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Abstract: Neurons are especially vulnerable because of their high metabolic activity and limited 

ability to repair damaged DNA. Oxidative genotoxic stress (OGS), which arises from the buildup of 

short-lived, highly reactive molecules called reactive oxygen species (ROS), can damage neuronal 

DNA and compromise antioxidant defense mechanisms in neurons. OGS induces considerable forms 

of DNA damage, including genomic instability, DNA strand breaks (single or double), DNA base 

modifications such as 8-oxoguanine, and epigenetic changes, leading to compromised neuronal 

functions. Moreover, OGS is a silent player in mitochondrial DNA damage and mitochondrial 

dysfunction. Therefore, ROS-mediated OGS is pivotal for initiating and advancing several 

neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinsonism (PD), and Huntington’s 

disease (HD). However, there is a significant gap in deciphering the molecular pathways involved in 

OGS-mediated development of neurodegenerative diseases. Hence, this study focused on the 

molecular mechanisms by which OGS causes neurodegeneration, with a focus on the contributions of 

neuroinflammation, mitochondrial dysfunction, and defective DNA repair pathways. Additionally, 

new therapeutic approaches, such as mitochondrial-targeted medications, antioxidant therapies, gene 

editing tools such as CRISPR/Cas9, and biomarkers for the early diagnosis of these oxidative diseases, 

have been assessed. A thorough comprehension of these processes opens exciting possibilities for 

focused treatments in neurodegenerative illnesses. 
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1. Introduction  

Neurodegenerative disorders are characterized by the progressive deterioration of neuronal cells 

and the eventual loss of neurons, leading to a gradual decline in the cognitive and motor functions of 

the central nervous system (CNS). These conditions predominantly include Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), which 

represent the most prevalent forms within this category. The most commonly known form of AD is the 

predominant kind of illness globally, constituting 60%–80% of all dementia cases and impacting 

approximately 24 million individuals worldwide. A community-based study in the United States 

indicated that the prevalence may reach 50% among individuals over 85 years of age [1]. AD is the 

root cause of dementia in older adults because of the accumulation of microtubule-associated amyloid-

beta (Aβ) and tau protein neurofibrillary tangles in the brain, leading to progressive impairments in 

memory, thinking, and behavior. Posttranslational modifications of acetylation and 

hyperphosphorylation are the etiological factors of Aβ and tau protein production in AD patients. 

PD, a universally prevalent neurodegenerative disorder, has been implicated with OGS/ROS as a 

central pathomechanism. PD has more than doubled in 26 years, from approximately 2.5 million 

patients in 1990 to almost 6.1 million (5.0–7.3) in 2016. It is believed that population aging is partially 

responsible for this trend [2]. The neuropathology of PD is principally distinguished by the progressive 

degradation of dopaminergic neurons in the region of the brain called the substantia nigra pars 

compacta (SNpc) and the creation of Lewy bodies that are still alive. Aggregated forms of α-synuclein 

(α-syn) constitute the primary constituent of Lewy bodies, which are widely acknowledged as the 

fundamental mechanism responsible for this neurodegenerative process. In addition, multiple sclerosis 

(MS), another form of chronic and inflammatory neurodegenerative disease of the CNS, affects more 

than 2.8 million individuals globally [3]. 

OGS has emerged as a potential etiological agent for the development of neurodegenerative 

diseases. OGS arises from the overabundance of short-lived, highly reactive molecules, called reactive 

oxygen species (ROS), and defective antioxidant defense mechanisms in cells, thereby causing DNA 

damage in cells and leading to genetic mutations and other genetic abnormalities, including genomic 

instability, defective DNA repair pathways, and mitochondrial dysfunctions. Under normal 

physiological conditions, ROS production and bioclearance are strongly controlled by a balanced 

antioxidant equilibrium, which is maintained with a variety of antioxidant defenses, such as the use of 

enzymatic scavengers, such as catalase (CAT), superoxide dismutase (SOD), and glutathione 

peroxidase. Hence, the effects of ROS-mediated OGS on neurons play a vital role in disease 

development. In addition, genetic and environmental factors linked to age-related neurodegenerative 

and neuropsychiatric illnesses have been extensively studied. The accumulation of chronic DNA 

damage, the activation of DNA damage response (DDR) signaling, pathological neuronal cell death, 

and senescence (biological aging) are associated with genomic instability, a term for genetic mutations 

or alterations in nucleic acid sequences. Therefore, these neurodegenerative illnesses and mental 

disorders develop over time as these defensive responses, or DDR pathways, become dysregulated due 

to aging or environmental factors [4]. 

Neurotoxins, including microbial toxins, chemical pollutants, heavy metals, cigarette smoke, and 

harmful gases, are other contributing factors to OGS-mediated neurodegenerative diseases. For 

example, gliotoxin (GTX) and ochratoxin A (OTA), which are natural fungal toxins, cause significant 

ROS production and downregulation of antiapoptotic genes, including Bcl2, leading to micronucleus 
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formation, chronic neuronal inflammation, and impaired DNA repair with an aberrant cell cycle in 

neurons [5]. Micro and nanoplastics, which are toxic environmental pollutants with poor 

biodegradability, are another form of neurotoxin and are reported to cause significant oxidative stress, 

resulting in the dysfunction of biological and cellular processes, including apoptosis, endoplasmic 

reticulum stress, DNA damage, and inflammation in neurons [6]. 

In addition, lead toxicity, caused by the heavy metal lead (Pb), which is known to be a neurotoxin, 

also plays a vital role in ROS-mediated oxidative stress. Alterations in MDA and GSH levels, CAT 

activity, and altered expression of the hsp70 and ache genes indicate significant DNA damage in the 

brain [7]. Furthermore, genotoxic substances (such as chemicals and radiation) can harm DNA both 

chemically and structurally. In some situations, they have a severe impact on genome integrity by 

triggering the oxidation of DNA bases, which interferes with fundamental bioprocesses such as 

transcription, transduction, and replication, eventually leading to cell death [8]. For example, 

endogenous genotoxins, including reactive nitrogen species (RNS), aldehydes, and alkylators, cause 

persistent and relentless genetic damage through OGS [9]. Endogenous DNA damage arises from 

hydrolysis, oxidation, alkylation, and base mismatches, whereas exogenous DNA damage is caused by 

ionizing radiation (IR), UV, and different chemical substances [10].  

The mechanisms by which OGS influences neuronal susceptibility remain unclear, despite its 

significance in neurodegeneration. This review outlines the molecular pathways connecting oxidative 

stress-mediated OGS development with DNA damage and neurodegeneration. This study critically 

evaluates innovative therapies for enhancing DNA repair, enhancing mitochondrial protection, and 

exerting anti-inflammatory effects aimed at addressing oxidative DNA damage. This review integrates 

current knowledge to elucidate essential molecular insights and potential treatments for 

neurodegenerative diseases. 

2. Molecular cross-talk of OGS-induced DNA damage: A silent killer for neurons 

ROS and RNS are inescapable physiological byproducts that function as double-edged swords 

inside the biological framework, including nucleic acids, proteins, and lipids [11]. These compounds 

can enhance the function of signaling molecules under controlled conditions; however, when present 

in excess, they can damage the organic structure owing to their oxidizing properties. Neuronal tissue 

is resistant to ROS and RNS, with a unique response to DNA damage, regulation of the immune system, 

and control of inflammatory pathways. In neurodegenerative diseases, the whole system is disrupted, 

particularly by OGS-induced DNA damage, including DNA base changes, strand breakage, and abasic 

sites in neurons. Major DNA base modifications produced by oxidative stress include 8-oxoguanine 

(8-oxoG) and DNA strand breaks (single- or double-stranded). 8-oxoG is the most frequent biomarker 

for 8-oxo-7,8-dihydroguanine, the main guanine oxidation product found in genomic DNA. When 

ROS are created inside cells and react with DNA, 8-oxoG is produced at a rate of at least several 

hundred lesions per human cell per day, even under typical physiological circumstances [12]. This rate 

increases even more when there is reactive stress [13], resulting in the erroneous pairing of 8-oxoG 

with adenine (A), leading to an elevated frequency of replication errors. In addition, after a base is 

excised from DNA, a gap is created, which is called an abasic site or an AP (apurinic/apyrimidic) site. 

The inability of DNA repair mechanisms to effectively address severe damage loads results in multiple 

adverse outcomes. 
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The misincorporation of dATP by DNA polymerases, influenced by lesion templates, results in 

DNA alterations, especially in individuals with a mutated MUTYH gene, which is responsible for 

removing adenine bases from 8-oxoG/A mispairs [14]. The second detrimental consequence of 

chromosomal biomarkers is the erroneous bypass of the lesion by RNA polymerase II complexes during 

transcription, leading to RNA mutagenesis and the subsequent synthesis of abnormal proteins [15]. 

Ultimately, 8-oxoG reduces the transcriptional output of the affected gene even when a solitary lesion 

is adequate to elicit a substantial impact (8-oxoG reduces the transcriptional output by stalling RNA 

polymerase II during elongation and promoting mispairing with adenine, which leads to transcriptional 

mutagenesis). In addition, the recruitment of base excision repair proteins to the lesion competes with 

the transcription machinery, further lowering gene expression [16]. Single-strand breaks (SSBs) are 

the predominant type of DNA lesion resulting from base hydrolysis and oxidative degradation [17,18]. 

Although they occur infrequently, stochastic mistakes during DNA replication can result in single-

nucleotide changes, and ROS can induce oxidative DNA lesions such as 8-oxoG [19]. Exogenously 

caused lesions can be both mutagenic and cytotoxic. For example, UV radiation causes helix-distorting 

lesions such as cyclobutane pyrimidine dimers [20]. The continuation of neuronal loss in a wide range 

of human neurodegenerative illnesses is attributed to DNA damage, specifically DNA double-strand 

breaks (DSBs), according to recent research. This is not surprising, as the high metabolic activity and 

nonproliferative nature of neurons make them vulnerable to DNA damage. Nevertheless, it is unclear 

whether DSBs are the primary cause of neuronal damage in a disease or if they occur only as the illness 

worsens [21]. In most cases, DSBs are destructive and lethal types of genomic damage, causing 

neuronal cell death if they are left unrepaired or fixed incorrectly. In the case of cellular growth and 

division, these unrepaired DSBs can be a potential danger for cellular damage [22,23], as unrepaired 

DSBs can cause mutations, deletions, and chromosomal translocations [24].  

In contrast to proliferating cells, which can employ sister chromatids for error-free DSB repair 

through a crucial mechanism called homologous recombination (HR), postmitotic neurons rely on 

error-prone DSB repair mechanisms via nonhomologous end joining (NHEJ) [25]. Consequently, 

DSBs may significantly impair neuronal function and viability. Recent data indicate that the effects of 

DSBs and repair extend beyond cellular stress and pathological situations, as previously believed, and 

instead affect basic neuronal physiological processes. The intriguing findings of Madabhushi and 

colleagues support the theory that neural activity causes DSBs to occur on the promoters of a subset 

of early-response genes, which are essential for learning, memory, and modifications to synapses [26].  

Exposure to residual oil fly ash (ROFA) led to notable disruptions in mitochondrial respiration, 

including diminished coupling efficiency, reduced respiratory capacity, and elevated proton leakage. 

These alterations coincided with a decrease in the mitochondrial membrane potential. Both NADPH 

oxidase (NOX), a membrane-associated enzyme complex, and mitochondria have been identified as key 

contributors to superoxide anion (O₂•−) generation. These data suggest that ROFA exposure directly 

activates macrophages, triggering an inflammatory response and enhancing reactive oxygen species 

(ROS) production through NOX and mitochondrial pathways. This oxidative stress undermines the 

antioxidant defense system and potentially contributes to mitochondrial dysfunction [27]. 

2.1. OGS-induced mitochondrial damage in neurons 

OGS-induced mitochondrial impairment in neuronal cells has been associated with the etiology 

of multiple neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and 
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amyotrophic lateral sclerosis, since dysfunctional mitochondria further intensify oxidative stress [28]. 

Mitochondrial DNA (mtDNA) is particularly susceptible to oxidative stress, and continued oxidative 

damage to mtDNA results in mutations within the mitochondrial genome. These mutations can 

subsequently hinder the functionality of respiratory chain complexes, resulting in a reduction in ATP 

synthesis and an exacerbation of ROS production [29]. This constitutes the essence of the vicious cycle 

of mitochondrial impairment. Energy shortfalls are especially detrimental to neurons, which require 

substantial energy to sustain membrane potentials, facilitate neurotransmission, and perform other 

essential processes [30,31]. Mitochondria are essential for regulating intracellular calcium 

concentrations. Oxidative stress and mitochondrial impairment can disrupt this function, resulting in 

elevated cytoplasmic Ca2+ concentrations. This may initiate a series of events, including the activation 

of deleterious enzymes and the subsequent onset of apoptosis (programmed cell death) [32,33]. 

Oxidative stress can trigger the opening of the mPTP, a nonselective channel in the inner 

mitochondrial membrane. This results in the dissipation of the mitochondrial membrane potential, 

mitochondrial enlargement, and the release of proapoptotic proteins, ultimately leading to cell 

death [34]. These pathological events are illustrated in Figure 1, which depicts OGS-induced 

mitochondrial damage in neurons. 

 

Figure 1. OGS-induced mitochondrial damage in neurons. 

2.2. OGS-mediated damage to DNA repair pathways 

2.2.1. Base excision repair (BER) 

OGS and BER are two vital pathways related to oxidative DNA damage that are closely related 

to the heterogeneity of neurological diseases. For example, MS patients presented increased levels of 

tert-butyl hydroperoxide (TBH)-induced oxidative stress lesions with a distinct DNA repair pathway, 

leading to reduced transcript levels of different BER genes, including MBD4 and NTHL1, in MS 

patients due to single-nucleotide polymorphisms [35,36]. Moreover, OGS contributes to the 
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accumulation of 5’,8-cyclopurine and 8-oxopurine, resulting in oxidative DNA damage and inducing 

neurological symptoms [37]. Elevated levels of oxidatively induced DNA damage, particularly 8-

hydroxy-2’-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by BER have 

been reported in bipolar disease patients. In this disease, there was also a decreased level of OGG1 and 

APE1 expression with upregulated POLβ expression, indicating a direct link with OGS-induced 

oxidative stress and BER damage [38]. In addition to causing DNA damage, OGS has also been 

reported to be involved in RNA damage in neurological diseases [39]. This pathway is executed by 

two subpathways: the short-patch (SP-BER) and the long-patch BER (LP-BER) subpathways. 

However, in this review, we explore and illustrate only the SP-BER pathway. The SP-BER pathway is 

illustrated in Figure 2, showing the key steps involved in DNA base excision and repair. 

 

Figure 2. SP-BER DNA repair subpathway. An enzyme called DNA glycosylase excises 

the broken base, forming an AP site that APE1 processes. Repair pills can reach 3’-OH and 

5’-phosphate (5’-P) termini after end-processing. Pol β-mediated single-nucleotide 

incorporation helps the DNA ligase III complex catalyze strand ligation in SP-BER [40]. 

8-Hydroxyguanine-oxidized bases, such as 8-oxoG and 7,8-dihydro-8-oxoadenine (8-oxoA), are 

removed from DNA by DNA glycosylase (OGG1), a bifunctional enzyme [41–43]. OGG1 removes 8-
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oxoG when the base is paired with a natural cytosine (C) but not when it is coupled with native thymine 

(T). Mammalian cells express at least four OGG1 splice variants, with two playing separate roles in 

base excision repair (BER) processes that remove 8-oxo-G from the nucleus and mtDNA. An 

oxidatively damaged base is excised by OGG1, initiating a conventional SP-BER cascade. The 

mechanism involves enzymes such as APE1, Pol β, and the DNA ligase III complex to restore the 

original DNA base pair. 

2.2.2. Double-strand breaks 

Among DNA lesions, DSBs are the most dangerous. To detect, signal, and repair them, DDR 

signaling—a comprehensive cellular response—is needed. The DDR cannot be carried out without 

first activating ATM kinase, a protein kinase. The MRE11-RAD50-NBS1 (MRN) complex interacts 

with it to rapidly recruit to DSB lesions [44,45]. The phosphorylation of several substrates initiates a 

signaling cascade and recruits some repair factors to lesions. ATM kinase activity targets serine 139 

on the carboxyl terminus of H2AX, also known as γH2AX, in its phosphorylated form. Established 

γH2AX leads to the activation of ATM and DDR protein accumulation, establishing a positive 

feedback loop that spreads to a greater extent [46–48]. 

In terms of DNA strand breaks, there are different ways to encounter repair systems; generally, 

they can be categorized into two major classes depending on whether a homologous DNA sequence is 

utilized as a template. When a homologous sequence gap is repaired, nonhomologous end joining 

(NHEJ) is the method of choice since it involves resealing the two ends of segments directly. Even 

though it may cause genetic information loss, NHEJ is the most common DSB repair route in most 

cell lines because it is the simplest and easiest [49]. In contrast to nonhomologous end joining (NHEJ), 

homologous recombination (HR) requires extensive DNA end processing and uses an identical DNA 

sequence as a template for repair that is dependent on DNA synthesis [50]. As anticipated, homologous 

recombination is highly exact, facilitating accurate repair of the damaged locus through the utilization of 

DNA sequences that are homologous to the broken ends. Homologous recombination primarily utilizes 

the sister chromatid as a template for the DSB repair pathway, rather than using the identical chromosome 

as a template. As shown in Figure 3, the main phases of NHEJ and HR repair are illustrated. 
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Figure 3. DSB repair pathways. The main phases of NHEJ and HR repair are shown. All 

four HR pathways—holiday junction resolution, SDSA (Synthesis-Dependent Strand 

Annealing), BIR (Break-Induced Replication), and dissolution—start with the same stages. 

The cell cycle strongly influences the selection of DSB repair mechanisms. NHEJ is 

available during interphase, although HR mechanisms are only available in S/G2 [51]. 

3. OGS in specific neurodegenerative diseases 

3.1. OGS leads to amyloid plaques and neurofibrillary tangles in neurons: AD hallmarks 

OGS-induced genomic instability is a key pathological factor in AD, preceding the well-known 

pathological hallmarks of AD: amyloid plaques and neurofibrillary tangles in AD patients. The 

pathogenesis of oxidative genotoxicity in AD is a complex and interconnected process involving 
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several intertwined cellular mechanisms, including ROS/OGS-induced cellular damage, mitochondrial 

dysfunction, and amyloid-beta (Aβ) and tau pathology, leading to a vicious cycle of genomic 

dysfunctions and neuroinflammation in the AD brain. For example, tau- and Aβ-induced oxidative 

stress promotes autophagy gene dysregulation, resulting in behavioral disability in AD patients [52]. 

Moreover, OGS-Aβ networks induce the expression of IKK and NF-κB in neurons, leading to severe 

neuroinflammation and neuronal death in AD patients [53]. In addition, Aβ and tau pathology have 

been reported to be involved in autophagy gene dysregulation through oxidative stress during AD 

pathogenesis. Therefore, these molecular pathways combine to promote AD progression. In contrast, 

a recent study revealed that the accumulation of tau protein and the resulting dementia are often 

observed in aged individuals without Aβ deposition, suggesting that tauopathy is a distinct mediator 

of age-related cognitive decline [54]. In addition, several intracellular molecules, such as circular 

RNAs (circRNAs), microRNAs (miRNAs), and exosomes (EXOs), regulate extracellular genome 

function in neurons. A recent review reported different aspects of intracellular molecules and their 

functions in the pathogenesis of AD [55]. Excessive ROS production triggers mitochondrial 

dysfunction and neuronal apoptosis, contributing to the pathology of AD, as illustrated in Figure 4. 

 

Figure 4. The generation of ROS by genotoxins such as amyloid-β (Aβ) and tau during 

AD progression. 

3.2. OGS in the progression of PD: A perfect intracellular storm of cellular damage 

OGS is not only an intrinsic part of the pathology of PD but also a side effect. It is intricately 

linked with mitochondrial dysfunction, dopamine metabolism, α-synuclein aggregation, and 
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neuroinflammation. This complex network initiates a “perfect intracellular storm”, leading to extensive 

neuronal damage that selectively targets vulnerable dopaminergic neurons, ultimately promoting the 

debilitating motor symptoms of PD [56,57]. Understanding this damaging role of OGS is crucial for 

effective disease-modifying therapies. Recent advances in the pathogenesis of PD and its potential 

pathways are summarized in Table 1. 

Table 1. Recent advances have been made in understanding the pathogenesis of PD and its 

potential pathways. 

 Pathogenesis Pathways Ref. 

Oxidative  

stress 

Dysregulated long non coding 

RNAs 

Aggregation of α-synuclein, mitochondrial 

dysfunction, calcium stabilization, neuroinflammation 

[58] 

Disulfidptosis Abnormal disulfide bond accumulation, redox 

imbalance, decreased levels of HSPA9 

[59] 

Oxidative damage to lipids, 

proteins, and DNA 

Post mortem PD tissue shows extensive oxidative damage 

to macromolecules in substantia nigra neurons 

[60] 

Mitochondrial dysfunction and 

ROS-induced apoptosis 

Excess ROS mutates mtDNA and triggers caspase 

activation and mitochondrial-mediated apoptosis via 

cytochrome C release 

[61] 

Impaired antioxidant defenses 

(e.g., GSH decrease) 

Levels of reduced glutathione are significantly lowered 

in SN, weakening the cell’s ability to counteract 

oxidative stress 

[62] 

Iron overload and ferroptosis Iron accumulation catalyzes ROS generation via Fenton 

reactions and lipid peroxidation, and promotes 

ferroptotic cell death 

[63] 

Familial PD gene mutations 

impair oxidative handling 

Mutations in SNCA, Parkin (PRKN), PINK1, DJ-1, and 

LRRK2 disrupt mitochondrial quality control and 

oxidative stress responses, increasing vulnerability 

[64] 

Dopamine metabolism and 

neuroinflammation contribute to 

ROS 

Dopamine breakdown, neuroinflammation, and 

microglial activation produce ROS, furthering 

neuronal damage 

[65] 

Note: HSPA9: a biomarker of cellular stresses such as glucose deprivation, oxidative injury, ionizing radiation, and caloric 

restriction [66]. 

In addition, autosomal recessive early-onset PD is most commonly caused by mutations in the 

PINK1 (PARK6) and Parkin (PARK2) genes. They typically manifest clinically with an L-DOPA 

response, although they may also exhibit dopaminergic-related dyskinesia, hyperreflexia, and, on rare 

occasions, mental abnormalities. Mutagenic changes in the gene encoding DJ1 (PARK7) are another 

indication of mitochondria-driven parkinsonism. Parkinson’s disease (autosomal recessive form), 

which is less common than PINK1, results from the ensuing loss of function. Individuals with DJ1 

genomic changes typically have good L-DOPA responsiveness and slow-progressing PD, which is 

sometimes accompanied by nonmotor symptoms such as cognitive impairment and psychosis [67]. 
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3.3. OGS in HD 

The pathogenesis of OGS in HD is a complex process characterized by detrimental cell damage [68]. 

The precise mechanisms remain under investigation, but recent insights indicate that the mutant 

huntingtin (mHtt) protein results in an abnormally long polyglutamine (polyQ) tract in the mHtt protein, 

which is highly prone to misfolding, aggregation, and cleavage into toxic segments [69]. These 

segments disrupt numerous cellular processes, setting the OGS stage for mitochondrial DNA damage [70]. 

A well-established marker of this damage is 8-hydroxy-2-deoxyguanosine (8-OHdG), which is present 

at increased concentrations in the brains of HD mice and patients [71]. In addition, the mHtt protein 

interferes with the DNA damage response (DDR) and repair mechanisms. Studies have shown that 

mHtt hampers key DNA repair proteins, such as those involved in the BRCA1 and ATM (ataxia 

telangiectasia mutated) pathways [69]. Defective DNA repair mechanisms, combined with oxidative 

damage, can also differentially contribute to the genetic expression of plasticity genes in HD through 

histone acetylation via impaired localization of CREB-binding protein (CBP) in the HD model [72]. 

Moreover, OGS-mediated DNA break accumulation abrogates PNKP activity in HD models, resulting 

in a concomitant decrease in Ataxin-3 activity and promoting CBP ubiquitination and degradation, 

which adversely impacts transcription and DNA repair [73]. 

4. Physiological and therapeutic strategies for reducing OGS 

To slow OGS, mitochondrial work must be targeted [74]. Potential tactics are recommended for 

the development of interventions that target ROS and prevent mitochondrial fracture to reduce 

mitochondrial damage and synaptic impairment in AD and PD patients. For example, exercise is highly 

beneficial for reducing ROS levels and maintaining mitochondrial health. Numerous benefits of 

working out for people with AD have been reported in other studies [75,76]. These benefits include the 

progression of the bloodstream to the brain, increased hippocampal thickness, increased neurogenesis, 

and improved cognitive work (such as thinking, perceiving, learning, and decision-making). 

Another important strategy is to consume sufficient amounts of vitamins and minerals to maintain 

a solid antioxidant status and to utilize organic foods high in cancer-prevention agents. Vitamin C rich 

nourishment can help diminish ROS [77]. The most frequently utilized antioxidant in clinical and 

research facilities is vitamin C, which can be given at diverse concentrations, intensely or chronically, 

alone or in combination with other cancer-prevention agents [78]. Innovative pharmaceutical 

approaches are considered the best options for alleviating OGS. Among these substances, biochemical 

factors, such as coenzyme Q10, idebenone, amino acid compounds, mitochondrial supplements, Mito 

VitE, sulforaphane, synthetic dyes, curcumin, and organic fatty acids, act on PGC-1α and activate 

mitochondrial biogenesis [79]. These substances offer advantages such as safeguarding mitochondrial 

function, decreasing ROS, and enhancing bioenergetics. The therapeutic viability of these 

mitochondrion-targeted drugs is substantiated by certain preclinical evidence. For example, the genetic 

overexpression of PGC-1α in transgenic animal models of AD has been shown to increase 

mitochondrial dynamics while decreasing the production of Aβ via BACE1 suppression. Therefore, 

pharmaceutical agents such as bezafibrate, metformin, and others that promote mitochondrial 

biogenesis are capable of achieving this effect.  
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Moreover, CoQ10, a crucial element of the electron transport chain (ETC), mitigates oxidative stress and neurodegenerative diseases in neuronal 

cells by preserving mitochondrial ∆Tm, enhancing ATP synthesis, and decreasing ROS production [80]. Furthermore, it enhances mitochondrial mass and 

bioenergetic function while safeguarding the phospholipid bilayer and mitochondrial proteins from oxidative damage [81]. Another finding indicates that 

the regular intake of CoQ10 significantly enhances the activity of antioxidant proteins and reduces inflammation [82]. Several therapeutic approaches have 

been identified for treating neurodegenerative diseases, as summarized in Table 2. 

Table 2. Therapeutic approaches for treating OGS. 

 

Therapeutic 

approach 

Agent/tool Mechanism Status/trial Efficacy Safety Ref. 

Antioxidants Vitamin C, 

CoQ10 

ROS scavenging, mt protection Preclinical Shown to reduce ROS and 

improve mitochondrial 

functions in models 

Generally, safe at physiological 

doses; high-dose CoQ10 may 

cause GI symptoms 

[79] 

DNA repair boosters NAD + 

precursors 

Enhances PARP activity, 

supports repair of oxidative 

DNA lesions 

Preclinical Promising in enhancing DNA 

repair and mitochondrial 

function in vitro 

Good safety profile; mild 

flushing and nausea reported at 

high doses 

[83] 

Gene therapy CRISPR/ 

Cas9 

Gene editing in AD/PD models In vivo mice High precision targeting; 

promising neuroprotective 

effects in animal models 

Risks of off-target effects and 

immune responses in vivo 

[84–86] 

Hormesis-based 

therapies 

Mild oxidative 

stressors 

Induces adaptive antioxidant 

defenses 

Conceptual/early 

stage 

Theoretical benefits; animal 

models show enhanced stress 

resilience 

Dose-dependent risks; excessive 

stressors can be harmful 

[87] 

Lifestyle Exercise, diet Enhances mitochondrial health Clinical evidence Strong evidence for reducing 

oxidative burden and 

improving cognition 

Safe; may vary based on patient 

condition and adherence 

[88] 

Mitochondrial 

biogenesis 

PGC-1α 

activators 

Enhances ATP, reduces ROS Early-stage Effective in improving 

mitochondrial biogenesis in 

cell and animal studies 

Needs more human data; some 

agents show metabolic effects 

[79] 



381 

 

AIMS Neuroscience  Volume 12, Issue 3, 369–390. 

5. Emerging technologies, advantages and future directions 

5.1. CRISPR/Cas9-based gene-editing technology 

One of the most cutting-edge molecular technologies is CRISPR/Cas9-based gene-editing 

technology [84]. CRISPR offers a powerful approach for treating AD and PD diseases by directly 

addressing their genetic roots. It can precisely correct disease-causing mutations, such as those in genes 

related to beta-amyloid plaques in AD patients or alpha-synuclein in PD patients. This method has the 

potential to not only manage symptoms but also halt or reverse the progression of these devastating 

neurodegenerative disorders. Moreover, the ability of CRISPR/Cas9 to efficiently cut double-stranded 

DNA was the primary emphasis of early studies. Flat ends can be produced via DSBs when the sgRNA 

directs Cas9 to a particular site and when there are nuclease structural domains for HNH and RuvC. This 

process activates DNA repair mechanisms, the two most important of which are NHEJ and HDR [85,89]. 

Therefore, it is possible that diseases could be treated in the laboratory as well as in the clinic through 

the delivery of CRISPR/Cas systems to targeted areas of the body. Because of its great precision, 

efficacy, and ease of handling, it is expected to be one of the most sought-after technologies in the 

years to come. Nevertheless, while CRISPR technology is employed to modify genes, researchers have 

reported that some circumstances are not anticipated [84]. 

5.2. Biological indicators of oxidative DNA loss 

Another highly effective technology uses biological indicators of oxidative DNA loss in 

cerebrospinal fluid (CSF) or blood, which are primarily 8-OHdG and 8-oxo-7,8-dihydro-2’-

deoxyguanosine (8-oxodG). Thus, these markers are widely used to measure oxidative stress. Research 

shows that urine 8-OHdG can predict cancer and degenerative disease risk. The main quantitative 

measurement methods are HPLC with electrochemical detection (EC) and HPLC tandem mass 

spectrometry, among others [90,91]. 

5.3. Various cell-based regeneration and rejuvenation strategies 

Age-related disorders that significantly impair quality of life and place a heavy burden on society 

include neurodegenerative diseases, such as AD and PD. A major contributing element to the onset and 

progression of these diseases is cellular senescence, which affects different types of brain cells and 

promotes permanent cell cycle arrest and reduced cellular activity. R3 strategies—rejuvenation, 

regeneration, and replacement—have been emphasized as viable therapeutic options for treating 

neurodegeneration in recent advances in regenerative medicine. Stem cell therapy, direct lineage 

reprogramming, and partial reprogramming in the context of R3 emphasize how these interventions 

mitigate cellular senescence and counteract aging-related neurodegeneration [92]. 

5.4. Multitarget drug design for the treatment of AD 

Traditional single-target medications have had poor therapeutic success; they have not been able to 

stop, cure, or reverse the course of neurodegenerative diseases such as AD. As a result, multitarget drug 
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design (MTDD) and other comprehensive therapeutic approaches are necessary for this complex disease. 

Targeting several disease pathways simultaneously with MTDD is a potential tactic. The accuracy and 

efficacy of MTDD can be further improved by integrating cutting-edge technologies such as artificial 

intelligence, machine learning, and nanomedicine. The key benefits of MTDD include increased 

treatment scope, pathway-level synergy, and the possibility of increased efficacy [93]. 

5.5. Stem cell–derived extracellular vesicles in neurodegenerative diseases 

Stem cell–derived extracellular vesicles (EVs) act as nanocarriers that reprogram diseased neural 

circuits chiefly by resolving neuroinflammation, restoring proteostasis, and supporting neuronal repair [94]. 

In AD and PD models, MSC-/NSC-EV miRNAs and proteins suppress NF-κB/NLRP3 signaling, 

enhance autophagy-lysosomal pathways (including neprilysin-mediated Aβ degradation), and improve 

mitochondrial resilience and synaptic plasticity. Collectively, EVs offer a cell-free, engineerable 

alternative to stem-cell transplantation, although standardization, GMP (Good Manufacturing Practice) 

scale-up, and long-term safety still need to be solved before routine clinical use [95]. 

5.6. Nanoparticles coated with exosomes to treat neurodegenerative diseases as biomarkers and 

therapeutic agents 

Complex neurobiological modifications, which manifest as biomarker changes in blood, 

cerebrospinal fluid (CSF), and brain imaging, are hallmarks of neurodegenerative diseases [96]. For 

example, exosome or exosome-coated nanoparticles (NPs) combine the multifunctionality of NPs with 

the inherent qualities of exosomes. Exosomal membranes facilitate blood–brain barrier penetration and 

provide microRNA- and protein-mediated neuroprotection, whereas the nanoparticle core enables the 

sustained release of therapeutic payloads such as antioxidants, siRNAs, or dopamine [97]. Therefore, 

the use of exosomes coated with NPs may improve the accuracy, effectiveness, and safety of 

therapeutic interventions for treating neurodegenerative disease [98,99]. 

5.7. Neurotrophic genes that target neurodegenerative disorders 

Neurodegenerative illnesses (NDDs) such as AD, PD, and HD have demonstrated considerable 

potential for gene therapy as a viable therapeutic intervention. Gene delivery of NTF has the potential 

to be used as a therapeutic approach for the treatment of neurological problems in the brain [100]. 

Neurotrophic genes, including BDNF, GDNF, and NGF and their receptors, play central roles in 

controlling neurodegenerative diseases by activating survival pathways (PI3K/Akt, MAPK/ERK), 

enhancing synaptic plasticity, stimulating neurogenesis, and suppressing neuroinflammation. Their 

products also promote the clearance of toxic aggregates such as amyloid-β, tau, and α-synuclein, 

thereby preserving neuronal integrity [101]. 

6. Conclusions 

Oxidative genotoxic stress (OGS) serves as a crucial pathogenic element in the onset and progression 

of neurodegenerative diseases, such as AD, PD, and HD. Neurons, characterized by their significant 

metabolic requirements, extended lifespan, and restricted ability to regenerate, are extremely vulnerable to 
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oxidative genomic damage caused by ROS and RNS. We have shown that OGS, arising from an imbalance 

of reactive oxygen species and antioxidant defenses, initiates a cascade of detrimental events. These include 

significant DNA damage, such as genomic instability and epigenetic alterations, as well as the impairment 

of vital cellular processes such as mitochondrial function and DNA repair. The resulting neuroinflammation 

and neuronal dysfunction establish a vicious cycle that drives disease progression. Given the complex and 

multifaceted nature of OGS-mediated neurodegeneration, it is not surprising that traditional single-target 

therapeutic approaches have yielded limited success. This work highlights a paradigm shift toward a 

comprehensive, multitargeted strategy. We explored a range of promising avenues, from lifestyle 

modifications and potent antioxidant therapies to advanced pharmaceutical interventions such as 

mitochondrial-targeted drugs. Furthermore, we discuss the potential of emerging technologies, including 

CRISPR/Cas9 gene editing and innovative drug delivery systems such as exosome-coated nanoparticles, 

to directly counteract the molecular underpinnings of this disease. Ultimately, a deeper and more integrated 

understanding of these intricate molecular pathways is essential for the future development of effective 

treatments. This study provides insights into the mechanisms of OGS and the assessment of novel 

therapeutic strategies, paving the way for a more holistic approach to combating neurodegenerative 

diseases. Despite the insights discussed, this review has certain limitations. First, much of the evidence 

linking oxidative genotoxic stress to neurodegeneration is derived from preclinical or in vitro studies, which 

may not fully capture the complex human disease environment. Second, inconsistencies in experimental 

models, biomarker specificity, and methodological variability across studies limit the ability to generalize 

findings. Third, the lack of large-scale longitudinal clinical data makes establishing causality between 

oxidative genomic damage and disease progression difficult. Finally, while therapeutic strategies such as 

antioxidants, mitochondrial enhancers, and genome-editing technologies show promise, their translation 

into effective clinical interventions remains largely unproven and requires rigorous validation through well-

designed clinical trials. 
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