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Abstract: In contact assistive robots, a prolonged physical engagement between robots and humans 
with motor disabilities due to shoulder injuries, for instance, may at times lead humans to experience 
pain. In this situation, robots will require sophisticated capabilities, such as the ability to recognize 
human pain in advance and generate counter-responses as follow up emphatic action. Hence, it is 
important for robots to acquire an appropriate pain concept that allows them to develop these 
capabilities. This paper conceptualizes empathy generation through the realization of synthetic pain 
classes integrated into a robot’s self-awareness framework, and the implementation of fault  
detection on the robot body serves as a primary source of pain activation. Projection of human 
shoulder motion into the robot arm motion acts as a fusion process, which is used as a medium to gather  
information for analyses then to generate corresponding synthetic pain and emphatic responses. An 
experiment is designed to mirror a human peer’s shoulder motion into an observer robot. The results 
demonstrate that the fusion takes place accurately whenever unified internal states are achieved, 
allowing accurate classification of synthetic pain categories and generation of empathy responses in 
a timely fashion. Future works will consider a pain activation mechanism development. 
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1. Introduction 

Social assistive robotics has been one of growing fields of study in human-robot interaction (HRI) 
that covers the utilization of robot technology to assist people through social interaction. A prolonged 
physical engagement between assistive robots and humans, particularly those with motor disabilities 
due to a shoulder injury for instance, may at times lead humans to experience pain. In this situation, 
robots are required to develop a more sophisticated HRI capability, namely the ability to recognize 
and predict human pain during an interaction, and at the same time, to adopt counter responses as 
empathic action when human pain experiences are predicted. Hence, it is critical for assistive robots to 
acquire an appropriate and relevant concept of pain that allows them to develop and generate effective 
empathic behaviors. This paper conceptualizes and implements the generation of empathy into two 
stages: (1) The realization of the concept of artificial pain through synthetic pain classes integrated 
into a robot self-awareness framework, and the utilization of robot body awareness to implement the 
fault detection as the primary source of synthetic pain activation; (2) the projection of the human 
shoulder motion into the robot arm motion using a fusion process that allows the gathered 
information to be used to generate a corresponding synthetic pain in the robot that allows it to adopt 
counter empathic responses. 

A practical approach is designed to mirror the internal state of a human shoulder motion 
projected on a observer robot’s shoulder. A special remark on the studies in human empathy 
suggests that an empathic state is obtained through perceptions towards another person’s narrative. In 
other words, an empathic person does not directly experience what the other person is experiencing. 
By utilizing this concept, our approach is to have an observer robot which mirrors the internal state 
of the human peer by capturing the human shoulder motion through the robot’s visual perception. 

Our findings demonstrate that the projection of the human and the observer robot takes place 
accurately when they both share unified internal states. An accurate projection further allows better 
prediction results of the robot body behavior, accurate classification of synthetic pain categories/levels, 
and at the same time, appropriate generation of empathy responses in a timely fashion. 

The reminder of the paper proceeds as follows: Section 2 presents an overview of related work 
in assistive robots highlighting self-awareness, human pain and empathy concepts. Section 3 gives a 
brief description of the proposed synthetic pain and empathy concepts within a self-awareness 
framework for robots, followed by section 4 which explains experiment stages and environmental set 
up. Section 5 provides evaluation and discussion. Finally, section 6 concludes the overall achievement 
and possible future developments. 

2. Robot design 

In this section we briefly present relevant background studies in the area of assistive robotics, 
self-awareness, pain and empathy concepts. 

2.1. Assistive robotics 

Assistive robotics is a growing field of study in HRI that focuses on assisting people with 
physical disabilities and the robots typically utilize a physical medium or physical contact when 
delivering assistance. As the physical contact interaction occurs, the element of embodiment plays a 
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crucial role as the basis for a structural coupling that creates potential perturbation between robots and 
the environments. The design approaches commonly consider a biologically inspired approach or 
functionality designs which focus on the constrained operational and performance objectives [6]. 
Studies in assistive robotics cover a wide range of applications, such as rehabilitation robots, 
wheelchair robots, educational robots and manipulator arms for disable people [7]. People with 
physical disabilities, particularly with a motor disability, are people who suffer from conditions that 
restrict their abilities in moving and manipulating object tasks. This condition introduces a 
significant limitation in moving, controlling and coordinating the movement of body parts, such as 
wrist, hands, fingers or arms [2]. People with shoulder motor injury experience pain as the shoulder 
moves to specific positions which will evoke the sensation of pain. 

2.2. Cognitive designs 

In the theory of mind (ToM) literature, it is reported that humans have the ability to correctly  
attribute beliefs, goals, and perceptions towards themselves and other people [3]. A robot, with the 
ability to recognize human emotional, attentional, and cognitive states, can learn to develop counter 
reactions and modify its own behavior accordingly. This concept is central and plays a crucial role in 
human interactions, including in the field of assistive robotics. The mind is considered as the  
consciousness embodiment, where consciousness is defined as a function of consistent cognition and 
behavior performance [4,5]. Proposes that embodiment is one of the features of consciousness, and 
our self-concept utilizes this embodiment aspect in developing our empathic robot responses. 

2.2.1. Self-awareness 

According to [10] robots with self-awareness have the ability to behave more effectively in 
novel situations compared to those without it. Studies on the notion of robots being self-aware early 
appeared in [3,8], where [8] develops a capability for a robot to recognize itself in the mirror. Since 
then, self-aware robot studies continue to grow as reported in [9,11–15]. Propose a framework with a 
self-awareness based on the ability to focus attention on the internal state’s representation. Much of 
literatures, however, identifies the lack of concept of “self” [1]. Propose a concept of self by deriving 
its definition postulated by [16] which divides the concept into two levels, subjective and objective 
awareness. Subjective awareness concerns the machinery level of the body and objective awareness 
concerns the focus of attention towards one’s body, thought, actions and feelings. The authors 
further introduce a new framework which is capable of switching the robot awareness from 
subjective to objective, and vice versa. 

2.2.2. Empathy for the pain of others 

Studies of empathy have been growing in the last decade, particularly human empathy towards 
pain, as reported in [17–23]. A common understanding is emerging that suggests a complex 
structure in the human brain and the nerve cells assembly play a major role in the arousal of 
empathy and pain. With such complexity, generating empathy and pain should be developed by 
considering the current state-of-the-art of robot technology. The implementation of our robot empathy 
for pain is inspired by the work in [24], which proposes a shared-representation model of pain  
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empathy. This model mentions that witnessing another person in pain activates pain representations 
in the observer, which reflects a relative capacity to understand pain experiences in others. Hence, 
our empathy for pain is generated by projecting humans’ body, e.g. shoulder motions which suffer 
from a motor injury into a robot observer’s shoulder. The observer robot visually captures the shoulder 
motions and projects them on its own arm, while analyzing the kinds of synthetic pain to be generated. 

3. Self-awareness framework and synthetic pain 

This paper utilizes a self-awareness framework proposed by [1], Adaptive Self-Awareness 
Framework for Robot (ASAF) and the kinds of synthetic pain definitions in developing our 
empathic reactions. The overall design of the ASAF is shown in Figure 1 below. In this new 
framework, the subjective awareness refers to the element of physical parts of robots or robot 
embodiment, such as motors and joints; while the objective awareness specifies the metaphysical 
aspects, such as robot’s representation of its position towards an external reference. A brief overview 
of the ASAF is discussed in the following subsection. 

 

Figure 1. Adaptive self-awareness framework for the robot (ASAF). 

3.1. Adaptive Self-awareness framework for robot (ASAF) 

There are three elements that play pivotal roles in the performance of the framework, which we 
are going to further elaborate in the following subsections. 

3.1.1. Consciousness direction 

The term of consciousness in the ASAF is to signify the cognitive focus, which is the focus of 
attention and it should not be understood to mean human consciousness. Hence, consciousness 
direction is changeable between the two levels of awareness, subjective and objective awareness (see 
Figure 2). There are two predominant factors in directing robot consciousness: (i) The ability to 
focus attention on a specified physical aspect of self. (ii) The ability to foresee, and at the same 
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time, to be aware of the consequences of predicted actions. Our approach formulates how to address 
these two aspects so that they can be developed and built into a robot self-awareness framework. 
Thus, the detection of synthetic pain can be acknowledged and responded to in an appropriate way. 
Robot awareness is mapped to a discrete range 1–3 for subjective and 4–6 for objective elements. 
Changing the value of Consciousness Direction (CDV) allows the exploration of these regions, and at 
the same time, changes the focus of robot attention. The robot mind governs the CDV modification 
and determines the conditions of exploration of robot awareness regions, either constrained or 
unconstrained conditions. The structure of robot awareness regions and CDV are illustrated in 
Figure 2 and for simplicity, we will use the abbreviations for each awareness region throughout  
the paper. 

 

Figure 2. Regions of consciousness direction. 

3.1.2. Synthetic pain description 

In order to generate synthetic pain on the robot, we set shoulder joint restriction regions that 
should be avoided. People with a shoulder motor injury have specific joint regions which will evoke 
pain sensation whenever the shoulder moves into these areas. These joint regions are projected into 
the observer’ shoulder joint and each restrictive joint regions constitutes a specific faulty joint value. 
Synthetic pain can then be generated when the robot joint moves into this region. Joint movement is 
monitored by the proprioceptive perception of the robot, which can subsequently be used by the robot 
mind to reason upon. For specific types of movement, for instance rotational movement for the 
shoulder joint, the pain level is determined by the current joint values with respect to the joint 
threshold value. This threshold value is set by the robot mind and its value is associated with the 
lowest fault joint value (see Figure 3). 



61 

AIMS Neuroscience Volume 5, Issue 1, 56–73. 

 

Figure 3. Synthetic pain generation. 

Synthetic pain descriptions proposed by [1] have different applicable intensity level for each 
class (see Table 1). 

Table 1. Synthetic pain description. 
 

Categor Synthetic pain Description Definition Intensity Level 
1 Proprioceptive 1.0 Potential hardware damage,  

as an alert signal 
“None”, “Slight” 
 

2 Inflammatory 
reduction 

2.1 
2.2 

Predicted robot hardware damage,  
real robot hardware damage 

“None”, “Slight” 
“Moderate”, “Severe”

3 Sensory 
malfunction 

3.1 
3.2 

Abnormal function of internal  
sensors, damage internal sensors 

“None”, “Slight” 
“Moderate”, “Severe”

3.1.3. Robot mind 

The robot mind in the framework utilises causal reasoning to draw conclusions from its  
perceptions which integrates the cause and effect relationship. This allows the framework to adapt 
to the world by predicting the robot’s own future states through reasoning about the 
perceived/detected facts. Sequential pattern prediction is used to capture the behavior of the observed 
facts and then use them to predict the possible future conditions. The framework decision making 
utilizes covariance information obtained from sequence data so as to facilitate the causal reasoning 
process. The robot mind analyses the relationship amongst data covariance by making predictions of 
sequence data patterns obtained from robot’s proprioceptive sensor (joint position sensor). The 
prediction process only takes place after several sequences of data so as to reduce biased analyses. 
There are two conditions of the state of the robot mind: 

1. Constrained which represents a state where the CDV value is restricted to subjective 
awareness, region 1 (upper level). This state typically will force the robot to stop any physical 
activity on the hardware level. 

2. Unconstrained which refers to a state where the CDV value is free to explore all the regions 
of the robot awareness (region 1 to region 6). 
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3.2. Empathic actions generation and execution 

There are two stages that occur in the robot mind in the specific example of human shoulder pain: 
(1) The realization of the concept of artificial pain through synthetic pain classes integrated into 
the ASAF framework, and the utilization of robot body awareness to implement the fault 
detection as the primary source of synthetic pain activation; (2) the projection of the human shoulder 
motion into the robot arm motion using a projection process that allows the obtained information to 
be used to generate a corresponding synthetic pain in the robot and counter empathic responses. Stage 
2 occurs at the first place as the observer robot projects the human shoulder motion into the robot’s 
arm and simultaneously stage 1 occurs. Joint data is captured from the robot proprioceptive sensor 
attached to the shoulder joint and arranged into a sequence of data for pattern analyses. The robot 
mind analyses the relationship among data covariance by making predictions of sequence data 
patterns. The prediction process only takes place after several sequences of data so as to reduce 
biased analyses. Any decisions made from previous sequence predictions are reassessed with the 
current state, and the results are either kept as history for future prediction or amendment actions take 
place before placement proceeds. This cycle repeats only if current and predicted data are not 
classified in any of the restricted regions that refer to the painful joint settings. Once the reasoning 
indicates that the joint motions are heading towards or falls into these restricted joint regions, the 
robot mind will perform three consecutive actions: 

1. Setting the robot awareness into constrained condition. 
2. Modifying the CDV to shift robot’s focus of attention to the subjective element, which is the 

robot shoulder. 
3. Providing empathic response actions, such as alerting the human peer through verbal 

expressions and approaching the human peer for further assistance. 
At any initial state, the robot mind specifies the awareness to a randomized style, which means 

that the attention may focus on one of among the sixth regions by randomly selecting the CDV. Once 
a selection is made, the robot mind is set to an unconstrained condition, allowing the robot to start 
visualizing and projecting the human shoulder motions. While the awareness is on the selected  
region and projection takes place, the robot mind at the same time monitors its proprioceptive sensor, 
joint arm sensors which physically project the human shoulder positions. The change of joint sensor 
readings produces the change in the pattern, and this situation is captured and used as the element of 
reasoning. As the joint moves, the robot’s internal states are subjects to changes and the empathic 
action executions transforms the results into primitive actions for further execution. 

4. Experimental design 

The pilot experiment considers only a two-direction up and down rotational motion of the 
human’s right shoulder. A set of pre-defined joint values which constitute the restricted joint values 
are “manually” specified on the robot. These joint values are associated with the painful regions of 
the human’s shoulder which are supposed to be avoided. The experiment involves two NAO 
humanoid robots and a human peer. The scenario of experiment is a human peer and one NAO 
humanoid robot (mediator robot) are working together in a collaborative task, e.g. a hand pushing 
task, while the other NAO robot acts as an observer robot. The length of the rotation movement of 
the human shoulder follows the length of shoulder rotation of the mediator robot. We attach a red 
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mark on the back side of the mediator robot, which will be recognized by the observer robot via 
its camera sensor.1 During the experiment, the human’s hand coincides with the mediator’s hand, 
allowing both hands to move in parallel. Each human’s shoulder rotation corresponds to the value of 
the mediator’ shoulder joint position sensor, which is recorded in the mediator’s Robot Mind 
(see Figure 4). 

 

Figure 4. Human and mediator robot shoulder rotation mapping. 

This recorded data is utilized for merely a comparison purpose in the data analyses which is 
presented in this section. The observer converts the visual representation using the geometric 
transformation (see Figure 5 and Figure 6). 

 

Figure 5. Experimental setup. 

                                                           
1 The terms mediator and observer which refer to the mediator and observer robots will be used through the 
rest of the paper. 
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Figure 6. Geometric transformation. 

The experiment is divided into two stages. Stage 1 serves as an initiation or calibration 
stage. Stage 2 is the projection stage which consists of self-reflection without awareness and 
empathic experiments. The poses of the two robots are shown in Figure 7 and Figure 8 shows the 
pose of human during interaction. 

 

Figure 7. Initial pose of robot experiments. 

During self-reflection experiment, the ASAF framework is deactivated in the observer. Instead, 
it only activates detection of faulty hardware region without anticipations’ follow-up. The rest of 
experiment involves the implementation of a full functional ASAF framework. 
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Figure 8. Experimental setting during interaction. 

The kinds of synthetic pain and awareness region to be modelled during this experiment are 
shown in Table 2 and Table 3 respectively (See Figure 2 in Subsection 3.1 for details of each region). 

Table 2. Consciousness region. 
 

Consciouness Region  Robot Action During Visitation 

 
Subjective 

 
ULSA 

Unconstrained 
Low Stiffness on Arm 
Joint

Constrained 
Increased Stiffness and Alert
human peer 

 LLSA - -
Subjective-Objective LeSOA

RiSOA 
- 
-

- 
-

Objective LLOA 
ULOA 

- 
- 

- 
- 

Table 3. Synthetic pain experiment. 
 

Synthetic Pain Descriptions Intensity Level 
Proprioceptive 1.0 Modelled: “None” Modelled: “Slight” 
Inflammatory Reduction 2.1 Modelled: “None” -

2.2 - -
Sensory Malfunctions 3.1 - -
 3.2 - -

5. Results and discussions 

Three kinds of data: (1) Awareness region; (2) faulty joint region; (3) arm coordinate centre 
reference data, are collected in the initiation stage. 
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5.1. Experiment results 

The awareness and faulty joint regions are defined before the experiment takes place, and stage 1 
provides the shoulder shared reference point between the mediator and the human peer. These values 
are the same for the stage 2 of the experiment (see Table 4). 

Table 4. Regions and data references. 

Element Region/Ordinate Values 
awareness region ULSA 1 

LLSA 50 
LeSOA 51 
RiSOA 100 
LLOA 101 
ULOA 150

faulty joint region 

 
1 Upper High-UH −2.08313 
2 Upper Medium-UM −1.58313 
3 Upper Low-UL −1.38313 
4 Lower Low-LL 1.385669 
5 Lower Medium-LM 1.585669 
6 Lower High-LH 2.085669 

shoulder mediator 
human shared reference

X 0.408 
Y −0.155 
Y 0.186 
Time 154.98 

Table 5. Self-Reflection direction. 

Direction 

 Up Down 

Observer Human Interval Status Observer Human Interval Status
 Shoulder    Shoulder   

−0.015 −0.01845 0 - 1.173 0.01845 0 - 
−0.015 −0.01845 340 - 1.349 0.10742 762 - 
−0.015 −0.01845 664 - 1.614 1.00941 1150 - 
−0.422 −0.06439 991 - - - - - 
−0.94 −0.43408 1469 - - - - - 
−1.506 −1.21489 1992 - - - - - 
−1.941 −1.63213 2530 - - - - - 

 −1.63674 3064 - - - - - 

 
The stage 2 experiment generates two sets of data, self-reflection data (Table 5) and empathic 

data (Table 6). 
Table 7 provides additional data obtained from the empathy experiment. This data shows the 

changes in the embodiment elements that affect the internal state of the observer. 
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Table 6. Empathic experiment function. 

 Observer Human  Shoulder 
 Interval Data Prediction Interval Data Status 
Up 12 1.214  891 0.01845  

13 −0.291  2185 −0.21625  
14 −0.777  2904 −0.55527  
15 −1.165 −1.553 4849 −1.97268  
16  −1.941 5522 −2.08567  
17  −2.329 - -  
18  −2.717 - -  

Down 12 0.242  509 0.01692  
13 1.186  1240 0.35133  
14 1.805  1890 1.33922  
15 2.105 2.405 2537 1.83317  
16  2.705 3186 2.08567 Not Exist 
17  3.005 -   
18  3.305 -   

Table 7. Internal state. 

Motion CDV Awareness Status Faulty Joint Region Internal
  Region Early Type  Real Prediction State 

Down 131 6 ULOA  4  1 
 33 2 LLSA  4  2 
 17 1 ULSA Unconstrained 6  3 
 80 4 RiSOA  6 (2.105) 6 ( 2.405) 4 
 110 to 3 5 to 1 LLOA Constrained 6 (2.405)  5 

Up 2 1 ULSA  4  6 
 62 3 LeSOA  3  7 
 116 5 LLOA Unconstrained 3  8 
 6 1 ULSA  3(−1.165) 2 (−1.553) 9 
 126 to 6 6 to 1 ULSA Constrained 1(−1.941)  10 

5.2. Analysis and discussion 

During the self-reflection experiment, the minimum sampling time required to capture incoming 
data, as shown in Figure 9(a) and Figure 9(b), is every 340 cycle of data. For the observer during 
upward motion direction, the first five sequences of data falls into Region 1 followed by Region 2 
(data = −1.506, sequence = 1992), then Region 3 (data = −1.941, sequence = 2530). When data 
equals −1.506, the observer starts to experience Category 1 synthetic pain, which produces an alert 
signal (projecting the human shoulder would experience the same condition). However, the observer 
still captures incoming data which shifts to Region 3, causing the synthetic pain category to increase 
to Category 2 with the detail of 2.1. It can be seen that the sampling time tends to increase, from 327 
to 478, 523 and finally 538 cycles of data as the joint falls into synthetic pain region. At the same 
time, during upward motion direction, the first six data sequence of human shoulder positions are 
classified into Region 1 (synthetic pain Category 1) and the final sequence falls into Region 3. This 
increasing sampling time occurs as more computation time is required by the observer to critically 
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analyze and predict the plausible future internal state of the human shoulder position. During this 
upward motion direction, particularly in sequence 1992, the observer produces one false alarm, 
which generates Region 2 classification, while the human shoulder position is still in Region 1. However, 
both confirm that at sequence 2530, the internal state converges into Region 3. During the downward 
trend, the experiment lasts a short time, and the observer, unfortunately, misclassifies the internal state of 
the human shoulder position at sequence 1150. In this sequence, the observer internal state classifies 
Region 6 while the human shoulder position is Region 4. However, both of them share the same 
classification results, Region 4 which occurs at sequence 0 and 762. For the empathy experiment, the 
vision data comparison shown in Figure 10 and the empathic response experiment is shown Figure 11. 

It can be seen from Figure 10, regeneration of the human shoulder data is similar, particularly 
during the downward trend, with a relatively low ∆error = 0.07751. A slight variant occurs during the 
upward trend with a considerable ∆error about 0.57492. These data discrepancies influence the 
reasoning process as any small fraction of data affects considerably prediction results. 

Figure 11 shows, during the upward experiment, that the observer prediction starts at interval 
data 15 with the observer data is Region 3 (data = −1.165). However, prediction data at this time is 
Region 2 (data = −1.553) which still misclassifies the real data on the human shoulder (Region 1, 
data = −1.973, generated synthetic pain is Category 1.0). However, in the interval data 16, both 
observer prediction and human shoulder converge into Region 1 (observer data = −1.973, prediction 
data = −1.941 and human shoulder data = −2.086). This situation accurately is matched with the real 
data on the human shoulder position, and finally ends at Region 1 with synthetic pain Category 2, 
detail 2.1. The behavior of internal states of both robots during the downward experiment indicates 
a similar pattern. The observer prediction and real data nearly converge to the same pain region 
classification, Region 6, at interval data 15 with the observer data prediction is 2.405, observer data 
itself equals 2.105 and human shoulder data = 1.83317. Thus, it generates the kind of synthetic pain 
Category 2, details 2.1 forcing the robot to provide an alert signal. When the next interval data 16, the 
robot has already prepare an empathy response as the prediction data already shows an increase 
pattern of the observer data. The changes in the observer internal states show in Table 8. 

Table 8. State of awareness, synthetic pain and empathy response generations. 

Internal 
State 

Awareness Synthetic Pain Empathy Response 

 Final Type Categories Intensity Direct Follow-Up 
1 ULOA  - - - 
2 LLSA  - - - 
3 ULSA No Pain - - - 
4 RiSOA  - - - 

5 ULSA 
1:0 

Proprioceptive 
“Slight” 

painfully 
restricting 

Approach the 
Scene 

6 ULSA  - - - 
7 LeSOA  - - - 
8 LLOA No Pain - - - 
9 ULSA  - - - 

10 ULSA 
1:0 

Proprioceptive 
“Slight” 

right arm is 
mid 

Alert Approach 
the Scene 
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Figure 9. Data mapping onto hardware faulty region. 

 

Figure 10. Empathy data conversion comparison. 
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Figure 11. Empathy data mapping onto faulty region. 

When the observer internal state is State 3, the awareness state switches to high priority 
subjective awareness, and the robot mind state is unconstrained. This state demonstrates that the 
robot mind may focus its attention on its embodiment aspects regardless of any synthetic pain being 
identified. The final awareness states for both, upward and downward experiments converge to high 
priority subjective awareness, forcing the robot attention to focus on the arm joint of the observer, 
and at the same time projecting the same situation on the human shoulder. A major difference 
occurs in the empathy response of the observer, in which during the upward experiment, direct 
impact of the projection forces the arm joint stiffness in a painful state as the observer prediction 
produces a false alarm at early stage of the experiment. While in the downward experiment, the 
observer accurately projects the internal state of the human shoulder, resulting in an accurate early 
alert information of an incoming synthetic pain experience on the human shoulder. This situation 
gives an advantage for the observer to provide an early direct empathy response by setting the arm 
joint stiffness to a medium level, and at the same time, to allow an adequate time for approaching 
the human peer and offer an assistance. 

Conclusion 

This paper implements robot empathy for synthetic pain by modelling robot self-awareness on 
subjective and objective elements. The embodiment of the consciousness feature through robot body 
part motions is integrated into the Adaptive Robot Self-Awareness Framework (ASAF) of a robot. 
We demonstrate that a robot can use ASAF, to build a projection of the internal state of agents apart 
from itself, and later on, to develop appropriate empathy responses. The projections allow the robot 
to simulate and experience the other robot’s internal state, develop an accurate pain description, and 
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generate appropriate empathy responses. Data transformation captured through robot vision 
determines the quality of projection process. The causal reasoning through sequential pattern 
prediction enables the robot’s decision making to embrace the past, the current and the future 
considerations. This ability allows the robot to build expectations of the other agent’s internal state. 
The observer’s focus of attention switches as the reasoning process predicts the synthetic pain level 
that the human shoulder is experiencing. 

Overall, the projection takes place accurately when both robots share a unified internal state. As 
the robot mind of the observer predicts that the element of body moves into the faulty joint region, 
the computation time increases and as a result, introduces data analyses discrepancies through a false 
alarm generation. This false projection occurs due three main causes: (i) Limited data to be used in 
sequence data prediction process decreases the quality of reasoning; (ii) the hardware discrepancies of 
the arm joint motor motion areas; (iii) there is a variable speed in hand movement of the human peer. 
The experiment also shows that robot awareness may revisit any of its consciousness regions under the 
unconstrained condition unless the robot mind switches to constrained condition. Utilization of the 
ASAF demonstrates a foreseeable application for empathy response towards synthetic pain for 
assistive robots application. 

Building on this implementation and critical proof-of-concept work, future research will extend 
the pain acknowledgement and responses further by integrating sensor data across multiple sensors 
using more sophisticated data integration. Future works to carefully design experiments that evaluate 
other kinds of synthetic pain proposed in the paper. Experiments should be designed to 
accommodate the modelling of robot actions during the visitation of other regions existed in the 
ASAF framework. The pain activation mechanism will consider recognition of human pain through 
social cues, such as facial and verbal expressions. Furthermore, measuring the empathy response 
from human with disabilities would be our primary future study. 
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