, asthma 
breath/healthy breath, and heathy breath/cough) for ten classes (asthma breath, asthma with 
cough, asthma with cough and breath, breath with negative COVID-19, cough with negative 
symptoms of COVID-19, COVID-19 from cough, COVID-19 from breath, healthy symptoms 
from breath, heathy symptoms from cough, COVID-19 positive cough + breath). The 
classification network was developed that classified five tasks from 10 class categories . The first 
task represents binary classification used for discriminating whether the user is a COVID-19 
positive or non-COVID-19 user. The second task discriminates positive cough of COVID-19 
from negative cough symptoms of COVID-19. Task 3 is for discriminating positive cough 
symptoms of COVID-19 from negative COVID-19 asthma cough. Task 4 for discriminating 
users having asthma breath or healthy breath and the last task is meant for discriminating normal 
cough from asthma cough. The exact accuracy comparison for classification results of five 
different tasks for respiratory sounds is shown in Figure 9. Table 5 displays the comparison 
results for different tasks for the proposed 1D CNN model with the existing SVM classifier . In 
total, around 2%, more accuracy is achieved than existing methods. The accuracy comparison of 
the proposed model with different tasks and the previous SVM model [1] is shown in Figure 10. 
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Figure 9. The accuracy comparison for classification results of five different tasks for 
respiratory COVID-19 Sounds Data (Task-1: Positive COVID-19/Negative COVID-19; 
Task-2: Positive cough of COVID-19/Negative cough of COVID-19; Task-3: Positive 
cough of COVID-19/Negative COVID-19 Asthma Cough; Task-4: Asthma 
Breath/Healthy Breath; Task-5: Asthma cough/Normal Cough). 

Table 4. Classification Results of five tasks for respiratory COVID-19 sounds with previous models. 

Task Modality Accuracy (%) F1Score (%) 
Positive COVID-19/Negative COVID-19 Breath + Cough 89.36 90.78 
Positive cough of COVID-19/Negative 
cough of COVID-19 

Cough 88.48 89.26 

Positive cough of COVID-19/Negative 
COVID-19 Asthma Cough 

Cough 88.86 89.13 

Asthma Breath/Healthy Breath Breath + Voice (Single sentence voice) 84.96 86.62 
Asthma cough/Normal Cough Cough 85.89 87.12 

4.3. The comparison of proposed model with exiting model on COVID-19 crowdsourced sound data 

The data benchmarks show that there are some discriminatory indications in the data while 
testing for COVID-19 user coughs mixed with breathing may be a good predictor. Specifically, test 
accuracy for task 1 is around 90% by combining breath sounds with cough sounds. Task 2 and task 3 
achieve around 88% of accuracy. We can diagnose asthma with breath, voice, and cough with an 
accuracy of around 85%. The 1D CNN is a proposed model for classification for COVID-19 disease 
from the user samples. Data set is obtained from Cambridge University on mutual agreement. The 
data has a fixed number of fewer samples (13k). In the near future, more samples will be collected to 
improve the performance with a multi-level deep convolutional model. A plan will be made to 
implement a multi-layer deep convolutional model to improve the performance of the diagnosis of 
COVID-19 disease. Table 6 depicts the comparative analysis of the proposed model with previous 
audio classification models on different respiratory sound data in recent years. 
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Table 5. Comparison of proposed model with previous models.  

Model Dataset Accuracy 
SVM + PCA [23] COVID-19 Crowdsourced Data Task-I: 80% 

Task-II: 82% 
Task-III: 80% 

SVM with Augmentation [23] COVID-19 Crowdsourced Data Task-II: 87% 
Task-III: 88% 

1D CNN with Augmentation and DDAE (Proposed) COVID-19 Crowdsourced Data Task-I: 90% 
Task-II: 88% 
Task-III: 88% 
Task-IV: 84% 
Task-V: 86% 

 

 

Figure 10. The accuracy comparison chart for the proposed model (1D CNN with 
augmentation & DDAE) with five different tasks (Task-1: Positive COVID-19/Negative 
COVID-19; Task-2: Positive cough of COVID-19/Negative cough of COVID-19; Task-
3: Positive cough of COVID-19/Negative COVID-19 Asthma Cough; Task-4: Asthma 
Breath/Healthy Breath; Task-5: Asthma cough/Normal Cough) and previous models with 
three different tasks (Task-1: Positive COVID-19/Negative COVID-19; Task-2: Positive 
cough of COVID-19/Negative cough of COVID-19; Task-3: Positive cough of COVID-
19/Negative COVID-19 Asthma Cough). 

The detection of sound features is not required for preprocessing compared to the traditional 
method for any duration of the respiratory sound. Therefore, the respiratory sound can be specifically 
entered into the classification networks. In this analysis, the implementation of the 1D Convolutional 
model network rather than the 2D convolutional model greatly enhances the opportunity of the entire 
system model to interpret COVID-19 respiratory sound signals. The proposed model will obtain 
accurate identification output based on respiratory sound signal features without the use of reference 
X-ray or CT scan images. The framework developed in this work may be used for normal everyday 
life assessments or medical centers for the general public. If a disorder occurs, it is essential to visit 
the clinic for any further testing. Restricted by the sample size obtained, this approach can only 
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identify respiratory disorders such as asthma, COVID-19 positive, and COVID-19 negative 
symptoms at current. Thus, it has never been used in clinical practice but can be used for early 
detection of respiratory disease. In the future, we will further develop algorithms and sample 
selection for use in clinical practice. 

Table 6. The comparative analysis of the proposed model with previous audio 
classification models on different respiratory sound data in recent years. 

Model Dataset Modality Accuracy (%) 
DCT + MFCC [28] Clinical Dataset 1 Cough 58.60 

Clinical Dataset 1 71.80 
MFCC + ResNet50 [30] MIT open voice Data Cough + Voice 79.2 
DCT + MFCC [17] COVID-19 Sample sound data 

collected from Android App. 
Cough + Breath + Voice 79 

BI_at_GRU [3] Sample data Collected from Ruijin 
Hospital 

Breath + Thermal Video 83.69 

DTL-MC [4] COVID-19 Sample sound data 
collected from Android App. 

Cough + Voice 88.76 

SVM + PCA [23] COVID-19 Crowdsourced Data Cough + Breath + Voice Task-I: 80% 
Task-II: 82% 
Task-III: 80% 

VGG Net [23] COVID-19 Crowdsourced Data Cough + Breath + Voice Task-II: 87% 
Task-III: 88% 

1D CNN with Augmentation and 
DDAE (Proposed) 

COVID-19 Crowdsourced Data Cough + Breath + Voice Task-I: 90% 
Task-II: 88% 
Task-III: 88% 
Task-IV: 84% 
Task-V: 86% 

5. Conclusions 

Artificial Intelligence (AI) based models entered into the real-world to diagnosis the COVID-19 
symptoms from human-generated sounds such as voice/speech, cough, and breath. The CNN 
(Convolutional Neural Network) model was used to solve many real-world problems with Artificial 
Intelligence (AI) based machines. In this work, we proposed a 1D (one-dimensional) CNN 
(Convolutional Neural Network) to diagnose COVID-19 disease with human respiratory sounds 
collected from the COVID-19 sounds crowdsourced dataset. A Data De-noising Auto Encoder 
(DDAE) was adopted to extract the acoustic sound signals in-depth features instead of traditional 
MFCC. As a result, around 4% accuracy is achieved than traditional MFCC. We have classified 
COVID-19 sounds, asthma sounds, and regular healthy sounds using a 1D CNN classifier and shown 
around 90% accuracy to detect the COVID-19 disease from respiratory sounds. The proposed model 
improves efficiently to classify COVID-19 sounds for detecting COVID-19 positive symptoms. We 
will use the deep convolutional model with multi-feature channels on this COVID-19 crowdsource 
sounds dataset to enhance better performance in future work. 
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