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Abstract: Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorders of purine 
metabolic in which the cytoplasmic enzyme, hypoxanthine-guanine phosphoribosyltransferase 

(HGprt) is defective. Despite having been characterized over 60 years ago, however, up to now, there 

is no satisfactory explanation of how deficits in enzyme HGprt can lead to LND with the 
development of the persistent and severe self-injurious behavior. Recently, a role for epistasis 

between the mutated hypoxanthine phosphoribosyltransferase 1 (HPRT1) and the -amyloid 
precursor protein (APP) genes affecting the regulation of alternative APP pre-mRNA splicing in 
LND has been demonstrated. Furthermore, there were also some reported cases of LND developing 

thrombosis while APP is an important regulator of vein thrombosis and controls coagulation. 

Otherwise, the surface expression of HGprt enzyme was also observed in several somatic tissue 
cancers while APP and the APP-like protein-2 (APLP2) are deregulated in cancer cells and linked to 

increased tumor cell proliferation, migration, and invasion. The present review provides a discussion 

about these findings and suggests a potential molecular link between APP and HGprt via epistasis 
between HPRT1 and APP genes affecting the regulation of alternative APP pre-mRNA splicing. As a 



549	

AIMS Neuroscience                                                                   Volume 8, Issue 4, 548–557.	

perspective, expression vectors for HGprt enzyme and APP are constructed as described in Ref. # 24 

(Nguyen KV, Naviaux RK, Nyhan WL (2020) Lesch-Nyhan disease: I. Construction of expression 
vectors for hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme and amyloid precursor 

protein (APP). Nucleosides Nucleotides Nucleic Acids 39: 905–922), and they could be used as tools 

for clarification of these issues. In addition, these expression vectors, especially the one with the 
glycosyl-phosphatidylinositol (GPI) anchor can be used as a model for the construction of expression 

vectors for any protein targeting to the cell plasma membrane for studying intermolecular 

interactions and could be therefore useful in the vaccines as well as antiviral drugs development 
(studying intermolecular interactions between the spike glycoprotein of the severe acute respiratory 

syndrome coronavirus 2, SARS-CoV-2, as well as its variants and the angiotensin-converting 

enzyme 2, ACE2, in coronavirus disease 2019 (COVID-19) [43,44], for example). 

Keywords: -amyloid precursor protein (APP); hypoxanthine-guanine phosphoribosyltransferase 
(HGprt) enzyme; APP gene; hypoxanthine phosphoribosyltransferase 1 (HPRT1) gene; epistasis; 
epigenetics; alternative splicing; Lesch-Nyhan disease; COVID-19; thrombosis; cancer; antisense 

drugs 

 

1. Introduction 

Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorder of purine 

metabolism affecting 1 in 380,000 people, and caused by deficiency of the soluble cytoplasmic 
hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme (EC. 2.4.2.8; MIM 300800). This 

enzyme plays a central role in the generation of purine nucleotides from degraded DNA through the 

purine salvage pathways [1,2]. LND is characterized by hyperuricemia, gout, nephrolithiasis, tophi, 
motor disability, intellectual impairment, and self-injurious behaviors such as self-biting, self-hitting, 

eye poking, and others. Complete or severe deficiency of HGprt activity leads to LND (MIM 

300322). Self-injurious behavior is universal in LND. All information regarding the housekeeping 
hypoxanthine phosphoribosyltransferase 1 (HPRT1) gene that encodes the soluble cytoplasmic 

(HGprt) enzyme as well as the pathological conditions associated with the deficiency of HGprt 

activity found in LND and its variants: Lesch-Nyhan variants, LNVs, due to a partial deficiency of 
HGprt enzyme activity are described in [1–7]. These LNVs patients are characterized by 

consequences of overproduction of uric acid and variable spectrum of neurological manifestations, 

without the self-injurious behaviors [1–7]. How the loss of HGprt enzyme function affects the brain 
to cause the neurobehavioral syndrome in LND/LNVs, especially the self-injury of LND? For such a 

question, up to present, there is no valid answer. This has made difficult for the treatment 

development and has led to the absence of effective LND treatments [1–7]. Recently, however, it 

was demonstrated, for the first time, that expression of the -amyloid precursor protein (APP) gene is 
under epigenetic regulation resulting in the presence of several APP messenger (APP-mRNA) 

isoforms encoding diver APP protein isoforms ranging from 120 to 770 amino acids (with or without 
mutations and/or deletions), and APP-mRNA isoforms with a deletion followed by an insertion 
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(INDELS) accounted for epigenetic mechanisms in the regulation of alternative APP pre-mRNA 

splicing due to epigenetic modifications and/or epistasis (gene-gene interactions) as well as to 
epigenetic control of genomic rearrangements of APP gene [8,9]. In addition, a report on the 

quantification of various APP-mRNA isoforms in biological samples, especially for identifying the 

most abundant one that may be decisive for the normal status or disease risk has been described and 
applied for identifying the defective APP-mRNA isoform in LND. The results indicated, for the first 

time, a role for epistasis between mutated HPRT1 and APP genes affecting the regulation of 

alternative APP pre-mRNA splicing in which APP-mRNA isoform of 624 bp, with a deletion starting 
after 49 bp of the 5’ end of exon 3 followed by a complete deletion of exons 4–15, mutations in exon 

1: c.22C > T, p.L8F, and exon 3: c.269A > G, p.Q90R encoding APP207 isoform was the most 

abundant one in most of the LND patients. This APP207 isoform would be responsible for the 
neurobehavioral syndrome observed in these patients [10]. Furthermore, there were also some 

reported cases of LND/LNVs developing thrombosis [11–13] while APP is an important regulator of 

vein thrombosis and controls coagulation and neutrophil extracellular traps (NETs) formation via the 

Kunitz-type serine protease inhibitor (KPI)-containing the  soluble fragment of APP (APPs 
fragment) that were demonstrated in vitro to be effective inhibitors of the coagulation FXa, FIXa, 

FXIa, and FVIIa:tissue factor complex [14]. Then, APP pathway could be implicated in the 
development of neurological features as well as thrombotic events of LND/LNVs. Otherwise, the 

surface expression of HGprt enzyme was also observed in several somatic tissue cancers [15–21] 

while an important function of APP as a tumor growth factor in the pathogenesis of several somatic 
tissue cancers has been suggested and APP as well as APP-like protein-2 (APLP2) are deregulated in 

cancer cells and linked to increased tumor cell proliferation, migration, and invasion [22,23]. These 

findings suggest an emerging role of HGprt in cancer development. The present review provides a 
discussion about these findings and suggests a potential molecular link between APP and HGprt via 

epistasis between HPRT1 and APP genes affecting the regulation of alternative APP pre-mRNA 

splicing. As a perspective, expression vectors for HGprt enzyme and APP are constructed [24] and 
they could be used as tools for clarification of these issues. 

2. Cases reports 

2.1. HGprt and thrombosis from LND and LNV patients 

Immamura et al. [11] reported the association between LND and hypercoagulability in 4 

patients with elevated plasma fibrinopeptide A (FPA) level in which one patient complicated with 

cerebral infarction. Riaz et al. [12] reported extensive hypercoagulability in a patient with Leshh-
Nyhan variant (LNV) manifesting as recurrent myocardial infarctions, thromboembolic disease, and 

thrombus formation in bronchi despite triple anti-thrombotic therapy. Tewari et al. [13] reported a 

LND patient manifesting cerebral venous thrombosis and right cortical venous thrombosis (frontal 
and parietal veins) with thrombosis of the superior and left transverse sinus veins and a venous 

infarct in the right superior frontal gyrus (with cortical laminar necrosis). Cortical venous congestion 

was noted in the rest of the frontal and parietal cortices on the right. 
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2.2. HGprt and cancer 

Townsend et al. [15] reported the surface expression of HGprt enzyme on the plasma membrane 

of certain cancer cell lines such as the human non-small lung cancer cell lines NCI-H460 and A549. 

Recent works has showed that not only is the enzyme upregulated within malignant tumors such as 
lung, breast, colon, endometrial, and prostate cancers, it also has significant surface localization 

within some cancer cells such as colorectal cancer cell lines HT29, SW620, and SW480 [16–21]. An 

emerging role of HGprt as a biomarker not only for the characterization of human cancer, but also 
for its potential treatment, was therefore reported [18–21]. 

3. Discussion 

A major unsolved question is how the loss of HGprt enzyme function affects the brain to cause 

the neurobehavioral syndrome in LND/LNVs. Histopathological studies of autopsy tissues from 
LND patients revealed no signs suggestive of a degenerative process in any brain region [25]. On the 

other hand, and at the biochemical level, there was strong evidence that the neurological impairments 

in LND/LNVs were due to the effect of HGprt deficiency on the neural development, mainly, but not 
only, related to dopaminergic pathways [26,27]. Nevertheless, none of these studies showed the 

pathogenic mechanism whereby HGprt deficiency affects the neuronal development, and the 

mechanism by which features of LND/LNVs result from impaired purine metabolism is still not well 
understood. However, it was also documented that: 

- adhesion of HGprt-deficient neuroblastomas as well fibroblasts from patients with LND/LNVs 

exhibited dramatically enhanced adhesion compared to control [28], and could have consequences 
for the maturation of the central nervous system, as seen in the small brain size of LND/LNVs 

children [29–31]; 

- Alzheimer’s disease (AD) shares gene expression aberrations with purinergic dysregulation of 
HGprt deficiency [32]; 

- role for the APP is a key developmental gene related to cell-cell or cell-substrate adhesion, 

generation of neurons, their differentiation and migration, neurite outgrowth, regulation of synaptic 
function, and is important for brain morphology and highly coordinated brain function such as 

memory and learning has been suggested [33,34]. 

In an attempt to search for a link between LND/LNVs and APP, examination of the APP-
mRNA profile, the genomic APP-DNA from the fibroblast of normal subjects and LND/LNVs 

patients was then performed. The results obtained showed, for the first time, that different isoforms 

of APP-mRNA can exist [8,9] and the most abundant one quantitatively may be decisive for the 
normal status or disease risk in which the APP207 isoform was found in most of the LND  

patients [10]. Hence, the APP pathway is possibly implicated in the development of neurological 

features of LND/LNVs.  
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3.1. APP-HGprt and thrombosis in LND/LNVs 

The findings as described in [11–13] support the impact of APP on LND/LNVs and suggest a 

potential molecular link between APP and HGprt enzyme via epistasis between mutated HPRT1 and 

APP genes. Indeed, (1) the KPI domain, which is located in exon 7: amino acid residues 291–341 of 
the extracellular domain of APP770 and APP751 isoforms [34,35], has been shown in vitro to be a 

potent inhibitor of the coagulation FXa, FIXa, FXIa, and FVIIa: tissue factor complex [14,36,37]. 

Furthermore, in addition to brain, APP is also expressed in extraneuronal tissues, mostly in platelets 
in which the APP751 and APP770 isoforms are expressed [14]. On platelet activation and under 

physiologic conditions, the majority of APP is processed via the non-amyloidogenic pathway via -
secretase, which is activated by a Ca2+/calmodulin-dependent mechanism [14,34,35]. Then, the 

processing of APP from platelets releases the KPI-containing soluble APPs fragments [34,35] that 
are analogous to protease nexin-2 (PN-2) [14,36,37]. PN-2/APP and its KPI domain have been 

demonstrated in vitro to be potent inhibitors of trypsin, chymotrypsin, epidermal growth factor 

binding protein, the  subunit of nerve growth factor, and several key prothrombotic proteinases 
including factor XIa, factor IXa, factor Xa, and tissue factor: factor VIIa complex [14,36,37]. In vivo 

studies on APP/KPIR13I mutant mice (mutation of the center basic arginine 13 residue of the KPI 
domain to the similar sized, but hydrophobic, isoleucine) [37], and APP-knock out mice have 

indicated that, as a result, APP negatively controls thrombosis [14]. It is important to note herein that 

(a) APP and APLP2 (possesses a highly conserved KPI domain that is highly homologous with the 
one contained in APP) are expressed ubiquitously throughout the body, mostly abundant in the 

nervous system; whereas APP-like protein-1 (APLP1) does not contain a KPI domain, is 

predominantly expressed in the nervous system [34,35]. Here, similar to APP, APLP2 has been also 
shown in vitro and in vivo to have inhibitory activity against these hemostatic enzymes factors and 

regulates thrombosis [36]. These findings demonstrate an important role for platelet APP and APLP2 

(expressed at a lower level) are both proteolytic inhibitors, through the KPI activity of the protein, 
that possess overlapping and shared activities contributing to the regulation of blood clot formation, 

limiting thromboembolic diseases as well as cerebral venous thrombosis [14,36,37]; (b) the severity 

of the prothrombotic risk of APP and, more recently, APLP2 have been proposed as cerebral 
anticoagulants [36]; (2) as previously mentioned, expression of APP gene is under epigenetic 

regulation resulting in the presence of several APP-mRNA isoforms (with or without mutations 

and/or deletions), encoding diver APP protein isoforms accounted for epigenetic mechanisms in the 
regulation of alternative APP pre-mRNA splicing was reported [8,9]. In addition, a report on the 

quantification of various APP-mRNA isoforms in biological samples, especially for identifying the 

most abundant one that may be decisive for the normal status or disease risk has been described and 
applied for identifying the defective APP-mRNA isoform in LND [10].  

Taking into consideration these findings, a miss regulation of alternative APP pre-mRNA 

splicing could lead to the presence of the most abundant APP-mRNA isoform that would be a 
defective one encoding consequently a defective APP protein isoform (or its proteolytic fragments) 

with mutation and/or deletion in the KPI domain such as the APP/KPIR13I [37] or the 624 bp of APP-

mRNA isoform encoding APP207 isoform as described in [10]. These defective isoforms could affect 
anticoagulant functions and abolishes therefore their anti-thrombotic activity. In this case, the 
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overlapping compensatory effect of APLP2 would be decisive for the preservation of anti-thrombotic 

activity. This could explain the development of thrombosis from some LND/LNVs patients as 
described in [11–13].  

3.2. APP-HGprt and cancer 

Salvage enzyme, such as HGprt and is known as a housekeeping protein, in which its important 

role is responsible for the production of nucleotides such as GTP and ATP that are necessary to 
providing energy for several cellular process as well as for regulating cell proliferation [1,2]. 

Expression of HPRT1 is cytosolic within all normal cells and maintained stable and low levels in 

normal tissue. Here, some questions remain to be elucidated such as (a) How HGprt is able to 
localize to the surface?; (b) Does it provide any functional advantage to the cancer cell?; (c) 

Determine the reason some cells that express HGprt on the surface while others do not? The 

observed surface expression of HGprt on certain malignancies makes it promising as a biomarker in 
the early diagnosis of cancer such as lung and colorectal cancer [15,16,18]. Surface expression of 

colorectal cancer cells has been also observed for the vitamin D3 receptor, and serves as a maker for 

such a cancer [18]. It is important to note that APP is ubiquitously expressed in a broad spectrum of 
cell types including non-neuronal cells, and it is suggested to be involved in the growth of these  

cells [34,35,38], while the nature of APP has been mainly studied in neuronal cells due to its 

pathological significance in AD. Recently, increasing evidence suggests an important function of 
APP as a potent tumor growth factor in the pathogenesis of several somatic tissue cancers, and APP 

as well as APLP2 are deregulated in cancer cells and linked to increased tumor cell proliferation, 

migration, and invasion [22,23]. These findings suggest a potential link between APP and HGprt in 
cancer development. Indeed, it was demonstrated that expression of APP gene is under epigenetic 

regulation and a role for epistasis between HPRT1 and APP genes affecting the regulation of 

alternative APP pre-mRNA splicing was also suggested [8,9,10]. A miss regulation could lead to the 
presence of the most abundant APP-mRNA isoform that would be a defective one encoding 

consequently a defective APP protein isoform (or its proteolytic fragments) capable of promoting 

cancer growth. In cancer, cells rapidly divide, the need for nucleotides increases, and as a result 
HGprt is upregulated and some cancer cells express HGprt on the surface for the purpose of inducing 

changes in the metabolism and activity to maintain rapid tumor cell proliferation.  

4. Conclusion and perspective 

Epistasis is important, ubiquitous, and has become a hot topic in complex disease genetics such 
as AD, schizophrenia, autism, cancer, etc. in recent years. A gene does not function in isolation and 

by itself, but rather acts with other genes in a network, to influence complex traits of the  

complex disorders. However, the data supporting epistasis in complex human diseases are  
emerging slowly. This is due to different difficulties that we face in detecting and characterizing 

epistasis, such as challenges of modeling non-linear interactions, and in the interpretation of  

results [10,39–41]. APP, a housekeeping gene and an endogenous ligand 
(http://www.genenames.org/genefamilies/ENDOLIG) [10,34,35], is an important molecular hub at 
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the center of interacting pathways and acts as a permissive factor for various cellular functions, and 

therefore it is not surprising that altered APP processing may affect neuronal as well as non-neuronal 
cellular functions through a host of altered cellular and molecular events found in human diseases. 

Furthermore, -, - and -secretase processing of APP (at the N-and C-terminals of the A sequence) 

also occur under physiological conditions; this indicates that all fragments of APP, including the A 
peptide, are part of normal physiology. The targeting of the components of APP processing as a 

pharmacologic strategy will not be without consequences. Therefore, it is important to continue to 

investigate the normal function of APP. Understanding its physiological function will not only 
provide insights into the pathogenesis of diseases but may also prove vital in the development of an 

effective therapy. The role of epigenetics in rare diseases is a key issue in molecular physiology and 

medicine because the understanding about the mechanisms that explain the influences of epigenetic 
regulation in rare diseases will provide useful principles for other common and complex disorders 

such as AD. Epigenetic regulation determines not only what parts of the genome are expressed but 

also how they are spliced [23]. 
In conclusion, the examples discussed here suggest strongly a potential molecular link between 

APP and HGprt via epistasis between HPRT1 and APP genes, and highlight the impact of alternative 

splicing (AS) process on human disease, and clearly show that how AS is dynamically regulated and 
generates isoform diversity with critical functions and a misregulation of AS plays a large role in 

numerous human diseases. An accurate quantification of various APP-mRNA isoforms from 

different tissues for identification the most abundant APP-mRNA isoform that may be decisive for 
the normal status or disease risk is needed and antisense drugs are the potential treatments [10,42].  

As a perspective, for clarification of these issues, it is necessary to study the HGprt enzyme and 

APP using expression vectors for exploring their impacts on LND as well as other human diseases, 
especially the ones related to APP such as AD and cancer [23]. For such a purpose, the construction 

of expression vectors for HGprt and APP was performed [24]. These expression vectors, with or 

without the glycosyl-phosphatidylinositol (GPI) anchor, could be used as tools for (a) studying the 
effects of mutation on HGprt enzyme found from different LND/LNVs patients; (b) studying the 

emerging role of HPRT1 gene in cancer, especially exploring the effects for the surface expression of 

HPRT1 gene; (c) exploring the mechanism linking HGprt deficiency, purinergic pathways, and 
neural dysfunction of LND; (d) exploring the structure and the physiologic function of APP; (e) 

studying intermolecular interactions between APP and HGprt enzyme. 

It is also important to note herein that these expression vectors, especially the one with GPI 
anchor can be used as a model for the construction of expression vectors for any protein targeting to 

the cell plasma membrane for studying intermolecular interactions and could be therefore useful in 

the vaccines as well as antiviral drugs development (studying intermolecular interactions between the 
spike glycoprotein of the severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, as well as 

its variants and the angiotensin-converting enzyme 2, ACE2, in coronavirus disease 2019 (COVID-

19) [43,44], for example). 
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