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Abstract: Stress has emerged as a prominent and multifaceted health concern in contemporary society, 
manifesting detrimental effects on individuals’ physical and mental health and well-being. The ability 
to accurately predict stress levels in real time holds significant promise for facilitating timely 
interventions and personalized stress management strategies. The increasing incidence of stress-related 
physical and mental health issues highlights the importance of thoroughly understanding stress 
prediction mechanisms. Given that stress is a contributing factor to a wide array of mental and physical 
health problems, objectively assessing stress is crucial for behavioral and physiological studies. While 
numerous studies have assessed stress levels in controlled environments, the objective evaluation of 
stress in everyday settings still needs to be explored, primarily due to contextual factors and limitations 
in self-report adherence. This short review explored the emerging field of real-time stress prediction, 
focusing on utilizing physiological data collected by wearable devices. Stress was examined from a 
comprehensive standpoint, acknowledging its effects on both physical and mental well-being. The 
review synthesized existing research on the development and application of stress prediction models, 
underscoring advancements, challenges, and future directions in this rapidly evolving domain. 
Emphasis was placed on examining and critically evaluating the existing research and literature on 
stress prediction, physiological data analysis, and wearable devices for stress monitoring. The 
synthesis of findings aimed to contribute to a better understanding of the potential of wearable 
technology in objectively assessing and predicting stress levels in real time, thereby informing the 
design of effective interventions and personalized stress management approaches. 

Keywords: stress detection; health monitoring; physical health; mental health; wearables; 
physiological data; wearable devices; sensor review 
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1. Introduction  

Stress has become a prevalent concern in modern society, significantly affecting individuals’ 
health and well-being. Its impact can manifest both directly, through physiological effects, and 
indirectly, through unhealthy behaviors such as excessive alcohol consumption, malnutrition, or poor 
sleep habits [1]. Therefore, motivating individuals to adapt their behaviors and lifestyles is crucial, 
while implementing effective strategies to develop stress-prevention mechanisms. This proactive 
approach becomes critical in preventing elevated stress levels from escalating into more severe health 
conditions. 

Accordingly, the damaging effects of stress extend beyond individual experiences, influencing 
broader societal dynamics. Recognizing stress’ critical role in health outcomes, there is a growing need 
for innovative approaches to predict and manage stress levels. With the widespread adoption of 
wearable devices and interconnected devices capable of acquiring high-quality physiological data, 
there is a growing interest in leveraging these technologies to predict stress levels in real time. Recent 
literature [2] affirms the feasibility of objectively detecting stress through the analysis of biological 
data. 

This scientific review aims to outline the current landscape of stress assessment, providing 
insights into the advancements, challenges, and future directions within this rapidly evolving domain. 
Through the synthesis of existing research, the main objective is to contribute to a nuanced 
understanding of the potential of wearable technology in objectively assessing and predicting stress 
levels in real time. With rising concerns regarding stress, this review explores the potential impact of 
wearable devices on individual and public health outcomes [1–3]. It is imperative to underscore the 
significance of cardiometabolic diseases as a paramount public health concern due to their escalating 
prevalence worldwide. These innovative technologies facilitate assessing diverse health-related 
outcomes spanning molecular, clinical, and lifestyle domains. Currently, wearable devices equipped 
for continuous and longitudinal health monitoring outside traditional clinical settings offer valuable 
insights into varied populations’ health and metabolic status, ranging from healthy individuals to those 
at different disease stages. We present an overview of the most relevant wearable and digital devices 
for evaluating indicators of cardiometabolic diseases. Additionally, we discuss how data acquired from 
such devices can advance our understanding of metabolic disorders, improve diagnostic accuracy, 
identify early-disease markers, and inform personalized treatment and prevention strategies [4]. 

Furthermore, the objective is to provide a comprehensive overview of the current knowledge 
landscape, evaluate the strengths and limitations of previous models and methodologies, and identify 
research gaps that have yet to be addressed. More specifically, the primary focus areas to be covered 
include: 

i) Physiological indicators of stress: Reference to the physiological changes associated with stress, 
explicitly emphasizing metrics that wearable devices can record. Wearable sensors can continuously 
monitor physiological parameters like heart rate (HR) and breathing patterns. This real-time data can 
offer valuable insights into an individual’s mental health. Specifically, variations in HR may serve as 
an indicator of stress or anxiety [5,6]. This review will emphasize the current comprehension of the 
connections between these indicators and stress levels, evaluating the uniformity of these associations 
across various populations. 
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ii) Wearable devices in stress monitoring: Reference the current utilization of wearable devices 
for collecting physiological data in stress prediction. Wearable sensors provide individuals with real-
time feedback on indicators or biomarkers of their health, allowing them to recognize patterns that may 
indicate the need for behavioral interventions [7]. For instance, a wearable sensor can promptly notify 
an individual of an elevated HR, potentially indicating the presence of stress or anxiety. The review 
will assess the effectiveness of these devices in real-time monitoring of physiological indicators, 
evaluating their reliability in measuring stress-related changes. Nevertheless, it is crucial to 
acknowledge the various challenges of utilizing wearable sensors as stress detectors. These challenges 
encompass concerns regarding the accuracy and reliability of the collected data and issues surrounding 
the privacy and security of the information. It is, therefore, essential to consider the practical 
implications of integrating wearable devices into stress management interventions [8]. 

iii) Research on stress prediction models: Reference to established models that utilize 
physiological data, such as heart rate variability (HRV) and sleep and breathing patterns (or even 
cortisol levels), for predicting stress levels. Continuous advancements in biotechnology are crucial for 
promoting and maintaining human health. These upgrades manifest in various aspects, including the 
integration of wearables, the implementation of data visualization, the support of artificial intelligence 
(AI) and machine learning (ML) in decision-making [9], and the incorporation of other state-of-the-art 
solutions. The review encompasses an assessment of the methodologies employed, the accuracy and 
reliability of predictions, and the limitations or challenges encountered in these models. 

Respectively, stress responses encompass intricate physiological mechanisms designed to aid the 
body in addressing perceived threats or challenges. These responses are governed by diverse pathways 
and systems, including the autonomic nervous system (ANS) with its sympathetic and parasympathetic 
branches [10,11], as well as the endocrine system, notably the hypothalamic-pituitary-adrenal (HPA) 
axis [12]. The sympathetic nervous system (SNS), often termed the "fight or flight" system, activates 
in response to perceived threats, triggering the release of neurotransmitters like norepinephrine and 
epinephrine [13]. This activation elicits physiological changes such as heightened HR, lung airway 
dilation, increased blood flow to muscles, and enhanced alertness. Conversely, the parasympathetic 
nervous system (PNS) orchestrates the body’s “rest and digest” response [11], counterbalancing 
sympathetic activation by inducing relaxation responses like lowered HR, airway constriction, and 
improved digestion. Meanwhile, the HPA axis assumes a pivotal role in stress response regulation. 
Upon stress perception, the hypothalamus secretes corticotropin-releasing hormone (CRH), 
stimulating the pituitary gland to release adrenocorticotropic hormone (ACTH) [13]. ACTH then 
prompts the adrenal glands to release cortisol, the primary stress hormone. Cortisol regulates energy 
metabolism, inflammation suppression, and immune function modulation. Prolonged HPA axis 
activation and elevated cortisol levels can lead to adverse health effects, including compromised 
immune function and increased susceptibility to chronic diseases. 

In terms of methodology and search strategies, the objective was to present a thorough 
examination of the subject matter within the confines of a concise review. The methodology 
encompassed targeted searches conducted across reputable academic databases, notably PubMed, 
Google Scholar, and pertinent conference proceedings. We employed a combination of specific 
keywords and phrases appropriate to the topic to identify relevant literature. The selection of references 
for Table 1 was based on the pertinence and significance of each publication to the themes under review, 
focusing on seminal works and recent contributions that significantly advanced understanding. Tables 
3 and 5, detailing leading products/services and repositories, respectively, were compiled following a 
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thorough review of publicly available resources. Factors such as impact and relevance to the 
overarching theme of the paper guided our selection process. This methodological rigor ensured a 
balanced and insightful exploration of the contemporary landscape of stress assessment and the 
utilization of wearable technology. 

This review is organized as follows: Section 2 presents related work for stress monitoring, Section 
3 provides details on the physiological indicators of stress, details on the wearable devices in stress 
monitoring, commercial products and services that utilize stress-detection software, discussion on 
existing stress prediction models, and reference to open repositories and databases of stress-related 
data. Finally, Section 4 presents a summary and suggestions for future work. 

2. Related work 

The identification of stress is a highly researched domain within the range of an individual’s 
health, and numerous researchers have contributed to this field by presenting various approaches to 
measuring stress [14,15]. Some have focused on “contactless” strategies, utilizing smartphone data 
(e.g., call/SMS logs, app usage, motion), voice processing, facial expression analysis, or keyboard 
typing behaviors. However, this review will focus on the use of wearable devices to measure 
physiological data for stress assessment. Notable works, like the one by Healey and Picard [16], 
demonstrated early success in detecting stress using physiological sensors. However, the 
environmental contexts in which stress detection is intended vary, ranging from constrained lab 
environments to unconstrained real-life scenarios. Some studies employ custom sensor suites, while 
others use commercially available sensors. The choice of sensors impacts factors like signal quality, 
reproducibility, and cost. 

The literature review also highlights diverse ML approaches for stress detection, including rule-
based techniques, factor graph models, ensemble learning, and deep learning. Various studies utilize 
different physiological features and classifiers, leading to a wide range of reported accuracies. Despite 
the considerable efforts, there remains an open space for further exploration and improvement of 
prediction accuracy. The complexity of developing reliable stress-monitoring devices is underscored 
by the need for more consensus on the optimal approach and the imperative for thorough statistical 
analyses. Previous works in physiological stress sensing have employed various wearable sensors, 
such as electrocardiography (ECG) sensors [17–20], electrodermal activity (EDA) sensors [21–24], 
inductive respiration (RIP) sensors [20,22,24,25], blood volume pulse (BVP) finger clip       
sensor [26–28], and electromyography (EMG) sensors [29–33], and wearable devices such as Fitbit 
Sense, Empatica E4, or Shimmer GSR3+ [34]. These sensors have been utilized in diverse conditions, 
including lab-induced stress, constrained real-life activities (e.g., driving, call centers, sleeping), and 
free-living conditions [23]. 

In connection with the above, physiological measures like EDA, HR, and HRV are commonly 
used in studies related to well-being and affection [35]. Some studies propose smartwatch-based 
systems for discrete and cost-effective stress detection during daily activities. Kulkarni et al. [36] 
reviewed smart devices for health sensing from 2017 to 2022, covering diverse projects and methods 
for data collection and analysis, including exploring supplementary data for enhancing stress detection 
systems. 

The role of classification algorithms and ML techniques in stress detection is pivotal, as outlined 
in Table 3. Numerous studies have utilized a spectrum of algorithms, including but not limited to Naive 
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Bayes, K-Nearest Neighbors Algorithm (KNN), Decision Trees (DT), Support Vector Machines 
(SVM), Random Forests (RF), Multi-layer Perceptron, AdaBoost, and Logistic Regression. 
Additionally, Support Vector Machine (SVM), Bayesian Networks (BN), Artificial Neural Network 
(ANN), Fuzzy Logic, and other computer-aided diagnostic (CAD) tools have been applied for 
classification purposes [37–43]. 

In the existing literature, multiple studies have explored ensemble learning approaches in stress 
detection. For instance, Khullar et al. [44] introduced an ensemble model for stress detection utilizing 
physiological signals associated with anxiety. Issa [45] employed a two-step ensemble methodology 
for detecting stress in automobile drivers. Likewise, Di Martino & Delmastro [46] utilized an ensemble 
model for predicting physiological stress. Lee et al. [47] proposed an ensemble model that integrates 
deep learning models, including gated recurrent units, convolutional neural networks (CNN), and 
recurrent neural networks. Notably, the selection of sensors, data types, and classification algorithms 
varies among these studies, resulting in disparate classification accuracies.  

Exploring stress identification through wearable devices and physiological data has witnessed 
significant advancements, with researchers employing diverse methodologies and technologies. 
Incorporating diverse physiological features and classifiers has led to a spectrum of reported accuracies. 
However, despite considerable efforts, there remains an open space for further exploration and 
enhancement of prediction accuracy. The significance of classification algorithms in stress detection 
cannot be overstated, with studies employing a spectrum of algorithms (Table 3). Ensemble learning 
approaches have been particularly prevalent, as evidenced by studies introducing models designed for 
stress detection in various contexts [22,48]. 

The landscape of stress identification through wearable devices and physiological data is 
characterized by its complexity, diversity, and ongoing exploration. The integration of advanced 
technologies, ML techniques, and diverse physiological measures holds promise for the development 
of more accurate and reliable stress-monitoring devices in the future. However, the interdisciplinary 
nature of this field necessitates continued collaboration and research to address existing challenges and 
unlock the full potential of stress detection in diverse real-life scenarios [9,34,36,40]. 

3. Physiological indicators of stress 

3.1. Physiological indicators of stress 

A fundamental consideration in the assessment of stress involves the examination of its diverse 
components. Initially, stress specific to testing situations was perceived as a unified and one-
dimensional concept by Mandler and Sarason [49]. Liebert and Morris [50] later introduced a 
distinction between “worry” (cognitive) and “emotionality” (affective) components, deviating from 
the initial dichotomous perspective on anxiety presented by Scherer [51]. Subsequent research 
embraced a multicomponent framework, acknowledging the interrelated nature of cognitive, affective, 
motivational, and physiological elements, departing from the earlier binary viewpoint on anxiety. This 
widely recognized classification highlights the theoretical differences among these components while 
emphasizing their interconnectedness. Although theoretically distinct, these emotional components, 
within the range of stress, demonstrate interrelated characteristics. These components encompass 
intrusive cognitive thoughts, affective expressions of nervousness, a motivational tendency to 
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withdraw from the situation, and heightened physiological arousal, such as an elevated HR, increased 
perspiration, and physiological arousal [52–54]. 

Physiological responses to stress span cardiovascular changes like heightened HR and blood 
pressure, respiratory alterations such as rapid breathing and muscular tension, cognitive enhancements 
in alertness and focus, metabolic shifts like increased glucose release for energy, and immunological 
adjustments involving the suppression of non-essential immune functions. Comprehending these 
physiological pathways and responses is vital for effectively assessing and managing stress. 
Monitoring parameters like HRV, cortisol levels, and immune function can offer valuable insights into 
an individual’s stress levels and overall well-being. 

Stress responses involve a complex interplay of physiological pathways aimed at aiding the 
organism in dealing with perceived challenges. These mechanisms involve the ANS, which consists of 
the sympathetic and parasympathetic divisions, and the endocrine system, particularly the HPA    
axis [12,55]. Upon encountering stressors, the SNS activates, leading to the release of 
neurotransmitters like epinephrine and norepinephrine. This activation induces various physiological 
changes, including increased HR, bronchodilation, enhanced blood flow to skeletal muscles, and 
heightened alertness. In contrast, the PNS initiates the body’s “rest and digest” response, opposing 
sympathetic arousal by reducing HR and bronchoconstriction and promoting gastrointestinal activity. 
Concurrently, the HPA axis regulates stress responses by releasing CRH from the hypothalamus and 
stimulating the anterior pituitary to release ACTH, which, in turn, triggers the adrenal glands to secrete 
cortisol, the primary stress hormone. Cortisol modulates various physiological processes, including 
energy metabolism, inflammation regulation, and immune function [13]. Prolonged HPA axis 
activation and elevated cortisol levels can lead to adverse health consequences, such as compromised 
immune function and increased susceptibility to chronic diseases. Physiological responses to stress 
encompass changes in cardiovascular function, respiratory patterns, muscle tension, cognitive function, 
metabolic adjustments involving increased glucose release, and alterations in immune resource 
allocation, prioritizing immediate threats. Additionally, stress can influence metabolic biomarkers, 
antioxidants, glucose levels, hemoglobin, C-reactive protein (CRP), cytokines (including pro-
inflammatory and anti-inflammatory cytokines), and tumor necrosis factor (TNF). Furthermore, 
research indicates that stress can be assessed through various biomarkers like hair cortisol, salivary 
cortisol, and urinary cortisol levels, providing insights into the physiological impacts of stress on the 
body [54–58]. 

In the last two decades, there have been considerable advancements in stress assessment, 
coinciding with the development of physiological and biochemical sensing technologies. The sensors 
are a solid foundation for connected health solutions and proactive care in addressing various 
conditions related to or induced by stress [59,60]. Stress is characterized as a disturbance in an 
individual’s homeostatic balance, prompting the body to initiate what is known as the stress   
response [61]. Stress can be acute, an immediate reaction to a stressor, or chronic, a prolonged state 
resulting from constant stress stimuli [62]. Prolonged exposure to chronic stress may push the body to 
a point where it can no longer achieve a balanced state, rendering the individual unable to manage 
stressors effectively. The activation of the stress response induces various physiological changes driven 
by the stimulation of the SNS and the inhibition of the parasympathetic system. While the stress 
response can manifest differently, it typically involves the release of stress hormones that heighten the 
body’s alertness. Consequently, there is an elevation in HR, blood supply to the muscles, respiratory 
rate, skin temperature (ST) (attributed to increased blood circulation), and cognitive activity, among 
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other responses. Quantitative assessment or stress monitoring often involves analyzing stress-specific 
hormonal responses and other biomarkers affected by the stress response [61,63]. 

Stress evaluation can be conducted through subjective means, employing structured 
questionnaires and self-reporting forms, which aligns with standard clinical practice. Alternatively, 
objective assessment measures various bodily responses to stress [64]. Standard tools in clinical stress 
evaluation include self-reported questionnaires, exemplified by Cohen’s Perceived Stress Scale   
(PSS) [4], and self-reported visual scales, such as the Visual Analogue Scale for Stress (VASS) [65]. 
Biomedical researchers utilize biochemical markers like cortisol and α-amylase to detect stress, often 
inducing a stress state in subjects through the Trier Social Stress Test (TSST) [66–70]. 

Extensive literature exists on the monitoring of stress through the physiological or biochemical 
responses of the human body. However, a consensus remains elusive regarding the sensitivity and 
specificity of these physiological and biochemical indicators for identifying stress. The variability in 
sensitivity and specificity can be attributed to factors such as the responsiveness of the stress reaction, 
sensor sensitivity, the nature of stimulants, sample size in the study, experimental design, and other 
variables [41]. The literature review emphasizes the diverse range of wearable sensors that have been 
applied in various conditions, from controlled laboratory-induced stress to real-world activities and 
free-living scenarios. The selection of sensors underscores the necessity for adaptability to different 
stress-inducing situations. While there has been a notable surge in interest in physiological indicators 
over the past decade to complement traditional self-reports of emotions [71], applying these measures 
remains labor-intensive and costly, and interpreting findings within the context of existing educational 
research and theories remains challenging [10]. Until now, only a restricted number of studies have 
combined electrodermal measurements with self-reported stress assessments. Integrating 
electrodermal measures with self-report measures of anxiety is limited, with physiological measures 
commonly integrated into studies focused on well-being and affection. On the other side, smartwatch-
based systems offer unobtrusive and cost-effective stress detection during daily activities, with devices 
like Empatica E4, Shimmer3 GSR+, or Movisense EdaMove providing a continuous assessment of 
physiological indicators, opening avenues for exploring the relationship among control, anxiety 
components, and daily performance. 

Biochemical stress indicators offer better detection and monitoring capabilities, but a drawback 
is that many of these indicators require invasive measurement methods. Some examples include 
cortisol, which typically requires the collection of saliva, blood, or urine samples for analysis; 
catecholamines such as epinephrine and norepinephrine, which are usually measured through blood 
samples; and certain inflammatory markers like interleukin-6 (IL-6), which also require blood samples 
for assessment [54,58,72]. In cases where noninvasive measurement is feasible, extracting the 
necessary hormones from collected samples takes time, making real-time stress monitoring devices 
impractical. There is potential in combining biochemical indicators, such as cortisol level measurement, 
with physiological indicators like HR, respiratory rate, and activity monitoring to create more resilient 
and precise stress-monitoring devices. Table 2 references biophysiological* and biochemical** stress 
parameters (sorted year-wise). 
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Table 1. Biophysiological* and biochemical** parameters of stress. 

Ref Year Signals Stressors 

[68] 2010 ECG, photoplethysmography (PPG), EDA, and 

ST [*BPH] 

Public speaking, mathematics, 

mental, social, and physical 

challenges 

[63] 2010 Salivary alpha-amylase, plasma catecholamines, 

blood pressure, and HR [**BC] 

College academic final exam 

[55] 2010 EEG, EDA PPG, and respiratory [*BPH] International Affective Picture 

System (IAPS) 

[94] 2011 ECG, respiratory, EDA, and EMG [*BPH] Perceived Stress Scale (PSS) 

questionnaire 

[95] 2012 Hair cortisol [**BC] Daily life stress (3 months) 

[96] 2012 ECG, EDA, and accelerometer (ACC) [*BPH] Stroop color test and mental 

arithmetic problems based on the 

Montreal Imaging Stress Task 

(MIST) 

[97] 2013 Sweat and saliva samples [**BC] Intense exercise 

[98] 2013 ECG, EMG, galvanic skin response (GSR), and 

ST (only concern on ECG and HRV) [*BPH] 

Stroop word–color test 

[99] 2014 ECG, respiratory, body temp, GSR [*BPH] Hajj pilgrimage (mandatory annual 

pilgrimage for all Muslims)  

[69] 2015 EDA and PPG [*BPH] Trier Scope Stress Test (TSST) 

[97] 2015 ECG and thoracic electrical bioimpedance (TEB) 

measurements [*BPH] 

Films game based on the addition 

[100] 2016 Steroid hormones in hair [**BC] Perceived Stress Questionnaire 

(PSQ) 

[41] 2016 EDA, PPG, and sociometric badge for recording 

[*BPH] 

STAI (State-Trait Anxiety Inventory) 

and TSST 

[34] 2017 ECG, EDA, and respiratory [*BPH] Real driving environment 

[101] 2017 EDA, ST, accelerometer (ACC), and PPG [*BPH] Randomly generated equations 

(solved verbally) 

[102] 2017 ECG and respiratory [*BPH] Montreal Imaging Stress Task 

(MIST) 

[103] 2017 PPG and inertial motion and driver behavior 

[*BPH] 

Euro truck driving simulator 

[56] 2018 Biochemical (salivary cortisol) and physiological 

domains (HRV measures) [**BC] 

Academic final examination, 

Psychological stress response 

inventory 

[104] 2018 ECG [*BPH] Daily life stress 

[105] 2018 PPG, ACC, and EDA [*BPH] City car driving simulator 

[106] 2018 EDA only ECG, EMG, and respiratory [*BPH] Driving on the highway in the city 

Continued on next page 
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Ref Year Signals Stressors 

[107] 2018 Arginine, phenylalanine, acylcarnitines, 

sphingomyelin [**BC] 

Night shifts 

[70] 2019 ST, HR pulse wave EDA, ECG, PPG, copeptin, 

prolactin (blood), cortisol, and alpha-amylase 

(saliva) [**BC] 

Trier Social Stress Test (TSST) 

[108] 2019 PPG and endocrine (salivary) cortisol [**BC] Childhood Trauma Questionnaire 

(CTQ) 

[108] 2019 Oxy-hemoglobin (oxy-Hb) [**BC] Oxy-hemoglobin (oxy-Hb) 

[108] 2019 PPG, EDA, GSR, and ACC [*BPH] Summer camp (training, the contest, 

and free day) 

[109] 2019 EDA [*BPH] Driving on the highway in the city 

[110] 2020 GSR [*BPH] Predefined PYSIONET dataset and 

driving on the highway in the city 

[111] 2021 Plasma cortisol [**BC] Daily life stress 

[112] 2021 Copeptin, neurophysin II, vasopressin [**BC] Daily life stress 

[113] 2021 Cortisol, adrenaline, 

alpha-amylase, copeptin, and prolactin [**BC] 

Positive and Negative Affect 

Schedule (PANAS), State-Trait 

Anxiety Inventory (STAI), Self-

Assessment Manikins questionnaire 

(SAM), Short Stress State 

Questionnaire (SSSQ) 

[114] 2021 BVP, ST (TEMP), EMG, photoplethysmogram 

(PPG), and EDA [*BPH] 

Montreal Imaging Stress Task 

(MIST) 

[111] 2022 Salivary alpha-amylase from saliva sample 

[**BC] 

Various stressors related to school 

engagement  

[86] 2022 Salivary cortisol was analyzed using the IDS-

iSYS Multi-Discipline Automated System 

(Immunodiagnostic Systems Limited) [**BC] 

Triggered by stressors in individuals 

with regular, non-clinical functioning 

[111] 2022 Oxidative stress (urine analyzed using an 

immunoassay kit OxiSelect™ 8-iso-Prostaglandin 

F2a ELISA Kit from Cell Biolabs, Inc) [**BC] 

Various stressors related to school 

engagement and daily activities 

[57] 2023 Salivary cortisol [analyzed cortisol awakening 

response (CAR) and the diurnal baseline cortisol 

(DBC)] [**BC] 

Daily activities 

3.2. Wearable devices in stress monitoring 

Implementing an automated stress-monitoring system benefits the self-management of mental 
and, consequently, physical well-being in a wide spectrum of individuals navigating the stress-laden 
environments of modern society. The intricacies that render the monitoring of stress a challenging and 
research-worthy endeavor include: i) subjectivity of stress: stress is highly subjective, with stimuli 
triggering the stress process varying between individuals; ii) defining ground truth: establishing the 
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ground truth for stress detection proves challenging due to the subjective and continuous nature of the 
stress process, making it difficult to delineate the onset, duration, and intensity of a stress event; iii) 
indirect monitoring of stress: the stress response encompasses physiological, behavioral, and affective 
components. While certain aspects of the physiological response can be directly monitored using 
wearable devices (e.g., increased HR, sweating rate), there are no direct methods for monitoring the 
behavioral and affective components. 

Recent technological advancements have introduced wearable biosensors (e.g., ECG sensors, 
sweating-rate sensors [73], respiration-rate body sensors [74]) into daily life. The proliferation of 
wearables with bio-signal acquisition capabilities presents significant opportunities for advanced 
machine learning–enabled health monitoring and intervention applications. While literature 
demonstrates the feasibility of objectively detecting stress through biological signals, existing 
frameworks are often designed for controlled settings. Stress detection in everyday scenarios 
introduces inherent challenges such as real-time data collection and analysis, lower signal quality due 
to motion and noise artifacts (MNAs), and difficulties in collecting self-reports owing to limited user 
adherence [75]. Moreover, the personalization of stress monitoring in everyday settings poses 
additional challenges. User-specific features may emerge based on individual characteristics, 
behavioral patterns, physiology, context, and sensor setup/configuration, resulting in more variability 
than in controlled settings. These differences could degrade the performance of general classifiers in 
everyday scenarios.  

Implementing an automated stress-monitoring system holds great promise for enhancing the self-
management of mental and physical well-being in the complex landscapes of contemporary society. 
The challenges associated with stress monitoring have been acknowledged, including the subjective 
nature of stress, difficulty defining ground truth, and the indirect nature of monitoring certain 
components. Nevertheless, recent technological strides in wearable biosensors, encompassing GPRS 
body control sensors, Bluetooth trackers, and smart clothes sensors, have opened avenues for 
leveraging advanced ML in health monitoring and interventions. Table 2 demonstrates the placement 
of different wearable biosensing devices used for stress monitoring. 

Table 2. Summary of possible sites for wearable sensing technologies placement. 

 Biosensing devices  

 GPRS body control  

 Smart glasses  

 Smart watch  

 Smart bracelets/wristbands  

 Smart ring  

 Bluetooth key tracker  

 Smart belt  

 Smart clothes (shirts, pants, shoes, socks)  

3.3. Commercial products and services for stress detection 

Considering the heightened acknowledgment of health issues associated with stress and the 
advancements in wearable biosensor technologies, a spectrum of commercial products and services 
has arisen, integrating stress-sensing software into their functions. 
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Indicatively, they are divided into the following categories: i) smart wearables with embedded 
stress monitoring, ii) biofeedback devices, iii) stress-responsive mobile applications, iv) emotion 
recognition software, v) stress detection and monitoring platforms, etc. 

Smart wearable devices, ranging from smartwatches to fitness trackers, employ sensors such as 
ECG sensors, sweating-rate sensors, and respiration-rate body sensors to capture physiological 
indicators associated with stress. These wearables conduct real-time analysis of the gathered data using 
advanced ML algorithms, providing users with immediate insights into their stress levels. In parallel, 
biofeedback devices, such as HRV monitors and galvanic skin response sensors, contribute additional 
layers of physiological data, enabling a more comprehensive understanding of the user’s stress profile.  

Mobile applications have been devised to complement stress-monitoring endeavors with wearable 
devices. These applications connect with wearables, collecting and consolidating data for a 
comprehensive stress analysis. Users can receive personalized stress reports, trend analyses, and 
actionable recommendations on managing stress. ML integration enables continuous accuracy 
improvement by adapting to individual stress response patterns over time. 

Accordingly, emotion recognition software, wearable devices, and mobile applications gain 
enhanced capabilities. Emotion-recognition algorithms can analyze facial expressions, voice tone, and 
speech patterns to discern emotional states. Integrating this software with wearables and apps augments 
the understanding of stress by incorporating emotional context. This synergy enables stress-detection 
platforms to offer more nuanced and personalized stress management guidance, including tailored 
coping strategies and interventions aligned with the user’s emotional and physiological state. As 
technology evolves, the convergence of biofeedback and emotion recognition further refines the 
precision and effectiveness of stress management on an individualized level. Table 3 illustrates a 
sample of leading technological products and services employing stress-detection software. 

Table 3. Leading technological products and services employing stress detection software. 

Type of device/Application Commercial name Parameters monitored 

Wearable device Empatica E4 EDA, temperature, HRV, and 

motion measurement 

Wearable device(s) VivoSense Wearable sensor technologies 

monitoring ECG, EMG, and EDA 

Wearable device Moodmetric Ring EDA and stress level 

measurement 

Wearable device Fitbit Stress tracking features, HRV, and 

stress management tools 

Wearable device Hexoskin Smart Shirt ECG, HRV, and breathing rate 

monitoring  

Wearable device Oura Ring HRV and sleep patterns 

monitoring 

Wearable device Garmin (Vivosmart) HRV, various physiological 

metrics 

Wearable device(s) Amazfit Band Series Stress level monitoring, HRV 

analysis 

Continued on next page 
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Type of device/Application Commercial name Parameters monitored 

Wearable device WHOOP Strap HRV, stress, and recovery 

optimization 

Wearable/biofeedback device(s) Biostrap HRV and sleep pattern 

monitoring, activity level tracking 

Biofeedback device/app Elite HRV HRV monitoring 

Biofeedback device Wild Divine’s IomP EDA measurement, biofeedback 

games 

Biofeedback device(s)/app Shimmer3 GSR+ (Galvanic Skin 

Response) 

Changes in skin conductance 

measurement, ST 

Biofeedback device HeartMath Inner Balance HRV measurement, stress insights 

Biofeedback device EmWave by HeartMath EmWave devices for HRV 

biofeedback 

Biofeedback device Spire Health Tag Respiratory patterns tracking,  

Biofeedback device/app Muse brain activity (EEG) 

measurement, HRV 

Biofeedback Device/app/platform Welltory Biofeedback and HRV 

analyzation  

Mobile app Biospectal OptiBP Monitoring blood pressure via 

smartphone’s camera 

Emotion recognition software/ 

platform 

Affectiva Emotion recognition software, 

facial expression analysis, muscle 

tension 

Emotion recognition software Microsoft Azure Face API Facial expression analysis, 

emotion detection, muscle tension 

Emotion recognition software Beyond Verbal Vocal emotion analysis, speech 

patterns, emotion detection, 

muscle tension 

Emotion recognition software Noldus FaceReader Facial expression analysis, 

emotion recognition, HRV 

Emotion recognition software/app iMotions Facial expression analysis, a 

platform for biometric research 

Platform BioBeats Combination of wearable devices 

and ML algorithms for stress 

monitoring, insights based on 

physiological data 

Platform/App/Biofeedback 

Device 

Unyte iom2 Stress detection and monitoring, 

HRV, ST 

Platform/Wearable Devices Neumitra Physiological signals 

measurement, HRV, stress 

detection, and real-time feedback 

While the feasibility of objectively detecting stress through biological signals has been 
demonstrated, the transition from controlled settings to everyday scenarios introduces inherent 
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complexities. Real-time data collection and analysis, mitigating motion and noise artifacts, and 
overcoming challenges in obtaining self-reports due to limited user adherence pose significant hurdles. 
Furthermore, the personalization of stress monitoring in daily life adds another layer of difficulty, with 
user-specific features stemming from individual characteristics, behavioral patterns, physiology, 
context, and sensor configurations, contributing to heightened variability. 

Despite the challenges mentioned above, the proliferation of wearable biosensing devices presents 
valuable opportunities for advancing stress-monitoring technologies. As illustrated in Table 2, the 
placement of various devices showcases the diversity in approaches. It underscores the need for 
continued research and innovation in tailoring stress-detection frameworks to meet the demands of 
real-world, everyday scenarios. As technology undergoes further advancements and corresponding 
products and services enter the commercial sphere, as indicated in Table 3, addressing these challenges 
will be crucial in realizing the full potential of automated stress monitoring for improving overall well-
being in diverse populations. 

3.4. Stress prediction models 

In the past, researchers have employed various devices and sensors to record physiological signals. 
While there is an overlap in the physiological signals measured across different studies, more needs to 
be explored into whether machine-learning models trained on data from one device can effectively 
generalize to the same physiological signal collected from a different device type. Research efforts 
have established a standard stress-detection framework involving signal cleaning, data normalization, 
segmentation, feature computation, classifier training, and performance assessment. 

As previous research has established a groundwork for stress detection, extensive research has 
concentrated on optimizing these steps by experimenting with different normalization techniques, 
cleaning methods, features, window sizes, and machine-learning models. Mishra et al. proposed a two-
layered approach, considering stress in the preceding minute when making inferences about the current 
minute. This significantly enhances performance compared with standard single-model   
classification [76]. 

While stress-detection models based on physiological sensing demonstrate efficacy in controlled 
lab environments, their performance degrades when deployed in free-living conditions—a consistent 
trend across studies. A primary reason for this discrepancy is that the wearable sensors utilized in these 
studies measure the body’s physiological response to stress rather than stress itself. Free-living 
conditions can induce physiological responses that confound stress-detection models. Prior efforts 
have addressed this by accounting for physical activity in free-living conditions, improving model 
performance. However, focusing solely on physical activity may prove insufficient. Manual methods 
for stress measurement, such as examinations by psychologists and psychiatrists, are available but have 
disadvantages like cost and time. Technology offers an alternative, providing cost-effective and timely 
results. ML has been employed in stress detection, with studies utilizing models like random forest and 
support vector machines trained on physiological features. A hybrid ML model, combining two models, 
has shown promise in generating more significant stress detection results in accuracy and efficiency.  

Data from sensors undergo feature extraction, and ML or pattern recognition is employed to 
distinguish between stress and non-stress states (or baseline). ML algorithms fall into two primary 
categories. The first is supervised learning, where input and classification labels are provided to the 
model for prediction and classification. The second is unsupervised learning, where no labels are 
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provided, and the model groups input data based on inherent patterns or similarities. Typically, sensor 
data is recorded on the device and transmitted to a computer or the cloud for processing and analysis. 
In certain scenarios, such as simulated driving, participants’ wearable sensors are directly linked to a 
computer for real-time analysis during the experiment. As mentioned, various studies have utilized 
various algorithms, ML techniques, and other CAD tools (Table 4) for classification        
purposes [9,30,31,35,40]. 

Table 4. Summary of machine learning algorithms used in stress assessment. 

Algorithm Information 

Naive Bayes Naive Bayes is a probabilistic algorithm based on Bayes’ theorem. It 

assumes independence between features, making it computationally 

efficient. It is widely used in classification tasks, particularly in natural 

language processing. 

Bayesian Networks (BN) Bayesian Networks represent probabilistic relationships among 

variables using a directed acyclic graph. They are employed for 

reasoning under uncertainty and are valuable in medical diagnosis, risk 

assessment, and decision-making systems. 

K-Nearest Neighbors Algorithm 

(KNN) 

KNN is a simple and effective algorithm used for classification and 

regression tasks. It classifies data points based on the majority class of 

their nearest neighbors. 

Decision Trees (DT) Decision Trees are tree-like models that make decisions based on 

features. They are widely used for classification and regression. 

Decision trees are interpretable but prone to overfitting, which 

techniques like pruning can address. 

Support Vector Machines 

(SVM) 

SVM is a powerful algorithm for classification and regression tasks. It 

identifies a hyperplane that best separates data into classes. SVM is 

effective in high-dimensional spaces and is commonly used in image 

classification and bioinformatics. 

Random Forests (RF) Random Forests are an ensemble-learning method based on multiple 

decision trees. They enhance accuracy and mitigate overfitting by 

aggregating the predictions of individual trees. Random Forests are 

widely used for diverse machine-learning tasks. 

Multi-Layer Perceptron Multi-Layer Perceptron is an artificial neural network with multiple 

layers, including input, hidden, and output layers. It excels in learning 

complex patterns and is widely used in deep learning applications. 

AdaBoost AdaBoost is an ensemble-learning algorithm that combines weak 

learners to create a strong classifier. It assigns more weight to 

misclassified data points, emphasizing their importance in subsequent 

iterations. 

Logistic Regression Logistic Regression is a statistical method used for binary 

classification. Despite its name, it is a linear model widely used when 

the relationship between the dependent variable and predictors is 

logistic. 

Continued on next page 
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Algorithm Information 

Convolutional Neural Network 

(CNN) 

CNN is a deep learning algorithm for processing structured grid data 

like images. It utilizes convolutional layers to learn hierarchical 

features automatically. CNNs are widely employed in image 

recognition tasks. 

Artificial Neural Network 

(ANN) 

ANN is a computational model inspired by the human brain. 

Comprising interconnected nodes (neurons), it can learn complex 

relationships in data. ANNs are used in various fields, including 

finance, healthcare, and image processing. 

Fuzzy Logic Fuzzy Logic deals with uncertainty and imprecision in data by 

allowing partial membership to a set. It is employed in control 

systems, decision-making, and AI applications where exact reasoning 

is challenging. 

Computer-Aided Diagnostic 

(CAD) Tools 

CAD tools utilize various algorithms, including ML and statistical 

methods, to assist in medical diagnoses. They analyze medical data 

such as images, helping healthcare professionals make more informed 

decisions. 

3.5. Open repositories of stress-related data 

The developing discipline of stress detection via wearable technology has emphasized the 
significance of accessible and diverse datasets for progressing respective research. Acknowledging the 
important role of data in formulating and validating stress-detection models, various initiatives have 
been introduced to establish open repositories dedicated to stress-related physiological signals. These 
repositories support researchers by facilitating the collaborative exploration of stress-related datasets, 
contributing to the reproducibility and comparability of studies, and promoting a more robust 
understanding of stress detection across various contexts and populations. 

A noteworthy initiative in this domain involves the aggregation of datasets encompassing 
physiological signals derived from a spectrum of wearable devices. These datasets systematically 
incorporate a range of stress-inducing scenarios, including controlled lab environments and free-living 
conditions. Including diverse stressors and real-world contexts aims to address the observed 
performance degradation of stress-detection models when transitioning from controlled settings to 
everyday life. 

These open repositories feature raw physiological data and provide comprehensive annotations, 
including ground-truth labels for stress and non-stress states. The availability of labeled data is 
paramount for the training and evaluation of machine-learning models. Furthermore, some repositories 
incorporate metadata detailing the type of wearable sensors used, cleaning and normalization 
techniques applied, and other pertinent information that enhances the interpretability and 
generalizability of the datasets. 

Table 5 includes references to various open repositories that provide stress-related data for 
formulating and validating stress-detection models. 
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Table 5. Open repositories of stress-related data. 

Ref Repository/Database Description 

[115] WESAD (wearable stress and affect 

detection) (2018) 

A publicly available dataset for wearable stress and 

affect detection research. 

[116] AMIGOS (dataset for affect, 

personality, and mood research on 

individuals and groups) (2021) 

A dataset designed for emotion and stress 

recognition research, capturing physiological signals 

in response to multimedia stimuli. 

[117] MAHNOB-HCI (multimodal database 

for affective computing and human-

computer interaction) 

A multimodal dataset containing physiological 

signals for research in affective computing and 

human-computer interaction. 

[118] DREAMER: a database for emotion 

recognition through EEG and ECG 

signals from wireless low-cost off-

the-shelf devices 

A dataset designed for emotion recognition research, 

measuring EEG and ECG signals in response to 

audio and visual stimuli in film. 

[119] SWELL: the swell knowledge work 

dataset for stress and user modeling 

research 

A dataset containing data to study stress and user 

modeling collected from participants while 

performing work activities. 

[120–124] SEED (stress recognition using EEG 

and EDA databases) 

Focuses on stress recognition using 

electroencephalogram (EEG) and EDA signals 

[125] HEROES: a video-based human 

emotion recognition database 

A database for motion identification (whole-body 

movements) and recognition. 

[72] AffectNet database A database for facial expression, valence, and arousal 

estimation related to stress and emotion research. 

[126] DEAP (database for emotion analysis 

using physiological signals) 

A database containing physiological and 

electroencephalogram (EEG) signals for emotion 

analysis research. 

[3] BioVid heat pain database It investigates physiological responses to heat pain 

stimuli for pain and stress research. 

[127] PHYSIOLAB dataset A dataset containing physiological signals for 

studying stress and emotion in realistic scenarios. 

[128] AMASS (affect, motivation, and 

ambiance stress study) 

A dataset for studying the relationship between stress 

and emotions in realistic environments. 

[129] CREMA-D (crowd-sourced emotional 

multimodal actors dataset) 

A dataset for emotion and affective computing 

research, including physiological signals and facial 

expressions. 

[130] Multi-modal stress dataset (MMSD) 

for real-time, continuous stress 

detection 

MMSD is a multimodal acute stress dataset that 

includes physiological signals (ECG, PPG, EDA, 

and EMG) for stress detection. 

[131] The University of Waterloo Stress 

Dataset (UWS) 

UWS dataset contains physiological data, including 

HRV, EDA, and ECG, for stress identification in 

daily life conditions.  

[132] OpenFace Project The OpenFace project provides tools for facial 

behavior analysis, which can be used in stress and 

emotion research. 
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In summary, the accessibility of open repositories significantly facilitates the advancement of 
research by fostering collaboration and sharing datasets. Particularly significant is the available 
platform IEEE DataPort [77] (hosting various datasets, including those related to physiological signals 
and stress) and free repositories, such as the Open Science Framework (OSF) [78], a comprehensive 
platform supporting the entire research lifecycle, where researchers commonly disseminate their 
datasets. Zenodo [79], developed under the European OpenAIRE program, stands as a general-purpose 
open-access repository accepting datasets from diverse scientific fields. Figshare [80] offers 
researchers a platform to publicly share various research outputs, including datasets, while    
Data.gov [81] provides a comprehensive resource spanning diverse domains, offering access to 
numerous datasets that may benefit researchers exploring stress-related phenomena. Additionally, the 
NIH Data Sharing Repositories [82] curated by the National Institutes of Health serve as a valuable 
reference, encompassing various biomedical and health-related research areas. These open repositories 
contribute to the open science ethos and enhance accessibility and collaboration within the broader 
research community. 

4. Conclusions 

In summary, this scientific review explores the intricate domain of stress assessment, particularly 
on incorporating wearable technology for the objective evaluation and real-time prediction of stress 
levels. The pervasive nature of stress in contemporary society accentuates the imperative for proactive 
interventions, and the emergence of wearable devices represents the necessity for addressing this 
imperative. The investigation into physiological stress indicators underscores the importance of 
metrics that can be seamlessly captured through wearable devices. Particularly noteworthy is the 
continuous monitoring of parameters such as HR and breathing patterns, providing real-time data and 
valuable insights into individuals’ health. The correlations between these physiological markers and 
stress levels are examined, focusing on comprehending the consistency of these associations across 
diverse populations.  

With their capability for real-time data acquisition, wearable devices assume a pivotal role in 
monitoring stress. The review acknowledges their effectiveness in providing individuals with 
immediate feedback on health indicators, facilitating the timely detection of patterns indicative of 
stress or anxiety. Nonetheless, the review underscores the challenges associated with these devices, 
encompassing data accuracy, reliability, privacy, and security considerations. Furthermore, emphasis 
is placed on the imperative to formulate efficacious interventions based on the collected data, thereby 
underscoring the practical ramifications associated with integrating wearables into stress management 
strategies. The findings of Burtscher et al. emphasize the potential for wearables to extend beyond 
general stress management, particularly in addressing non-motor symptoms in Parkinson’s disease [83]. 
This fact highlights a promising avenue for future research and application, showcasing the broader 
impact of wearable systems on managing various stress-related symptoms across different medical 
conditions. 

The integration of wearable technology within clinical environments presents promising avenues 
for personalized medicine. These devices can facilitate early diagnosis, continuous remote monitoring, 
and customized interventions across various medical conditions [85–87,133]. Ongoing advancements 
in wearable technology, characterized by enhancements in sensor capabilities and algorithmic 
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sophistication, can significantly augment healthcare professionals’ capacity to evaluate and address 
stress-related symptoms among patients with diverse clinical profiles [86,87]. 

As wearable technology emerges as a versatile tool for clinical practice, the deployment of 
sophisticated biosensors within these devices stands poised to enable the timely detection of 
cardiovascular events through the meticulous monitoring of physiological parameters such as heart 
rate variability and blood pressure [87,88]. Likewise, integrating respiratory monitoring functionalities 
within wearables offers promising avenues for managing chronic respiratory ailments such as asthma 
and chronic obstructive pulmonary disease (COPD) [86,89,90]. Furthermore, the convergence of 
wearable glucose monitors with automated insulin delivery systems represents a notable stride in 
diabetes management, facilitating continuous monitoring of blood glucose levels and responsive 
insulin administration [91]. Furthermore, incorporating physiological sensors and machine learning 
algorithms into wearable devices implies significant strides in identifying and managing mental health 
disorders [5,39,92]. Additionally, wearable motion sensors hold considerable promise in rehabilitation 
and physical therapy, offering precise monitoring of movement patterns and real-time feedback to 
optimize therapeutic interventions [93]. These examples emphasize the transformative potential of 
wearable technology in healthcare, underscoring its capacity to afford personalized monitoring and 
intervention across various medical conditions.  

The investigation into established stress prediction models reveals the continuous progression of 
biotechnology, coupled with its integration with state-of-the-art solutions, including AI and ML. The 
evaluation encompasses the methodologies utilized, the precision and dependability of predictions, 
and the encountered limitations or challenges. This comprehensive analysis contributes to a 
differentiated comprehension of the current landscape, establishing a foundation for future 
advancements in stress prediction models. Exploring stress prediction models reveals advancements 
in biotechnology, integrating AI and ML. The review assesses methodologies, precision, and 
limitations, contributing to a nuanced understanding of the current landscape and laying the foundation 
for future advancements. However, fundamental difficulties persist, including lacking a universally 
accepted definition of stress, physiological responses to stressors, and confounding factors like 
physical activity, that challenge stress-detection models. Reproducibility issues arise from custom 
hardware usage without testing applicability across devices, studies, populations, or demographics. 
Moreover, stress monitoring is challenging due to subjectivity, making it difficult to define the ground 
truth. Stress events’ start, duration, and intensity are elusive, and the threefold stress response 
(physiological, behavioral, and affective) complicates direct monitoring. The difficulty in monitoring 
behavioral and affective responses highlights the need for innovative approaches. 

The impact of stress on individuals and society is significant, and wearable devices hold great 
potential for stress management. However, it is crucial to approach wearable technology integration 
carefully, considering its capabilities and limitations. This review highlights this field’s achievements 
while emphasizing the need for further investigation. Collaborative efforts among researchers, 
healthcare professionals, and technology developers are necessary to fully harness wearables’ 
transformative potential in stress management. Despite technical challenges, wearables have 
significant potential to mitigate the adverse effects of stress and contribute to improved individual and 
public health outcomes. 
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