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1. Introduction

In December 2019, the world is facing the emergence of a new pandemic, which is called coronavirus
disease 2019 (COVID-19). Then, COVID-19 spreads to world widely over the first two months in 2020.
There were 492,510 confirmed cases of COVID-19 infection and 22,185 dead cases in world [1, 2].
Therefore, it poses a continuing threat to human health because of its high transmission efficiency and
serious infection consequences as well, it transmits by direct contact. Many researchers have tried to
study and understand the dynamical behavior of COVID-19 through the transmission dynamics and
calculate the basic reproduction number of COVID-19. It has become a key quantity to determine
the spread of epidemics and control it. For example, in [3], Li et al. conducted a study of the first
425 confirmed cases in Wuhan, China, showing that the reproduction number of COVID-19 was 2.2,
and revealed that person to person transmission occurred between close contacts. Other research [4]
shows that the reproduction number of COVID-19 becomes 2.90, which is being increasing. In [5],
Riou et al. studied pattern of early human to human transmission of COVID-19 in Wuhan, China.
In [6], Hellewell et al. investigated the feasibility of controlling 2019-nCoV outbreaks by isolation
of cases and contacts. Chen et al.[7], suggested mathematical model for simulation the phase-based
transmissibility of novel coronavirus. Bentout et al. [8] developed an susceptible exposed infectious
recovered model to estimation and prediction for COVID-19 in Algeria. Belgaid et al.[9] suggested
and analysis of a model for Coronavirus spread. Owolabi et al. [10] proposed and analyzed a nonlinear
epidemiological model for SARS CoV-2 virus with quarantine class. Flaxman et al. [11] suggested
and estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Kennedy et
al. [12] suggested a mathematical model involving the effects of intervention strategies on COVID-19
transmission dynamics. Feng et al. [13] studied a COVID-19 model with the effects of media and
quarantine in UK. In this present study, we will show effects of the quarantine strategy and media reports
on the spread of COVID-19.

We propose a mathematical model for COVID-19 transmission dynamics with the quarantine strategy
and media effects. We start the model formulation by denoting the total size of the population by N
which is classified further into five classes, the susceptible S (t), the exposed E (t) , the infected I (t) , the
hospital quarantined Q (t) and the recovery R (t) at any time t, So, N = S + E + I + Q + R. The exposed
class means low-level virus carrier, which is considered to be non infectious. The quarantined class in
which the individual who is in the process in hospital, we suppose that only those who treat it will be in
contact with the infected population. Accordingly, the flow of corona virus pandemic along with the
above assumptions can be representing in the following block diagram:
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Figure 1. Flow diagram of the compartmental model of COVID-19.

And the corresponding dynamical model has formulated through the nonlinear differential equations
as follows,

dS (t)
dt

= A −
(
β1 − β2

I
m + I

)
S I − dS ,

dE(t)
dt

= (1 − c)
(
β1 − β2

I
m + I

)
S I − k

(
β1 − β2

I
m + I

)
EI − dE,

dI(t)
dt

= c
(
β1 − β2

I
m + I

)
S I + k

(
β1 − β2

I
m + I

)
EI − (ε + γ1 + d + µ) I,

dQ(t)
dt

= εI − (d + γ2) Q,
dR(t)

dt
= γ1I + γ2Q − dR,

(1)

with initial conditions

S (0) > 0, E (0) > 0, I (0) > 0, Q (0) > 0, R(0) > 0. (2)

In model (1), the birth rate A is taken into susceptible class and natural death rate of population is
given by the parameter d. The susceptible will be infected through sufficient direct contacts with infected
people in the absence of media alerts by β1, with fraction parameter c, where c ∈ [0, 1] . The term β2

I
m+I

reduce the transmission as media continuously alert the susceptible and exposed regarding infected
cases and possible preventive measures. Usually, we assume that β1 ≥ β2. As well, we consider the
media awareness cannot stop the outbreak of COVID-19 but can aware the population to minimize the
transmission risk through half saturation of media constant m. The death due to disease rate µ affecting
from infected class only. k represent to a fraction denoting the level of exogenous re-infection. The
quarantined rate is given by ε. And the mean recovery rates of class I, Q are γi, i = 1, 2, respectively.

It is easy see that the 4th and 5th equations are a linear differential equation with respect to variables
I(t) and R(t), which are not appear in the other equations of model (1). Hence model (1) can be reduced
to the following model:

dS (t)
dt

= A −
(
β1 − β2

I
m + I

)
S I − dS ,

dE(t)
dt

= (1 − c)
(
β1 − β2

I
m + I

)
S I − k

(
β1 − β2

I
m + I

)
EI − dE,

dI(t)
dt

= c
(
β1 − β2

I
m + I

)
S I + k

(
β1 − β2

I
m + I

)
EI − (ε + γ1 + d + µ) I.

(3)
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In this paper, we will discuss the dynamics of model (3) with initial conditions

S (0) > 0, E(0) > 0, I(0) > 0. (4)

This paper is organized as follows. In section 2, we will build the basic properties of model such as
(positivity, boundedness of solutions and basic reproduction number). Existence of equilibrium points is
presented in section 3. In section, the phenomenon of backward bifurcation is considered. The local and
global stability of equilibrium points are studied in sections 4. In section 5, numerical simulation results
are given. We conclude this paper with a brief conclusion.

2. Basic properties of model (3)

2.1. Positivity of solutions

On the positivity of solutions for model (3), we have the following result.
Theorem 2.1 Every solution of (3) with initial values (4) is positive as t > 0.

Proof. Let t1 = sup{t > 0 : S (t) > 0, E(t) > 0, I(t) > 0} > 0. It follows (3) that

dS (t)
dt

= A −
(
β1 − β2

I
m + I

)
S I − dS , (5)

which can be written as

d
dt
{S (t) exp[dt +

∫ t

0
(β1 − β2

I(τ)
m + I(τ)

)S (τ)I(τ)dτ]}

= A exp[dt +

∫ t

0
(β1 − β2

I(τ)
m + I(τ)

)S (τ)I(τ)dτ].
(6)

thus,

S (t1) exp[dt1 +

∫ t

0
(β1 − β2

I(τ)
m + I(τ)

)S (τ)I(τ)dτ] − S (0)

=

∫ t1

0
A exp[dy +

∫ y

0
(β1 − β2

I(τ)
m + I(τ)

)S (τ)I(τ)dτ]dy,
(7)

so that

S (t1) = S (0) exp[−dt1 −

∫
1

0
(β1 − β2

I(τ)
m + I(τ)

)S (τ)I(τ)dτ]

+ exp[−dt1 −

∫
1

0
(β1 − β2

I(τ)
m + I(τ)

)S (τ)I(τ)dτ]

×

∫ t1

0
A exp[dy +

∫ y

0
(β1 − β2

I(τ)
m + I(τ)

)S (τ)I(τ)dτ]dy > 0.

(8)

Similarly, it can be shown that E(t) > 0 and I(t) > 0 for all time t > 0. Hence all solutions of the
model (3) remain positive for all non-negative initial conditions, as required.

2.2. Boundedness

Theorem 2.2 All solutions of model (1) which initiate in R5
+ are uniformly bounded.
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Proof. Define the function N (t) = S (t) + E (t) + I (t) + Q (t) + R (t) and then take the time derivative of
N (t) along the solution of model (1) gives dN

dt ≤ A−LN. Then, dN
dt +LN ≤ A, where L = min{d, d + µ} .

Now, it is easy to verify that the solution of the above linear differential inequalities can be written as

N (t) ≤
A
L

+ (N0 −
A
L

)e−Lt, (9)

where N0 = (S (0) , E (0) , I (0) ,Q (0) ,R (0)). Hence,

lim sup
t→∞

N(t) ≤
A
L
. (10)

and N(t) ≤ A
L for ∀t > 0. Thus all solutions are uniformly bounded and the proof is complete.

2.3. Basic reproduction number

It is easy to see that model (3) always has a disease-free equilibrium P0(S 0, 0, 0), where S 0 = A
d . We

can calculate the reproduction number R0 of model (3) by using the next-generation matrix method
illustrated by van den Driessche and Watmough in [14].

R0 =
cβ1A

d (ε + γ1 + d + µ)
. (11)

Consequently, from Theorem 2 of [14], we have the following result.
Theorem 2.3 The disease-free equilibrium P0 of the model (3) is locally asymptotically when R0 < 1
and P0 is unstable when R0 > 1.

The basic reproduction number for COVID-19 infection R0 measures the average number of new
COVID-19 infections generated by a single infected individual in a completely susceptible population
[14, 15]. Theorem 2.3 implies that COVID-19 can be eliminated from the community (when R0 < 1) if
the initial sizes of the sub-populations of the model (3) are in the attraction basin of the disease-free
equilibrium P0. To ensure that COVID-19 elimination is independent of the initial sizes of the sub-
populations, it is necessary to show that the disease-free equilibrium P0 is globally asymptotically stable
when R0 < 1.

3. Existence the COVID-19 equilibria point and backward bifurcation

In this section, we consider the number of equilibrium solutions the model (3). To do so, let
P∗(S ∗, E∗, I∗) be any arbitrary equilibrium of the model (3). Setting the right sides of the model (3) to
zero gives

S ∗ =
A

X∗I∗ + d
,

E∗ =
(1 − c) AX∗I∗

(kXI∗ + d)(X∗I∗ + d)
.

(12)

here

X∗ = β1 − β2
I∗

m + I∗
. (13)
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Since we assume β1 > β2, S ∗ and E∗ are positive. now, substituting (12) in 3rd equation of the model
(3) and simplifying it, we get

D1I∗4 + D2I∗3 + D3I∗2 + D4I∗ + D5 = 0, (14)

where

D1 = −k(ε + γ1 + d + µ)(β1 − β2)2,

D2 = kA(β1 − β2)2 − (ε + γ1 + d + µ)(β1 − β2)[d(k + 1) + 2kmβ1],
D3 = A(β1 + β2)(2kmβ1 + cd) − (ε + γ1 + d + µ)[md(k + 1)(2β1 + β2) + d2 + kβ2

1m2],
D4 = kAβ2

1m2 + cdA[β1(m + 1) − β2 − md(ε + γ1 + d + µ)(2d + mβ1),
D5 = d2m2(ε + γ1 + d + µ)(R0 − 1).

(15)

From (15), we can find that D1 < 0. And D5 > 0 when R0 > 1, D5 < 0 when R0 < 1. Thus, the
number of possible positive real roots the polynomial (12) can have depends on the signs of D2, D3 and
D4. Let f (x) = D1x4 + D2x3 + D3x2 + D4x + D5. The various possibilities for the roots of f (x) can be
analyzed using the Descartes Rule of Signs. The various possibilities for the roots of f (x) are tabulated
in Table 1.

Table 1. Number of possible positive real roots of equation (14).

Cases D1 D2 D3 D4 D5 R0
Number of
sign changes

Number of possible
positive real roots

1
−

−

+

+

+

+

+

+

+

−

R0 > 1
R0 < 1

1
2

1
0,2

2
−

−

+

+

+

+

−

−

+

−

R0 > 1
R0 < 1

3
2

1,3
0,2

3
−

−

+

+

−

−

+

+

+

−

R0 > 1
R0 < 1

3
4

1,3
0,2,4

4
−

−

+

+

−

−

−

−

+

−

R0 > 1
R0 < 1

3
2

1,3
0,2

5
−

−

−

−

+

+

+

+

+

−

R0 > 1
R0 < 1

1
2

1
0,2

6
−

−

−

−

+

+

−

−

+

−

R0 > 1
R0 < 1

3
2

1,3
0,2

7
−

−

−

−

−

−

+

+

+

−

R0 > 1
R0 < 1

1
2

1
0,2

8
−

−

−

−

−

−

−

−

+

−

R0 > 1
R0 < 1

1
0

1
0

Theorem 3.1 The model (3)
(i) has a unique endemic equilibrium if R0 > 1 and whenever Cases 1, 5, 7 and 8 are satisfied;
(ii) could have more than one endemic equilibrium if R0 > 1 and Cases 2, 3, 4 and 6 are satisfied;
(iii) could have 2 or more endemic equilibria if R0 < 1 and Cases 1–7 are satisfied.
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From the 4th and 5th equations of model (1) we can determent the values of Q∗ and R∗ through

Q∗ =
εI∗

d + γ2
,

R∗ =
γ1I∗ + γ2Q∗

d
.

(16)

The existence of multiple endemic equilibria when R0 < 1 suggests the possibility of backward
bifurcation [16], where the stable disease-free equilibrium co-exists with a stable endemic equilibrium
when R0 < 1. This is can be obtained using Centre Manifold Theory.

Theorem 3.2 The model (3) exhibits backward bifurcation whenever m > (1−c)2Aβ2
d2 and no backward

bifurcation otherwise.

Proof. To prove existence of backward bifurcation in the model (3) the Center Manifold approach as
outlined by Castillo-Chavez and Song in [17] is used.

Firstly, for clarity and understanding of the Center Manifold Theory the model (3) variables are
transformed as follows x1 = S , x2 = E, x3 = I. Define X = (x1, x2, x3)> (> denotes transpose), such
that the model (3) can be rewritten as dX

dt = F(X) where F = ( f1, f2, f3). Hence,

dx1(t)
dt

= f1 = A −
(
β1 − β2

x3

m + x3

)
x1x3 − dx1,

dx2(t)
dt

= f2 = (1 − c)
(
β1 − β2

x3

m + x3

)
x1x3 − k

(
β1 − β2

x3

m + x3

)
x2x3 − dx2,

dx3(t)
dt

= f3 = c
(
β1 − β2

x3

m + x3

)
x1x3 + k

(
β1 − β2

x3

m + x3

)
x2x3 − (ε + γ1 + d + µ) x3.

(17)

Now let β1 = β∗1 be the bifurcation parameter. Observe that at R0 = 1,

β1 = β∗1 =
d (ε + γ1 + d + µ)

cA
. (18)

With β1 = β∗1 the transformed model equation (17) has a simple eigenvalue with zero real part and
all other eigenvalues are negative (that is has a hyperbolic equilibrium point). Thus, Center Manifold
Theory can be applied to investigate the local dynamics of the transformed system (17) near β1 = β∗1.
Now the Jacobian matrix of the transformed system evaluated at COVID-19 free equilibrium P0 is
obtained as

J(P0) =


−d 0 β1S 0

0 −d (1 − c)β1S 0

0 0 cβ1S 0 − (ε + γ1 + d + µ)

 . (19)

It is easy to obtain the right eigenvectors of this Jacobian matrix as V = (v1, v2, v3)>, where
(v1, v2, v3)> = (β1S 0

d , (1−c)β1S 0
d , 1). Similarly, it is possible to obtain the left eigenvectors which are

denoted by W = (w1,w2,w3) = (0, 0, 1). Now proceeding to obtain the bifurcation coefficients a and b
as defined in Theorem 4.1 in [17].

First the non-vanishing partial derivatives of the transformed model (17) evaluated at COVID-19
free equilibrium are obtained as

∂2 f1

∂x1∂x3
=

∂2 f1

∂x3∂x1
=

m
β2
− β1,

∂2 f1

∂x2
3

=
2βS 0

m
, (20)
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∂2 f2
∂x1∂x3

=
∂2 f2
∂x3∂x1

= (1 − c)β1,
∂2 f2
∂x2∂x3

=
∂2 f2
∂x3∂x2

= −kβ1,
∂2 f2
∂x2

3
= −2(1 − c)β2S 0

m , ∂2 f3
∂x1∂x3

=
∂2 f3
∂x3∂x1

= cβ1,
∂2 f3
∂x2

3
= −

2cβ2
m ,

(21)

so that

a =
3∑

k,i, j=1
wkviv j

∂2 fk
∂xi∂x j

= 2w3v1v3
∂2 f3

∂x1∂x3
+ w3v2

3
∂2 f3

∂x2
3

=
2cβ2

1S 0

d2 (1 −
(1 − c)2β2S 0

dm
).

(22)

The sign of the bifurcation parameter b is associated with the following non-vanishing partial
derivatives of F(X), also evaluated at the disease free equilibrium P0:

∂2 f1

∂x3∂β1
= −S 0,

∂2 f2

∂x3∂β1
= (1 − c)S 0,

∂2 f3

∂x3∂β1
= cS 0. (23)

The bifurcation coefficient b is obtained as

b =
3∑

k,i=1
vkwi

∂2 fk
∂xi∂β1

= v1w3
∂2 f1

∂x3∂β1
+ v2w3

∂2 f2

∂x3∂β1
+ v3w3

∂2 f3

∂x3∂β1

= cS 0(1 +
(2 − cβ1)A

d2 ) > 0.

(24)

Obviously, b is always positive. From Theorem 3.2 the system (17) will exhibit backward bifurcation
phenomena if the bifurcation coefficient a is positive. The positivity of a in (22) gives the condition for
backward bifurcation, which leads to

m >
(1 − c)2Aβ2

d2 . (25)

4. Stability analysis

In this section, the stability analysis of the all equilibrium points of model (3) studied as shown in
the following theorems by used some criterion.

Theorem 4.1 The COVID-19 equilibrium point P∗ of the model (3) is locally asymptotically if the
following conditions are hold

β2
I∗ (2m + I∗)

(m + I∗)2 < β1, (26)

[(
β1 − β2

I∗(2m + I∗)
(m + I∗)2

)
((1 − c) S ∗ − kE∗)

]
+

d(d − 1 + k)
k

< XI∗ <
cd

k (1 − c) − c
. (27)

Proof. The Jacobian matrix of model (3) at P∗ can be written as
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J(P∗) =


a11 0 a13

a21 a22 a23

a31 a32 0

 , (28)

here
a11 = −(XI∗ + d ), a13 =

β2S ∗I∗(2m+I∗)
(m+I∗)2 − β1S ∗,

a21 = (1 − c) XI∗, a22 = −(kXI∗ + d),
a23 = (1 − c)

(
β1S ∗ − β2S ∗I∗(2m+I∗)

(m+I∗)2

)
− k

(
β1E∗ − β2E∗I∗(2m+I∗)

(m+I∗)2

)
,

a31 = cXI∗, a32 = kXI∗.

(29)

clearly, the characteristics equation of J (P∗) is given by
λ3 + B1λ

2 + B2λ + B3 = 0, (30)

where
B1 = − [a11 + a22] ,
B2 = a11a22 − a13a31 − a23a32,

B3 = − [a11 (−a23a32) + a13(a21a32 − a22a31)] .
(31)

furthermore, we have that

∆ = B1B2 − B3

= −a11a22 [a11 + a22] + a11a13a31 + a22a23a32 + a13a21a32.
(32)

Now, according to Routh-huewitz criterion P∗ will be locally asymptotically stable provided that
B1 > 0, B3 > 0 and ∆ > 0. It is clear that if above conditions (26)–(27) hold.

The purpose of this section is to investigate the global stability by using Lyapunov function for
COVID-19 free equilibrium point and COVID-19 equilibrium point respectively. We obtain the result in
the following theorems

Theorem 4.2 The disease-free equilibrium P0 is globally asymptotically stable provided that the
following condition holds:

R0

c
< 1. (33)

Proof. Consider the following function

V0 (S , E, I) =

(
S − S 0 − S 0ln

S
S 0

)
+ E + I. (34)

clearly, V0 : R3
+ → R is a continuously differentiable function such that V0 (S 0, 0, 0) = 0 and

V0 (S , E, I) > 0, ∀ (S , E, I) , (S 0, 0, 0). Further, we have
dV0
dt =

(
S−S 0

S

) [
A −

(
β1 − β2

I
m+I

)
S I − dS

]
+

[
(1 − c)

(
β1 − β2

I
m+I

)
S I − k

(
β1 − β2

I
m+I

)
EI − dE

]
+

[
c
(
β1 − β2

I
m+I

)
S I + k

(
β1 − β2

I
m+I

)
EI − (ε + γ1 + d + µ)I

]
.

(35)

now, by doing some algebraic manipulation and using the condition (33), we get

dV0

dt
≤ −

d
S

(S − S 0)2
− β2S 0

I2

m + I
− dE −

[
(ε + γ1 + d + µ) − β1S 0

]
I. (36)
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Obviously, dV0/dt = 0 at P0 = (S , 0, 0), moreover dV0/dt < 0 otherwise. Hence dV0/dt is negative
definite and then the solution starting from any initial point satisfy the condition (33), will approaches
asymptotically to COVID-19 free equilibrium point. Hence the proof is complete.

Theorem 4.3 P∗ in case i of Th. (3.1) is globally asymptotically stable if R0 > 1.

Proof. At the COVID-19 equilibrium point P∗ = (S ∗, E∗, I∗), S ∗, E∗ and I∗ satisfies the following
equations

A −
(
β1 − β2

I
m+I

)
S I − dS = 0,

(1 − c)
(
β1 − β2

I
m+I

)
S I − k

(
β1 − β2

I
m+I

)
EI − dE = 0,

c
(
β1 − β2

I
m+I

)
S I + k

(
β1 − β2

I
m+I

)
EI − (ε + γ1 + d + µ)I = 0

(37)

By above equations (4.4) and assumptions

S
S ∗

= x,
E
E∗

= y,
I
I∗

= u

we obtian

ẋ = x
[

A
S ∗

(
1
x − 1

)
− β1I∗(u − 1) +

β2I2∗

m+I∗

(
u2(m+I∗)

m+I − 1
)]

ẏ = y
{
(1 − c)

[
β1S ∗I∗

E∗

(
xu
y − 1

)
−

β2S ∗I2∗

(m+I∗)E∗

(
(m+I∗)xu2

(m+I)y − 1
)]
− kβ1I∗(u − 1) +

kβ2I2∗

m+I∗

(
(m+I∗)u2

m+I − 1
)}

u̇ = u
[
cβ1S ∗(x − 1) − cβ2S ∗I∗

m+I∗

(
(m+I∗)xu

m+I − 1
)

+ kβ1E∗(y − 1) − kβ2E∗I∗

m+I∗

(
(m+I∗)yu

m+I − 1
)] (38)

now, define the Lyapunov function

V1 = S ∗(x − 1 − lnx) + E∗(y − 1 − lny) + I∗(u − 1 − lnu) (39)

clearly, by derivative of V1 we get

dV1

dt
= S ∗

x − 1
x

ẋ + E∗
y − 1

y
ẏ + I∗

u − 1
u

u̇

dV1
dt = (x − 1)

[
A

(
1
x − 1

)
− β1S ∗I∗(u − 1) +

β2S ∗I2∗

m+I∗

(
u2(m+I∗)

m+I − 1
)]

+(y − 1)
{
(1 − c)

[
β1S ∗I∗

(
xu
y − 1

)
−

β2S ∗I2∗

m+I∗

(
(m+I∗)xu2

(m+I)y − 1
)]

+
kβ2E∗I2∗

m+I∗

(
(m+I∗)u2

m+I − 1
)}

+(u − 1)
[
cβ1S ∗I∗(x − 1) − cβ2S ∗I2∗

m+I∗

(
(m+I∗)xu

m+I − 1
)
−

kβ2E∗I2∗

m+I∗

(
(m+I∗)yu

m+I − 1
)]

furthermore, by simplifying the resulting terms, we get that

= A[2 − x − 1
x ] + β1S ∗I∗[x + u − c(x + u) − (1 − c)(y + xu

y )]

−
β2S ∗I2∗

m+I∗

[
x − y(1 − c) − cu + (u2 − (1 − c) xu2

y − cxu)
(

m+I∗
m+I

)]
−

kβ2E∗I2∗

m+I∗

[
y − u + (u2 − uy)

(
m+I∗
m+I

)]
Since the arithmetical mean is greater than, or equal to the geometrical mean, then 2 − x − 1

x ≤ 0 for
x > 0 and 2 − x − 1

x = 0 if and only if x = 1; x + u − c(x + u) − (1 − c)(y + xu
y ) ≤ 0 for x, y, u > 0 and

x + u − c(x + u) − (1 − c)(y + xu
y ) = 0 if and only if x=y=u=1; y − u + (u2 − uy)

(
m+I∗
m+I

)
≤ 0 for y, u > 0

and y − u + (u2 − uy)
(

m+I∗
m+I

)
= 0 if and only if y = u = 1. Therefore, V̇1 ≤ 0 for x, y, u > 0 and V̇1 = 0

if and only if x = y = u = 1, the maximum invariant set of model (3) on the set
{
(x, y, u) : V̇1 = 0

}
is

the singleton (1,1,1). Thus, the COVID-19 equilibrium point P∗ is globally asymptotically stable if
R0 > 1,by LaSalle Invariance Principle [18]. Hence, the proof is complete.
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5. Numerical simulation

For the parameters values of model (1.1), we can chosen the parameters values from real data
available sense Feb. 24 2020 to Apr. 5 2020. The total population of the Iraq for the year 2020 is
approximately 40 × 106 [19]. The life expectancy in Iraq is approximatily 71.08 [19]. Clearly, we can
obtain that the natural death rate d = 3.8545 × 10−5 per day. The birth rate is estimated from A/d = N,
and assumed that this is to be the bound population in the disease absence. So, A = 1541.8 per day and
the other parameters of our model shows that in Table 2.

Table 2. Definitions and values of model parameters.

Parameter Definition Value Source

A Birth rate 1541.8 [19]
β1 Transmission contact rate between S and I 0.5 Estimated
c Fraction constant [0–1] Estimated
β2 Awareness rate 0.1 Estimated
m Half saturation of media constant 70 Estimated
d Natural death rate 3.8545×10−5 [19],[20]
k Fraction denoting the level of exogenous re-infection 0.05 Estimated
ε Quarantined rate 1/7 [13]
γ1 Recovery rate from infected wihout quarantin strategy 0.033 Estimated
γ2 Recovery rate from quarantin class 1/18 [13]
µ Death due to disease rate 0.38 [19]

We plot the solution trajectories of model (1) with initial point (15, 20, 500, 1000, 150) which
converges to COVID-19 equilibrium point P∗ = (1, 27, 2773, 5428, 19371), shown that in Figure 2.

Figure 2. Solution trajectories converge to COVID-19 equilibrium point P∗ = (1, 27, 2773, 5428, 19371),
by parameter value in Table 2.
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Table 3. Different government control measures and corresponding β1 values.

No. Date Government measures β1

1 Feb. 24 2020
(1) detection of the first case of COVID-19
in Iraq
(2) quarantined as preliminary control

0.3

2 Feb. 25 2020

(1) medical examination for all individuals
who are in contact with the affected case
(2) cancellation of some mass gatherings
(3) increase the awareness programs about
prevention measures

0.1

3 Feb. 25-Mar. 24 2020

(1) cancellation of all religious and social
events throughout Iraq
(2) preventing movement between all provinces
(3) the suspension of attendance at universities
and schools
(4) providing a number of hospitals to be places for
prevention confirmed cases

0.09

4 Mar. 24-Apr. 5 2020

(1) close all borders with neighboring
countries
(2) to declare a state of emergency
and impose a curfew
(3) medical support from the government
(4) methodological improvement on
the diagnosis and treatment strategy
(5) spontaneous household quarantine by citizens
(6) more newly-hospitals put into use
(7) massive online teaching in postponed semester
(8) addition of new diagnosis method
clinically diagnosis in Baghdad
and some provinces

0.08
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In the face of the COVID-19 outbreak, many stringent measures were taken by Iraqi government
present in Table 3, to simulate the impact of different government control measures on the number of
all S (t), E(t), I(t),Q(t) and R(t). We assumed that some values to contact rates with awareness Table 3,
with the other parameters in Table 2 staying still on the all stages.

The following Figure 3 shows the values of S (t), E(t), I(t),Q(t) and R(t) under government measures
that above to control of COVID-19 outbreak.
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Figure 3. Time series to value simulation curve of different values of contact rates
β1 = 0.3, 0.1, 0.09, 0.08 respectively with keeping other parameters values are taken in Table 2.

Clearly, from above figure for effect of contact rate Table 3, We obtain that in case decrease the
contact rate (social isolation) the reproduction number less than one and the dynamical behavior of
model (1.1) still approaches to COVID-19 equilibrium point. Hence, the backward bifurcation is occur.
Now, to investigate the effect of the quarantined strategy it is given by ε on the dynamical behavior of
model (1.1) and to control to COVID-19 outbreak in Iraq. We study the impact of this parameter on
values of S (t), E(t), I(t),Q(t) and R(t) in follows Table 4 and shows the results in Figure 4.
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Table 4. Different government control measures and corresponding ε values.

No. Date Government measures ε

1 Feb. 24 2020
(1) quarantined as preliminary control in
Iraq

0.2

2 Feb. 25 2020

(1) medical examination for all individuals
who are in contact with the affected case
(2) cancellation of some mass gatherings
(3) increase the awareness programs about
prevention measures

0.4

3 Feb. 25-Mar. 24 2020

(1) direct the media to explain the symptoms
of the epidemic
(2) Preventing movement between all provinces
(3) Providing a number of hospitals to be places
for prevention confirmed cases

2.5

4 Mar. 24-Apr. 5 2020

(1) to declare a state of emergency and impose
a curfew to reduce the contact between people
(2) medical support from the government
(3) methodological improvement on the
diagnosis and treatment strategy
(4) spontaneous household quarantine by citizens
(5) addition of new diagnosis method clinically
diagnosis in Baghdad and some provinces

4.5

The following Figure 4 shows the values of S (t), E(t), I(t),Q(t) and R(t) under government measures
that above to control of COVID-19 outbreak.
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Figure 4. Time series to value simulation curve of different values of quarantined rates
ε = 0.2, 0.4, 2.5, 4.5 respectively with keeping other parameters values are taken in Table 2.

Clearly, from above investigate to impact of the quarantined strategy Table 4, when the quarantine
strategy increasing we get the number of infected is decrease and other classes are increase. Here,
we ask whether the quarantine strategy is the best solution? The answer is possible, but for specific
numbers. Whereas, if the quarantine is more than the capacity of the health institutions. We get the
dynamical behavior of model (1.1) lose the stability as shown in Figure 5.
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Figure 5. Time series to value simulation curve of different values of quarantined rates 20.5 ≤ ε ≤ 30.5.
With keeping other parameters values are taken in Table 2.

6. Discussion and results

In this research, a mathematical model of COVID-19 transmission has been proposed by compartment
the total population into five epidemiological status, namely, susceptible S (t), exposed E(t), infected I(t),
quarantine Q(t) and recovered R(t). The model incorporates the impact of social awareness programs
conducted by public health officials with quarantine strategy in hospital. It has been noticed that these
awareness programs and quarantine strategy result in human behavioral changes in order to avoid risk
of disease transmission. The model mainly accounts for the reduction in disease class due to awareness.
While we can say the disease goes away due to applied the quarantine it well. The proposed model
has two biological equilibrium points are COVID-19 free and COVID-19. The COVID-19 free has
been local stability when R0 < 1. Otherwise when R0 > 1, the COVID-19 free point becomes unstable
and the dynamical behavior of the model converges to COVID-19 equilibruim point. The backward
bifurcation occur if R0 = 1 at the parameter bifurcation β1 = β∗1 = d (ε + γ1 + d + µ) /cA. As well as the
different government control measures have been also discussed. Furthermore, to shown and understand
the effect of quarantine rate of disease we have choosed many different value of it say parameter then
we have obtained some different results see Table 4 and Figure 4.
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