
AIMS Neuroscience, 12(1): 15–31. 

DOI: 10.3934/Neuroscience.2025002 

Received: 09 November 2024 

Revised: 08 February 2025 

Accepted: 12 February 2025 

Published: 21 February 2025 

https://www.aimspress.com/journal/neuroscience 

 

Research article 

Hypnosis efficacy on nicotine addiction: An analysis of EEG microstates 

and brain oscillation entropy 

Mi Zhang1,†, Junjie Ren1,†, Ni Li1, Yongyi Li1, Linxi Yang1, Wenzhuo Wei1, Juan Qiu1, Xiaochu 

Zhang2,* and Xiaoming Li3,4,* 

1 School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China 
2 Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, 

University of Science and Technology of China, Hefei, Anhui, China 
3 Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China 
4 Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui 

Medical University, Hefei, Anhui, China 

* Correspondence: Email: psyxiaoming@126.com, zxcustc@ustc.edu.cn. 

† These two authors contributed equally. 

Abstract: Despite hypnosis showing efficacy in treating nicotine dependence, its neurobiological 

impacts on a smokers’ brain function remain underexplored. Thirty-three smokers underwent 

electroencephalography (EEG) recording during pre- and post-hypnosis sessions, each 8 minutes long, 

alongside Tobacco Craving Questionnaire (TCQ) assessments. Four distinct EEG microstate classes 

(A, B, C, D) were identified. Daily cigarette consumption negatively correlated with the microstate A 

duration (r = −0.39, P = 0.03). Hypnosis increased the microstate A parameters while decreasing those 

of microstate B. Reduced microstate B parameters positively correlated with lower TCQ scores (r = 

0.46, P = 0.02). Post-hypnosis, there was a decreased variability and sample entropy in low-frequency 

theta-band signals, indicating a shift towards more ordered theta oscillations. This shift was inversely 

related to the microstate D parameters and positively correlated with the microstate C occurrences. 

Dynamic changes in the brain microstates and theta oscillations elucidate the neurological mechanisms 

underlying hypnotherapy’s effectiveness in treating smoking addiction. These findings provide new 

insights into the mechanisms by which hypnosis influences brain function and offer potential 

biomarkers for the treatment of smoking addiction, thus deepening our understanding of therapeutic 

approaches for substance use disorders. 
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1. Introduction  

Nicotine addiction, a pervasive public health issue, is a leading cause of severe illnesses such as lung 

cancer, cardiovascular disease, and emphysema [1]. As the primary source of nicotine exposure for humans, 

smoking drives nicotine addiction [2]. According to the World Health Organization, over 7 million people 

die globally each year from smoking-related diseases, with approximately 6 million being smokers and 1 

million non-smokers affected by secondhand smoke [3]. A critical component of the addiction process for 

smokers is cue reactivity, which refers to the specific psychological and physiological reactions that occur 

when smokers encounter smoking-related cues [4]. Upon investigating the root causes of nicotine addiction 

among smokers, we found that cue reactivity is fundamental. An exposure to smoking-related cues triggers 

a series of specific psychological and physiological reactions in smokers, which further intensify their 

nicotine dependence [4]. Despite being aware of the negative impacts of smoking and expressing a strong 

desire to quit, most smokers’ attempts to quit end in relapse [5]. 

Hypnotherapy, a method that alters a patient’s behavior, emotions, or perceptions by inducing a 

hypnotic state and providing suggestions, has proven effective in addressing nicotine addiction [6,7]. 

Studies have demonstrated that a significant percentage of smokers who underwent hypnotherapy 

remained smoke-free in the long term [8]. Moreover, clinical practices have validated the efficacy of 

hypnotherapy for smoking addiction [9]. By utilizing suggestions and cues during the hypnotic state, 

therapists aim to modify the smoker’s thought patterns and behaviors, thereby aiding in overcoming the 

urge to smoke [10]. Compared to the high relapse rate and side effects associated with medication [11], 

hypnotherapy is gaining attention as an alternative treatment for smoking cravings [6]. Despite the 

significant effectiveness of hypnotherapy for many individuals seeking help to quit smoking, the 

variability in hypnotic susceptibility among individuals can lead to heterogeneity in the treatment 

outcomes. These differences are closely linked to a variety of factors, including personal psychological 

traits (such as suggestibility and levels of focus), previous experiences with hypnosis, and cognitive 

expectations regarding the treatment [12]. Research indicates that individuals with a higher hypnotic 

susceptibility are more likely to achieve deep relaxation and heightened states of concentration through 

hypnosis, which may be one reason they benefit more from hypnotherapy [13]. 

Electroencephalography (EEG), a pivotal neurodiagnostic modality quantifying cerebral 

bioelectricity, is extensively utilized in the diagnosis of ailments such as epilepsy, traumatic brain 

injuries, and sleep disorders [14,15], as well as in probing the intricacies of cognitive functionality and 

affective states [16]. The cerebral cortex’s electrophysiological patterns exhibit quasi-stable 

configurations which persist for approximately 80 to 120 milliseconds before transitioning into 

alternate arrangements, which are designated as microstates [17]. These microstates embody the 

elemental phases of cognitive processing during both spontaneous and externally elicited neural 

activities [18], with four archetypal microstates (designated A, B, C, and D) recurrently documented 

in resting-state EEG research across studies, thus demonstrating a striking cross-individual 

homogeneity [19,20]. Nonetheless, the microstates’ inherent parameters, including their duration, 

frequency of occurrence, and spatial distribution, are proven to be influenced by a range of 

neuropsychiatric pathologies, individual personality profiles, and cognitive operations [21]. 

Simultaneous acquisitions of EEG and functional magnetic resonance imaging (fMRI) have provided 
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compelling evidence that disparate microstate classes correspond to unique neural networks and 

functional specializations within the brain [22]. In particular, microstate A, an integral component of 

the default mode network, exhibits a strong affiliation with the neural activity in the frontal, left insular, 

and occipital cortices during instances of visual stimulation. Microstate B is consistently implicated in 

the circuitry supporting visual processing, while microstate C is conjectured to participate in intrinsic 

mental operations, most notably those that involve self-reflection and the processing of significant 

information [23]. Lastly, microstate D bears a significant relationship to the neural infrastructure 

responsible for cognitive control and the allocation of attention [16,24]. 

The scientific validity and utility of EEG-derived microstates in the realm of neuroscience have 

been substantiated through a plethora of applications. These include the assessment of age-related 

modifications in the spatiotemporal synchronization of brain activity [25], as well as the development of 

diagnostic and screening protocols tailored to specific clinical populations, such as individuals diagnosed 

with autism spectrum disorder [26] and schizophrenia [27]. Furthermore, the capacity of a microstate 

analysis to decode the neurobiological consequences of addictive behaviors on cerebral function is 

gaining increasing recognition within the academic community [28,29], thereby highlighting its potential 

as a powerful investigative tool in the study of complex neuropsychiatric phenomena. 

In recent years, a growing body of research has delved into the intricate relationship between 

neural signal complexity and varying levels of consciousness. Sample entropy (SE), a metric that 

gauges the regularity and unpredictability of signal patterns, has demonstrated substantial promise in 

the realm of mental health inquiries, with applications ranging from advancing our understanding of 

schizophrenia [30] and detecting autism susceptibility in infants [31] to evaluating the developmental 

maturation of neonatal brains [32]. This metric is grounded in the principle that a lower sample entropy 

value implies a higher signal regularity; conversely, elevated entropy values signify an augmented 

level of randomness and signal complexity [33]. 

Previous studies that utilized a cross-frequency oscillation entropy analysis [34] revealed 

distinctive entropy patterns associated with modified states of consciousness, which was achieved via 

meditation or pharmaceutical means [35]. Expanding upon our preceding research into hypnotherapy’s 

efficacy in managing smoking urges [36,37], this investigation delves deeper into the domain of 

hypnosis. We adopt k-means clustering to discern the paramount topographical features, thereby 

classifying them as microstate categories, while concurrently integrating entropy evaluations of 

oscillatory patterns across various EEG frequency bands with spectral analyses. 

Our research is centered on three core objectives: i) mapping the topological structure of microstates 

and elucidating the sub-second dynamics of brain function; ii) conducting an exhaustive examination of 

power spectral characteristics across multiple frequency bands in conjunction with oscillation entropy to 

capture variations in the intricacy of EEG signals; and iii) methodically assessing changes in microstate 

parameters before and after hypnotic intervention, probing their correlations with clinical assessments, 

while also probing potential relationships with complexity metrics, SE, within discrete frequency bands. 

2. Materials and methods 

2.1. Participants 

The study initially enrolled 40 participants, all of whom reported a daily consumption of at least 8 

cigarettes over no less than 3 years. Data from seven participants were excluded due to excessive artifacts, 
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leaving a final cohort of 33 subjects. Using G*Power, we confirmed that a sample size of 28 was 

sufficient to detect a medium effect (f = 0.25) at α ≤ 0.05 and 0.8 power. Basic demographic information 

was collected, and the hypnotic suggestibility was assessed using the Stanford Hypnotic Susceptibility 

Scale (SHSS: A). The degree of nicotine dependence was assessed via the Fagerström Test for Nicotine 

Dependence (FTND) [38]. The clinical characteristics of the participants are presented in Supplementary 

Table 1. The participants completed the Tobacco Craving Questionnaire (TCQ) [39] both before and 

following each EEG session, with instructions to abstain from smoking for a minimum of 2 hours 

preceding the experiment. Written informed consent was secured from all participants beforehand. The 

Human Ethics Committee at the University of Science and Technology of China granted ethical approval 

for the research protocol (Approval Number: 2016001). 

2.2. Study design 

This study employed a systematic approach, consisting of two distinct phases: pre-hypnosis and 

post-hypnotic resting states. Initially, the participants underwent an 8-minute baseline EEG recording 

while resting with their eyes closed before hypnosis. Subsequently, the participants were then guided 

through a 15-minute progressive relaxation process designed to help them gradually relax and enter a 

hypnotic state. Once it was confirmed that the participants had entered the hypnotic state, aversive 

suggestions were introduced, which were adapted from the research by Spiegel et al. [40]. For instance, 

the participants were asked to imagine cigarettes emitting a repulsive odor and that smoking would 

cause extreme discomfort and nausea similar to handling feces. The delivery of these aversive 

suggestions lasted approximately three minutes. Upon completion of the aversive suggestion phase, 

the participants were gradually awakened from their hypnotic state through a structured awakening 

procedure. Finally, in the post-hypnosis phase, EEG recordings were taken again while the participants 

were in a state of rest to compare with the data collected before hypnosis. A detailed flowchart of the 

experimental procedure is provided in Figure 1, and the complete script of the aversive hypnotic 

suggestions is available as Supplementary material Table 2. 

2.3. EEG acquisition and preprocessing 

EEG signals were recorded using a SynAmps2 amplifier (NeuroScan, Charlotte, NC, USA) [41]. 

A 64-channel Ag/AgCl electrode cap was utilized, with the electrode placement on the scalp following 

the extended international 10–20 system. The nasal tip of each participant served as the site for the 

reference electrode, while AFz was designated as the ground electrode to mitigate the potential 

interference from electromagnetic noise. EEG signals were sampled at a rate of 500 Hz. The 

participants were guided to maintain a state of wakeful relaxation with their eyes closed, refraining 

from any active mental engagement. 

The preprocessing of raw EEG data was executed utilizing MATLAB, version 2023b. Data were 

preprocessed using 2 to 20 Hz bandpass filtering. The Infomax independent component analysis (ICA) 

algorithm was applied to reject artifacts related to eye movement and muscle activity. Finally, the EEG 

datasets were re-referenced to the average reference. 

 



19 

AIMS Neuroscience  Volume 12, Issue 1, 15–31. 

 

Figure 1. Flowchart of the study. EEG = electroencephalograph; FTND =  Fagerström Test 

for Nicotine Dependence; TCQ = Tobacco Craving Questionnaire. 

2.4. Microstate analysis 

The preprocessed EEG data were imported into the EEGLAB for the microstate analysis. The 

global field power (GFP) is employed to gauge the intensity of the scalp potentials, with the 

instantaneous voltage magnitudes at electrodes corresponding to the GFP peak times selected for 

cluster analysis [42]. GFP signifies the brain’s electric field strength at any given moment, typically 

utilized to quantify the overall response to events or to depict rapid alterations in brain activity, where 

its peaks denote instances of maximum field strength and an optimal topographical signal-to-noise 

ratio [24]. Subsequently, to bolster the stability and reliability of the clustering outcomes, a modified 

K-means algorithm is adopted for iterative computations, set to iterate 100 times. This process 

ultimately ascertains the optimum number of microstate classes, aligning with the four previously 

described microstate categories by Koenig—labeled “A”, “B”, “C”, and “D”—which represent distinct 

patterns of brain activity [19]. Following the microstate identification, pertinent EEG microstate 

temporal parameters are extracted: duration, occurrence, and coverage. Moreover, we meticulously 

examined the transition probabilities among the various microstates, with detailed analyses provided 

in Supplementary Tables 3–5. 

2.5. Power analysis 

Our power spectral analysis concentrated on 2-second segments of noise-free EEG data, sampled 

at a resolution of 500 Hz. We employed Hanning windows and applied Fast Fourier Transform [43] to 

assess the activity specifically within the theta (4–8 Hz) and alpha (9–12 Hz) frequency bands. This 
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analytical approach adheres to standard spectral demarcations of brainwave activity and aligns with the 

frequency domains pertinent to microstate examinations. Given that the Delta (1–4 Hz) and Beta (13–30 

Hz) bands extend beyond the core focus of the microstate analysis, they were excluded from our analysis. 

The relative band power was computed following a standardized protocol, representing the fraction of 

total power in each specified band relative to the cumulative power across all the analyzed bands. 

To comprehensively delineate the dynamic characteristics of the EEG signals, we incorporated 

the Coefficient of Variation (CV) as a pivotal metric of signal variability. The CV was separately 

calculated for each frequency band and then aggregated to derive a general measure of the overall EEG 

variability, thus offering an inclusive insight into the signal’s instability profile [44]. 

2.6. Sample Entropy (SE) in different frequency bands 

SE functions as a quantitative gauge of the intricacy and unpredictability in time-series data by 

evaluating the likelihood of repetitive patterns within a defined sequence window, labeled as “m”, and 

by setting a tolerance threshold, “r”, which discriminates between distinct patterns [33]. As visualized 

in Figure 2, the results reveal a consistently notable disparity among the participants’ EEG signal-

derived SE values when the tolerance r is set to 0.25 and 0.2. This observation suggests that the 

differentiation in EEG signal complexity across individuals at these precise tolerance settings stabilizes 

at a discernable level. A substantial increase in the SE values is observed as r further decreases, trending 

towards theoretically infinite values. Thus, “r” = 0.25 was strategically chosen as the benchmark 

tolerance parameter for our study to optimally delineate the dynamics of signal complexity with 

heightened precision, while effectively curbing biases potentially introduced by less fitting tolerance 

selections. The calculation of SE was accomplished using Python version 3.9, thus adopting an 

embedding dimension of “m” = 2 and a tolerance value of “r” = 0.25 as the operational parameters. 

 

Figure 2. The relationship between tolerance r and sample entropy. 
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Taking the impact of the signal length on SE stability into account, preliminary validation determined 

that SE attains a relative stability when the data length N exceeds or equals 1000 sampling points. Thus, N 

= 1000 sampling points, which is equivalent to a sliding window of 2 seconds, were adopted in this study. 

The signals were initially filtered through a 4th-order Butterworth band-pass filter to isolate the theta and 

alpha frequency bands. Subsequently, the Hilbert transform was employed to obtain the analytic form of 

the signals, thus encompassing an instantaneous amplitude and phase information. 

The signals were initially processed through a 4th-order Butterworth band-pass filter to segregate 

them into theta and alpha frequency bands. Proceeding with this, the Hilbert transform was applied to 

derive the analytic representation of the signals, thus obtaining both an instantaneous amplitude and 

phase components. Ultimately, SE was individually computed for each electrode’s signal within every 

frequency band. Then, these values were aggregated to attain a mean SE value per channel, allowing 

for a systematic evaluation of the sample entropy characterizing oscillatory activities within specific 

frequency bands [35]. 

2.7. Statistical analyses 

All statistical evaluations were conducted using SPSS, Version 27, complemented by data 

visualization techniques implemented in Python. The research design employed a three-factor 

repeated-measures analysis of covariance (ANCOVA) to explore the interaction effects between 

hypnosis intervention (pre-hypnosis and post-awakening stages), the microstate classes (A, B, C, and 

D), and various parameters (duration, occurrence, and coverage). Four covariates were included to 

control for potential confounding variables to adjust for their potential interfering impact: the level of 

hypnotic suggestibility, the daily cigarette consumption, years of smoking, and age. Additionally, 

paired-sample t-tests were utilized to assess the specific changes in bandwidth complexity and spectral 

power before and after hypnosis intervention. 

In pursuit of a deeper comprehension of the relationship between the intervention efficacy and 

the individual characteristics, correlation analyses were also performed to ascertain the strength of 

linear associations between daily cigarette consumption, years of smoking, scores on the FTND, TCQ, 

SHSS, and the respective parameters of microstate classifications. Furthering our investigation, we 

conducted exploratory analyses to unravel the intricate interplay between the brain activity’s 

complexity and the EEG microstates’ unique characteristics, illuminating potential correlations 

between SE changes and the specific parameters defining individual microstates. 

3. Results 

3.1. Microstate topographies 

Figure 3 illustrates the topographic maps depicting the four identified microstate categories, both 

before and following hypnosis, mirroring those described in prior studies [45]. Our microstate analysis 

uncovered a quartet of microstate classes: two (labeled A and B) featuring diagonal axis orientations 

across the topographic map, one (C) with an anterior-posterior alignment, and another (D) 

characterized by a fronto-central localization. Collectively, these four microstate classes explained 

over 70% of the total global variance in each group [46], with 70.27% in the pre-hypnosis group and 

73.03% in the post-hypnosis group. 
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Figure 3. Microstate class topographies. 

3.2. Microstate parameters 

The study found that the interaction among hypnosis intervention, microstate categories, and 

various parameters did not reach a statistical significance, F(6, 55) = 1.22, P = 0.31. However, the 

interaction between the microstates and parameters was significant, F(6, 55) = 3.61, P = 0.004, partial 

η2 = 0.28. A further pairwise comparison analysis revealed that following the hypnosis intervention, 

the coverage of microstate A significantly increased, P = 0.04, while the coverage of microstate B 

significantly decreased, P = 0.038. Regarding the remaining microstate categories and their parameters, 

although not all observed changes reached statistical significance, a trend analysis suggested an 

upward trend for microstates A and D post-intervention, whereas the parameters for microstates B and 

C generally showed a declining trend. Detailed data and statistical analyses of these findings are 

summarized in Table 1 and illustrated in Figure 4. 

3.3. Spectral analysis and sample entropy 

Post-hypnosis, a trend emerged in the EEG activity with an increased power in the alpha 

frequency band, coupled with a slight decrease in the theta band power. While these shifts hint at 

directional changes, the statistical analyses failed to establish their significance. Furthermore, no 

statistically meaningful variations were noted in the CV, a metric of power variability [44], for either 

of these frequency bands. 

Delving deeper into the complexity of oscillations within these frequency bands over time 

series, a significant decrease in SE was observed in the theta band following the intervention (t = 

−3.35, P = 0.002). In contrast, the alpha band did not exhibit a comparable statistically significant 

reduction in SE (t = 1.38, P = 0.18), thus suggesting a more nuanced effect of hypnosis on the 

complexity of brain oscillations across different frequency domains. Comprehensive details of 

these findings are presented in Table 2. 
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Figure 4. Comparison of microstate parameters between pre-hypnosis and post-hypnosis. 

A: duration; B: occurrence; and C: coverage. 

Table 1. Comparison of the microstate parameters between pre-hypnosis versus post-hypnosis. 
 

Pre-hypnosis 

(Mean) 

Post- hypnosis 

(Mean) 

Pairwise comparison 

d P-adjust 

Microstate classes A 

Duration 73.51 75.36 1.85 0.36 

Occurrence 2.64 2.85 2.09 0.21 

Coverage 0.19 0.22 0.03 0.04* 

Microstate classes B 

Duration 81.91 78.72 −3.19 0.30 

Occurrence 3.10 2.94 −0.16 0.23 

Coverage 0.26 0.23 −0.03 0.038* 

Microstate classes C 

Duration 84.82 81.24 −3.58 0.44 

Occurrence 3.20 3.07 −0.13 0.34 

Coverage 0.27 0.25 −0.02 0.30 

Microstate classes D 

Duration 86.49 92.81 6.32 0.44 

Occurrence 3.25 3.26 0.01 0.94 

Coverage 0.28 0.30 0.02 0.24 

Note: * P < 0.05. 
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Table 2. Indices of spectral EEG, coefficient of variation, and sample entropy between 

pre-hypnosis and post-hypnosis. 

 Factor Spectral indices Coefficient of variation 

(CV) 

Sample entropy 

(SE) 

Theta Pre-hypnosis 19.56% 6.02% 1.39 

Post-hypnosis arousal 18.7% 5.42% 1.2 

T-test 1.05 0.79 −3.35 

P-value 0.30 0.44 0.002* 

Alpha Pre-hypnosis 49.69% 13.95% 1.15 

Post-hypnosis arousal 52.76% 12.45% 1.07 

T-test −1.59 0.10 1.38 

P-value 0.12 0.33 0.18 

Note: * P < 0.05. 

3.4. Correlation analysis 

Our correlation analysis revealed a significantly negative correlation between the daily number 

of cigarettes smoked and the duration of microstates A (r = −0.39, P = 0.03), a finding visually 

illustrated in Figure 5A. Moreover, we observed a positive association between alterations in the scores 

on the TCQ and corresponding changes in the duration of microstates B (r = 0.46, P = 0.02), as 

demonstrated in Figure 5B. 

As illustrated in Figure 5C, in our examination of the relationship between SE and the microstate 

parameters, we discovered a significant negative correlation between SE in the theta band and the 

multiple parameters of Microstate D. This finding implies that a decrease in theta oscillations is 

concurrent with an elevation in the parameters of Microstate D. Furthermore, the theta oscillatory 

activity shows a positive correlation with the emergence of Microstate C. 
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Figure5. Correlation analysis. A: Durations of microstate A and daily cigarette consumption; 

B: Changes in TCQ scores and alterations in the duration of microstate B; C: Correlation 

matrix between SE in theta/alpha band and microstate parameters. A = microstate A; B = 

microstate B; C = microstate C; D = microstate D; SE = sample entropy; TCQ = Tobacco 

Craving Questionnaire. ΔTCQ = changes in TCQ scores. *P < 0.05, **P < 0.01. 

4. Discussion 

This study employed an EEG microstate analysis and brain oscillation entropy to investigate the 

impact of hypnotic intervention on the dynamic functional properties of the brains of smoking 

addiction patients. The marked reduction in TCQ scores from pre- to post-treatment supports the 

positive role of hypnosis in alleviating nicotine dependence (Supplementary Table 6). An initial 

revelation from our research is the negative correlation between the intensity of smoking behavior, 

which was quantified by daily cigarette consumption, and the duration of microstates A (r = −0.39). 
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Advancing further, a post-intervention data analysis disclosed significant increments in multiple 

parameters of microstate A and a declining trend in those of microstate B. Additionally, we noted a 

substantial post-hypnosis reduction in theta oscillation, which was negatively associated with the 

parameters of microstate D and positively with the occurrence of microstate C. 

Previous research has established that smoking can induce changes in the microstate parameters, 

such as a reduction in microstate A and an increase in microstate B [29], and that nicotine dependence is 

associated with widespread anomalies in the brain network connectivity, including alterations in the 

resting-state functional connectivity within the insular region of young smokers [47], as well as 

differential effects of short- and long-term nicotine exposure on brain networks [48], and a correlation 

between heavy smoking and a diminished network efficiency [49]. Our study further refines this 

framework by meticulously analyzing EEG microstates, thereby uncovering a direct link between 

smoking addiction and the functionality of specific brain networks, notably those involved in auditory 

and visual processing. 

Our study specifically uncovered a profound influence of hypnotic intervention on the EEG 

microstates of patients with smoking addiction, thereby demonstrating an increasing trend in the 

parameters of microstate A following the intervention. This discovery aligns with previous research 

suggesting that frequent smoking is associated with abbreviated durations of microstate A, thus 

implying that hypnosis may bolster the operational efficacy of the auditory processing network. Given 

the established linkage between microstate A and auditory function 23, it is inferred that hypnosis 

achieves this augmentation by intensifying activity within the auditory network, thereby fostering 

advanced cognitive processes and potentially reinforcing the commitment and drive to quit. 

Concurrently, we noted a prominent reduction in the parameters of microstate B after hypnosis, thus 

suggesting a modulatory suppression of the visual network. Notably, this shift in neural activity 

patterns coincides with substantial reductions in the subjects’ craving scores, providing robust 

empirical support for our observations. Prior studies have affirmed the critical role of visual cues in 

provoking smoking cravings [50], and the observation of abnormally heightened activation in the 

primary and secondary visual cortices among addicted individuals [51] underscores the central role of 

visual processing regions in addiction mechanisms, thus highlighting their potential as stable 

biomarkers to assess an addiction predisposition [52,53]. Therefore, we propose that the hypnosis-

mediated attenuation of visual network activity may effectively curtail the brain’s responsiveness to 

visual triggers for smoking, thereby significantly diminishing visually-induced cravings. 

Low entropy values signify a high regularity and predictability in data, whereas high entropy 

reflects disorder and unpredictability [33]. SE, serving as a gauge of time series complexity and 

forecasting uncertainty about future states, interacts with the brain microstates to reveal profound 

insights into the dynamic adaptability of information processing and the plasticity of neural 

architecture, particularly in the theta frequency band crucial for memory, learning, and attention 

modulation. Within this theta band, we observed a negative correlation between the theta entropy and 

microstate D, thus indicating that the parameters associated with microstate D—implicated in 

sustaining focused and vigilant states—are significantly augmented as the theta oscillation increases. 

This finding not only uncovers the optimized information processing strategies employed by the brain 

during periods of intense focus and alertness, but also showcases how the brain dynamically 

reconfigures its functional networks to efficiently allocate cognitive resources in response to 

environmental demands. 
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Concurrently, the tight association of microstate C with internal mental processes, such as self-

reflection and processing of salient information, underscores its pivotal role in self-cognitive 

integration [23]. During transitions in conscious states, such as deep sleep or meditation, the enhanced 

ability of microstate C to balance external stimuli with internal processing suggests a vital part it plays 

in preserving the continuity of consciousness and psychological stability [54]. The negative correlation 

between theta oscillation entropy and parameters of microstate C unveils an intriguing mechanism: as 

the theta oscillations become more ordered, a decrease in microstate C parameters suggests that the 

brain conserves cognitive resources under a low cognitive load or introspective conditions by 

simplifying the complexity of information processing, thereby optimizing the in-depth processing of 

internal information and self-reflection. This interplay highlights the brain’s sophisticated tactics in 

adapting its operational modes to meet varying cognitive demands and maintain mental equilibrium. 

Our study has several limitations that deserve attention. First, the absence of a control group 

may compromise the specificity of evaluating the therapeutic effects of hypnosis intervention. 

Although a single-group pretest-posttest design holds methodological validity in clinical 

applications of hypnosis [8,13], and our previous fMRI studies [37] have confirmed the 

effectiveness of hypnosis in smoking cessation, eliminating confounding variables remains 

challenging. To enhance the validity of our findings, we implemented longitudinal multi-time point 

behavioral data collection and employed multivariate statistical analyses to control for covariates. 

Nevertheless, establishing clear causal inferences remains problematic. Future research should 

incorporate a control group that either receives no hypnosis intervention or undergoes non-specific 

hypnosis to more accurately elucidate the neuro-mechanisms of hypnosis in reducing smoking 

addiction. Additionally, with a sample predominantly composed of males (only two female 

participants), the applicability of our findings to nicotine-dependent females is constrained due to 

underrepresentation [55]. Lastly, our analysis concentrated on the widely researched 2–20 Hz 

frequency band of EEG microstates, mainly covering activities within the alpha and theta bands. 

This limitation may narrow our understanding of the brain functionality. Future investigations 

should broaden their scope to include a full-spectrum analysis, thereby encompassing all bands 

from delta to gamma, to offer a more comprehensive view of the brain activity and establish a 

more thorough neurobiological framework for addiction interventions. 

5. Conclusions 

Our study innovatively employed the dynamic shifts in brain microstates and oscillatory entropy 

within specific EEG frequency bands to unravel the underlying neural mechanisms by which 

hypnotherapy enhances the treatment outcomes for smoking addiction. Future research should further 

delve into solidifying the long-term benefits of treatment and refining intervention strategies tailored 

to different populations, with the ultimate goal of furnishing a more precise and comprehensive 

approach to the clinical management of nicotine dependence. 
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