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Abstract: Here is a review of several empirical examples of information processing that occur in the 

primate cerebral cortex. These include visual processing, object identification and perception, 

information encoding, and memory. Also, there is a discussion of the higher scale neural 

organization, mainly theoretical, which suggests hypotheses on how the brain internally represents 

objects. Altogether they support the general attributes of the mechanisms of brain computation, such 

as efficiency, resiliency, data compression, and a modularization of neural function and their 

pathways. Moreover, the specific neural encoding schemes are expectedly stochastic, abstract and 

not easily decoded by theoretical or empirical approaches. 
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1. Introduction 

The mammalian brain is unique in its organization, function and structure. The neurons and 

their connections are organized in a way that allow for complex processing and storage of 

information from neural input sources [1–6]. The inputs may originate from a sensory system or from 

within the brain itself. The internal cortical processes of the brain operate on a flow of abstract 

information, otherwise known as mental representations, with a relatively weak connection to actual 

objects of the external world [7–17]. Currently, there are established examples of brain computation 
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that provide a template on how neural systems are expected to function and the biological constraints 

on these systems. Moreover, they provide insight for artificial design, such as in simulation of these 

neural pathways [18–19]. Likewise, models devised by engineers serve to help validate the efficiency 

of neural systems in nature [20–23]. 

Neuroscientific studies have approached these questions at different scales and perspectives. One 

is from the field of perception and our ability to perceive the external world [24–30] while another 

strives to unravel the molecular mechanisms of neural function in the brain [14,16,31–34]. The 

neurobiological perspective includes the structure and function of the brain regions and scales upward 

to the system level processes. For example, as much as one-half of the cerebral cortex is dedicated to 

visual processing and is anatomically structured as a series of layers. The primary visual cortex further 

divides into two anatomical pathways known as the dorsal and ventral streams [35–36]. The 

organization of these and other downstream regions is hierarchical in nature. The neurobiology of the 

other senses are relatively less studied, but they show analogous processes to those found in vision [37]. 

In reference to the field of perception, studies have established the theory of constancy which 

predicts that sensory stimuli are neurally processed for buffering against the effects of changes in 

orientation, time and other attributes that effect how a stimulus is received [13,25,38–44]. This theory 

requires a basis for object identification, whether visual in type or from another sensory modality, and an 

encoding scheme within the neural structure of the cerebral cortex [9,13,45–49]. These cortical regions 

further interact with regions involved in memory storage which is a participant in the formation of mental 

representations [31,33,50–51]. 

Even though our perception of the external world is typically in three dimensions, the actual 

sensory interface acquires data in two dimensions [9–10,22,52]. For example, the visual information 

is initially projected in 2d onto an eye’s retina. A three dimensional perspective of the external world, 

so that depth is realized, is later reconstructed in the cerebral cortex by a substantial amount of image 

processing across different cortical layers [53–54]. 

Visual processing includes adjustment to the attributes of emitted light, including that of 

brightness and contrast [25,40,42], color [41,44], size [39,55], and motion [56]. The theory of visual 

constancy also requires that these attributes are invariant, and therefore resistant, to modification 

from changes in the background and the environment [43]. An example of brightness constancy is 

shown in Figure 1. Without this generation of invariance in the cortical modeling of objects, the data 

is insufficient to identify objects and acquire knowledge of the external world [39,57]. 

The above examples, and the structure and function of the cerebral cortex, originate from 

the processes of animal development and evolution [58]. These constrain the form of the neural 

network and its efficiency in solving the problems of information flow across the brain and the 

sensory systems. For example, there is evidence that a sensory system is overly connected to its 

target in the cerebrum during development in humans, such as the case where there is a peak in 

perception for replicating the elements of speech, but disuse of particular phonemes leads to their 

irreparable loss [59–61]. 

This review focuses on empirical examples of advanced information processing in primates. 

Included are those from visual processing, object identification and perception, information encoding, 

and memory. These processes are considered essential for developing artificial models of cognition 
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in primates. Toward this goal, well established examples that are representative of a cognitive 

scheme are included. However, this review generally excluded: the large number of evolutionary 

comparisons from the cognitive sciences, a comprehensive search of all examples per process, and 

models without empirical support. The intention here is that the current knowledge of cognition is 

synthesized as general themes that are established and informative for developing a perspective of 

large scale processes of the brain. 

 

Figure 1. Examples of brightness constancy in vision. 

A: A horizontal rectangular shaped bar is pasted within the larger background of a gray color 

gradient scheme. The background color scheme is perceived correctly, but the bar is actually a single 

color of gray even though it appears to have a gradient of gray colors. B: The identical bar from 

above is shown without a background of color to prove that the bar is actually a single gray color. C: 

This figure shows a similar visual effect as in 1A except that two circle shapes are plotted against the 

background instead of a rectangular bar. As in 1A, the color shapes are perceived as different colors 

of gray even though they are the same gray color. D: The identical circle shapes from above are 

shown without a background of color to prove that the circle shapes are in fact the same gray color. 

2. Visual processes in general 

Vision requires extensive processing by the brain of primates and other non-primate 

vertebrates [13,43]. Evidence of this ranges from studies of perception to those of 

neurobiology [25,34,62–63]. Work in perception has led to the theory of visual constancy which 

predicts that incoming visual stimuli is selected for maximizing for the identification of 

objects [13,43]. This is also required by downstream processes of visual data, otherwise the 

receiver is expectedly left with a deficit in perception of the external world [57]. 
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The visual data originates as a two dimensional image across the retina of the eye [52]. This 

information is further processed along the many layers of the cerebral cortex, and travels along two 

pathways of the primary visual cortex, the ventral and dorsal streams [35,64]. Studies have 

revealed some of the workings of this system, including the cortical subregions involved in facial 

recognition which is likely a generalized process for identification of visual objects [47,62,65]. It is 

also likely that these schemes are the same in auditory and other sensory systems that target 

regions of the cerebral cortex. 

Common themes in brain function are supported by studies of neonatal ferrets which develop 

vision even though the optic nerve is rewired to the auditory center of the cerebral cortex [66–67]. 

They investigated the animal’s capacity for selecting direction and orientation in their visual 

environment. After training of the rewired ferrets, the auditory cortex developed a response to visual 

stimuli and formed an approximate map of neural connections to that of a normal visual cortex. 

These studies show a bottom-up process of neural development and structure that is dependent on 

sensory input [48]. Moreover, it is possible that the auditory and visual cortices are homologous, 

possibly by duplication over evolutionary time, and share the same potential for three dimensional 

mapping and reconstruction of the external world [68–69]. 

A similar result was observed in humans. An individual born with only a left hemisphere of the 

cerebral cortex developed a map of the visual field for the left eye, but also compensated by 

developing a map in that hemisphere for the right eye [70]. These studies illustrate a high resiliency 

to error during the development of the cerebral cortex. 

There is also evidence of convergent evolution at the level of the neural circuitry and suggests 

an unavoidable optimal design by nature. An example is from the mechanism of motion detection 

across the visual field of Drosophila [71–72] and hoverflies [73]. These insects have a compound eye 

that independently evolved from the camera eye of mammals, yet the arrangement of neurons and 

their connections are similar for processing motion detection. 

3. Object identification and facial recognition 

Object recognition in general, such as for non-face objects, is likely a similar process as for 

the better studied recognition of faces [8,14,16,45–47,49]. Face recognition in primates is 

recognized as a sequence of separate and hierarchical visual processes, is fairly resilient to error, 

and the process generally occurs within a few hundred milliseconds [9,46,48,74–78]. This process 

has been studied by a focus on the cerebral cortical regions that range between the early visual 

cortex and the ventral stream [45]. The ventral stream targets the temporal region of the cerebral 

cortex while the dorsal stream targets the parietal lobe. These two paths are not considered 

perfectly distinct according to their neural function, but in general the dorsal path is associated 

with a spatial and temporal mapping of visual objects. The ventral path is involved in object 

recognition by feature detection [14,45,48,78]. 

Constancy and invariance of the initial visual stimuli is a requirement for object 

identification that occurs in the later stages of image processing [8,25,39,43,65]. This statement 

is supported by a quote from Freiwald and Tsao [8]: “The greatest obstacle to object recognition 



377 

AIMS Neuroscience  Volume 7, Issue 4, 373–388. 

is the huge amount of variation that can occur in the retinal images cast by a 3D object.” This 

problem is a result of the physical limitations involved in projecting a 3d image onto the 2d 

retinal surface of the eye. Therefore, it is inferred that naive visual processing is not invariant to 

error, so the evolution of visual constancy is required for reconstructing objects in the visual 

field that reflects the external world. This advanced form of visual processing is dependent on 

natural selection for robustness to visual perspective and a compression of information to fewer 

dimensions. Adaptations for reconstructing a 3d image of the world also includes binocular 

vision and perception of surface textures [52,54]. For example, the texture cue is active in all 

cases, even in the monocular case. 

For both the ventral and dorsal streams, the image travels first from the retina to a region of the 

thalamus where processing includes a correction for variability in brightness and contrast [9,79]. The 

next step in the pathway is the early visual cortex before separating into ventral and dorsal streams. 

This area has a neuron count that is about two orders of magnitude greater than the earlier steps of 

the pathway. The early visual cortex encodes the raw visual data and includes advanced but 

imperfect processing that is revealed by the line-motion illusion experiment. This processing also 

shows enhancements by the capability to discriminate a set of visual patterns that vary in contrast 

against a background [80–81]. Altogether, these examples show that a reconstructed image is 

correlated with the perception of an image rather than the physical image itself. 

Chang and Tsao [14] further investigated populations of neurons in the ventral stream of the 

visual cortex. In particular, they examined an early step in this pathway with about 200 neurons that 

are involved in the identification of facial objects. They showed that this neuron set codes for a set of 

linearly combined metrics of facial features which supports a linear axis based model of feature 

sampling. They rejected the alternative hypothesis that each face is encoded by a set of non-linear 

distance based metrics which represent differences between the observed and expected face of 

interest. They considered their finding as a probable explanation for the encoding of other kinds of 

objects, particularly since their neural model shows a general resilience to error where the viewer 

observed an object at different orientations. 

4. Memory encoding and spatial navigation in the hippocampus and entorhinal cortex 

The hippocampus includes the function to map spatial relationships, specifically there is evidence 

these maps in mammals are used for memory encoding and in spatial navigation [7,50–51,82–86]. The 

spatial mapping function involves place cells and likely grid, head direction, and border cells of the 

hippocampal-entorhinal circuit [33]. Buzsaki and Moser [31] suggested that memory and navigation are 

mechanistically homologous, that the paths and landmark-based maps involved in navigation are 

analogous with memory that is coded as a path and map of a sequence of events and objects. This 

hypothesis is supported by Constantinescu and others [11] and is a reasonable explanation given that the 

internal algorithm for spatial mapping is generalizable in function beyond the obvious use in navigation, 

such as for associating words with perceived objects of the sensory systems. 

These spatial maps have been localized to a 2d array of specialized neurons and their 

interconnections, such as the place and grid cells. In particular, the place cells are thought to code 
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for an animal’s spatial location in conjunction with current or past events [33]. However, the 

precise encoding scheme is unknown. Likewise, the grid cells represent a map of the external 

environment and there is a suggestion that they are organized into modules with the possibility for 

the generation of thousands of these spatial maps [33]. The arrangement of these cells fits with a 

lattice like structure in their spatial organization and regularity. An example of a lattice like 

structure is shown in Figure 2. The question is whether it is possible to detect these arrangements 

by current algorithms. 

 

Figure 2. Two different topologies of network organization. 

A: A small-world network [87] that is considered the null hypothesis for how the neural system 

is organized in the brain. B: An alternative hypothesis of a lattice like network that fits with the two 

dimensional pattern of regularly arranged neurons that code for spatial maps. 

5. Visual attention in primates 

Visual attention is a process that is considered a synergism of brain computation, such as 

memory, recognition of objects, and a map of spatial relationships [13,88–95]. The literature defines 

the major prerequisites of the visual attention model: perceptual salience—robust identification of 

important features of a visual scene; object recognition; explicit map for neural coding of saliency; 

resilience to disturbance in visual attention; and adaptation of eye and body motion for fovea based 

vision of salient features. Likewise, the dynamics of visual attention are considered dependent on 

factors such as the visual search task, bottom-up and top-down cues, and maintenance of foveal 

visual acuity. An example of a bottom-up cue is the visual contrast of a feature while a top-down 

cue may be a weight assigned to the importance of a feature. Altogether these processes combine 

simple and complex processing of visual information. Some of these processes occur over a short 

time scale, <100 milliseconds, while others occur over a longer time scale which are adapted for a 

top-down process involving recurrent neural systems [91]. 
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It is possible to consider visual attention as a mechanism for maximizing the extraction of 

important data from around 108 bits of visual information that flow across the optic nerve per 

second [90]. Visual attention expectedly leads to awareness of an object in a given visual scene, 

but this recollection is reducible to the neural mechanisms of cognition. This process is also expected 

to contribute to the constancy of visual stimuli and therefore reduction of a high dimensional sensory 

input to a simpler form for the downstream cognitive processes. 

6. Hypotheses to describe information encoding across the cerebral cortex 

There are theories on how information is encoded across the brain [13]. One model has the 

expectation that data is handled by populations of neurons, not by individual cells. Another 

prediction is that the neural code is compressible, such as by dimension reduction where a set of 

correlated variables is reduced to an uncorrelated set, given that the high dimensional external world 

is reliably captured by fewer dimensions [96]. An example of dimension reduction is shown in 

Figure 3. Other hypotheses on brain computation are available from modeling information flow in 

the framework of a dynamical system of neurons [15,17,22,34,97–98]. 

 

Figure 3. Example of dimension reduction of a 3d rectangular box to a 2d rectangular shape. 

A: The rectangular box plotted in three dimensions. B: The 3d box from 2A is reduced to two 

dimensions so only the 2d rectangular shape is observed. In this case, the information on height of 

the box is lost. 

Empirical work has supported the above theories. A study of the primate prefrontal cortex revealed 

an encoding of memories for sequences of objects that is both heterogeneous and disordered [32]. They 

also established that this finding of “mixed-selectivity of neuron responses” is consistent with coding that 

is high dimensional and that any reduction in dimensionality of the code leads to error in the encoding 

process. This is hypothesized as a mechanism for the requirements of a generalized response to 

information, but also that highly specialized neurons are expected to instead encode at a level of low 
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dimensionality [12]. These findings are related to the problem of efficiency in biological 

computation and a reason to pursue theory to find the constraints on an information based system, 

such as that offered by the dynamical system and network approaches [13,99–103]. One theoretical 

approach was undertaken by Yang and others [23] where they trained an artificial neural network 

(ANN) to a set of cognitive tasks. They found that the resulting network structure included artificial 

neurons that had “mixed task selectivity” as was previously observed in experiments by Rigotti and 

others [32]. Others have also pursued this approach to find brain-like structures among ANNs [104–106]. 

ANNs are thoroughly reviewed by Kriegeskorte [104]. 

The more traditional hypothesis of neural coding efficiency predicts that the encoding process 

by neurons is selected for information flow efficiency where the data is uncorrelated and higher 

dimensional; while selecting for robustness of information transmission where the data is correlated 

and lower dimensional [107]. The latter idea fits with object identification where a major factor in 

data transmission is in the accuracy of reconstructing an object in the visual field, and that the 

appearance of the object is robust to problems such as a noisy visual background [108–110]. Higher 

informational processes, such as for mental representation, instead fit with the predictions for coding 

at maximal efficiency [111–112]. 

7. Predictive coding of sensory information 

Both vision and speech are processed in real-time, but there is a delay based on the time for 

brain computation [113–120]. This typically occurs at the millisecond scale [113]. The problem is 

that the time delay is too long to adequately respond to the external world, such as to evoke a motor 

response for avoiding an object [118]. The brain compensates for this delay by predictive coding, 

such as in constructing the location of a visual object from prior knowledge of its speed and direction. 

This compensatory process presumably applies to all other sensory modalities. 

The temporal aspect of perception further reinforces the concept that the internal representation 

of the external world is a reflection of the raw input that is initially received by the senses. Further, 

the time delay for processing of real-time sensory data, not only for the goal of object detection, but 

also for the cognitive processes that are a hallmark of the human experience [116]. A hypothetical 

example is where visual images are cognitively processed alongside stored memories, the time for 

this advanced processing compensated by predictive coding. A reported example is in the case of 

semantic modeling of speech so that the listener’s response is rapid [119–120]. There are similar 

studies of predictive coding in the case of musical syntax [114,117]. 

8. Time delay in perception of a motor action 

A related phenomena of time delay in perception is observed in studies that measure the delay 

between perceptual experience of a motor action and the voluntary motor movement itself [116,121–127]. 

The perceptual experience is reported after the neurons involved in the motor action have fired. This time 

delay has been interpreted as a perceptual experience that favors compression of time between the 

voluntary motor action and the outcome of that action [127]. Overall, this phenomenon could be 
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interpreted as another example of reduced complexity of input from the external world. This may be 

restated as a favoring for invariance of temporally variable experiences. 

The above investigations are also concerned about perceptual awareness of these motor actions 

as occurring many milliseconds after the action itself. There is an additional effort to establish 

terminology that has a testable and mechanistic basis that is not intertwined with transcendental 

thinking [127]. These two elements have led to the theory that an action is the cause of a perceptual 

awareness instead of the traditional expectation that our thought is the cause of an action [128]. In 

either case, there is evidence here that the temporal perception of a motor action is adapted to the 

processes of cognition. 

9. Conclusion 

Themes for understanding information encoding in the brain include modularization of neural 

structure and function, encoding at the population level of neurons, resiliency to error across paths in 

the neural pathway, compensation for processing time, and efficiency of data transmission along with 

compression. In addition, there are populations of neurons that serve a general function while others 

are specialized, and that this leads to predictions on the neural dynamics across space and time. The 

data encoding schemes are likely in abstract form [129], especially further along an information 

processing pathway, and suggest that the mechanisms of mental representation occur in a neural 

language that is not easily relatable to the perceived mental state. The advanced visual processes 

support these concepts, such as the adaptation of visual objects for information transmission 

efficiency and perception of the external world, but not as a means to reconstruct a fully accurate and 

objective representation of objects. 

The visual system is better understood along with examples of specialized neural populations and 

their functions. One reason is that the properties of light are simpler to model by the mathematics of 

optics theory while the studies of how objects are internally represented is not easily superimposed onto 

neural systems and their pathways. However, it seems certain that in general these complex and evolved 

neural systems are efficient in their information handling and resilient and robust to error [130]. Also, the 

noisy nature of sensory stimuli is highly compressible and that the corresponding neural pathways are 

resilient to error in reconstructing the external world, while the mental representations are relatively 

uncompressed and that the coding process is heterogeneous and disordered [12]. These findings 

altogether provide expectations on the dynamics of information flow across the cerebral cortex, a higher 

scale process that mirrors a communication system that is undergoing a continual birth and death process 

of links in the network [98,131–132]. 
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