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Abstract: Curcumin (CUR) a natural polyphenolic compound, has attracted significant attention due
to its broad-spectrum anti-inflammatory, antioxidant, antimicrobial, and antitumor activities. However,
its poor water solubility, low bioavailability, and limited stability have hindered clinical applications.
Novel approaches utilizing nanocarrier-based delivery systems (e.g., liposomes, micelles) and
structural modification strategies offer promising solutions to enhance the therapeutic efficacy of
curcumin. This review and analysis attempted to summarize the therapeutical applications and working
mechanisms of CUR in oral infectious diseases, inflammation, traumatic disease and immune disorder.
Publications included in this review included references were confined to curcumin, nano-curcumin
(nCUR), and the names of different oral diseases; the different methodologies included clinical trials,
in vivo animal studies and in vitro studies. Web of Science and Pubmed/MEDLINE databases were
explored. The antioxidant, anti-inflammatory, immune regulation and anticancer properties of CUR
and nCUR are reported, and their positive applications in oral diseases is discussed. With more
favorable structure and improved solubility and bioavailability, n"CUR is more beneficial, stable and
efficient than CUR. Local application seems to be more effective on oral diseases, which allows for
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higher concentrations and better bioavailability, and can directly targets specific areas of the mouth,
providing more precise treatment. Both CUR and nCUR are likely to be developed into a next-
generation drug, but there is no consensus on their concentration, irradiation times and light intensity.
Additional trials are required to obtain clinical standards, and establish specific dose ranges and clinical
procedures.

Keywords: curcumin; nanoformulation; oral diseases; clinical application; pharmacological
mechanism

1. Introduction

Turmeric has been widely used as spice, dyes and medicinal agent. Its rthizome includes three
main ingredients [1,2], among which curcumin (CUR) makes up approximately 60%—70% [3] (Figure
1A). CUR has low toxicity, excellent biological activity and antioxidative, anti-inflammatory,
anticancer, anti-apoptosis and antibacterial effect. Researchers have evaluated its therapeutic effect on
different systemic diseases [3—5]. CUR reduces the occurrence of atherosclerosis [6], prevents gastric
mucosal damage [7] and has neuroprotective effects [8]. However, rapid elimination and low tissue
accumulation are two main problems limiting its application [9].
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Figure 1. The chemical structure of turmeric (A) and different nanocarrier-based delivery
systems of curcumin particles (B).

To address the shortcomings of native CUR, researchers have encapsulated CUR into nanocarrier-
based delivery systems [10] (Figure 1B). The nanoformulations of CUR (nCUR) focus on improving
solubility and bioavailability, protecting CUR from hydrolytic inactivation [11]. nCUR presents
different particle size, surface area, charge and hydrophobicity than those of CUR, making it more
effective in diagnosis [12] and pharmacological application [11].

Research has focused on potential for CUR and nCUR applications to systemic diseases, but its
oral application remains unexplored. One study discussed CUR’s use for oral mucosal disease,
periodontal disease, and oral squamous cell carcinoma [13]; another focused on head and neck cancers
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and salivary glands [11]. In this review, we included studied that focus specifically on the application
of curcumin in oral diseases (e.g., anti-inflammatory, antibacterial, or anticancer effects); articles must
be peer-reviewed English publications indexed in Web of Science or PubMed/MEDLINE (publication
years: 2010-2025) and must contain in vitro, in vivo, or clinical research data.

2. Infection

CUR has been shown to have antibacterial properties against G* and G~ strains, including
Streptococcus mutans (S. mutans) in caries and Porphyromonas gingivalis (P. gingivalis) in periodontal
infection [14-16]. It exerts broad-spectrum antibacterial activity, including changing cell membrane
permeability, weakening moving abilitys and changing virulence gene expression [14]. CUR causes
oxidative stress and DNA damage, leading to the death and/or arrested growth of Escherichia Coli and
Staphylococcus aureus [17]. nCUR has better antibacterial effect with improved solubility,
bioavailability, and permeability [14].

Antibiotics are the primary therapy for bacterial infections. However, with the increase of drug
resistance, CUR, with its non-selective acting mechanism, is an effective choice. CUR effectively kills
methicillin-resistant Staphylococcus aureus [18], a drug-resistant pathogen causing nosocomial and
community associated infections [19]. It also acts synergistically with antibiotics [20], facilitating their
entrance into bacterial cells and even inhibiting cell division.

Antimicrobial photodynamic therapy (aPDT) is proven effective in reducing periodontal
pathogens [21], S. mutans colonies, and Staphylococcus aureus strains [22] without affecting the
quality of dental restoration [23]. When photosensitizer (PS) absorbs a specific wave length it
undergoes electronic transition and energy transfer, causing reactive oxygen species (ROS) generation
and oxidative damage to DNA, lipids, and proteins. G bacteria are more sensitive to aPDT due to their
cell wall structure [24]. CUR, as a PS, can activate aPDT [23] under the appropriate wave length (300—
500 nm) [25,26], as shown in Figure 2. CUR-modified implants combined with aPDT inhibited S.
aureus biofilms, reducing the occurrence of peri-implant infections [27]. CUR with aPDT has
significant efficacy in reducing oral microbial load via mouthwash [28].
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Figure 2. The mechanism of CUR and nCUR in treating microbial infections.
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2.1. Dental caries

Dental caries is mainly caused by adhesion and colonization of S. mutans. CUR and nCUR
inactivate S. mutans in planktonic suspension [29] and biofilm [30]; its anti-biofilm activity lasts from
5 min to 24 h, with a minimum concentration of 500 uM [31]. Biofilms are more resistant to aPDT
[32]. An in vitro study tested the anti-biofilm effect of a pulp-capping agent with nCUR, where nCUR
significantly decreased the number of S. mutans colonies in biofilm. This anti-biofilm property
improves with concentration, and a pulp-capping agent with 5% (w/w) nCUR showed the best anti-
biofilm ability up to 60 days [33]. However, tooth pigmentation will occur with high concentrations
due to its yellow appearance. Using pre-irradiation (at least 2 min) to reduce the concentration and
improve the efficiency of CUR has been proposed [34].

2.2. Pulp infection

E. faecalis is closely related to pulpal and periapical infection. Conventional methods utilizing
sodium hypochlorite are not able to effectively kill E. faecalis in the root canal and may cause damage
to periapical tissues [35,36]. CUR-aPDT represents an excellent alternative, effectively killing E.
faecalis biofilm at concentrations as low as 10 uM [37], with a disinfection depth up to 400pum [38]
and a reduction of the adverse effects of oxygen free radicals.

2.3. Peridontal and peri-implant infection

A. actinomycetemcomitans is one of the main pathogens responsible for aggressive periodontal
infection. Limitations of mechanical removal of bacterial plaque are related to bacteria resistance
and complex root anatomy. CUR-aPDT inhibits the growth and activity of 4. actinomycetemcomitans
and reduces the expression of biofilm-formation genes [39]. A clinical trial found that CUR-aPDT
combined with scaling and root planning increased periodontal attachment [40]. Another study using
445 nm [40] and 660 nm [41] as excitation light showed antibacterial performance [42]. As for nCUR,
arecent clinical trial using nCUR at 50 ng showed a reduction in “red complex species” count, and the
amount of “beneficial bacteria” only increased in nCUR sites [43]. As for peri-implant infections, an
in vitro study revealed that nCUR inhibited above 99% of peri-implant bacteria [44]. In addition to the
direct inhibitory effect, CUR-aPDT can also indirectly act on untreated microbial cells whose
population and metabolic activity were reduced [45]. Another study indicated that polydopamine-
curcumin coating of titanium can remarkably inhibit bacterial activity via synergistic photodynamic
and photothermal properties [46]. This provided a new foundation for the development of new Ti
implants.

2.4. Fungal and viral infections

Oral candidiasis is one of the most opportunistic infections caused by Candida yeasts, mainly C.
albicans. CUR-aPDT has shown inhibitory effects on C. albicans in planktonic and biofilm states,
acting as a substitute for fluconazole [47]. An in vitro study showed that the expression of biofilm
adhesion- and formation-related genes decreased with 80 uM CUR, and the ability to resist oxidative
damage was reduced [48]. CUR-aPDT can reduce the load in biofilm composed of S. mutans and C.
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albicans [49]. This antifungal action is similar to that of nystatin, indicating a new therapeutic modality
for oral candidiasis to avoid nystatin toxicities [50].

CUR can inhibit virus replication and reduce virus entry pathway [51]. Herpes simplex virus-1
(HSV-1) is related to herpetic gingival stomatitis. CUR has shown therapeutic effects by inhibiting the
replication and protein synthesis of HSV-1 [52] by transcription factor nuclear factor-kxB (NF-«xB)
pathway and by inhibiting the activity of thymidine kinase [53]. Papillomaviruses belong to a group
of tumor viruses associated with neck squamous cell carcinomas (HNSCC), which constitute about
4.5% of all solid tumors [54]. Curcumin liposomes were shown to be able to generate a PDT-triggered
response in three papilloma virus-associated tumor cell lines, leading to major cell death [55].

The combination of nCUR  with other drugs can enhance its anti-
infectious properties especially for drug-resistant bacteria. In the future, new nanoformulations and
combinations of CUR should be explored to improve its therapeutic potential, such as using
nanotechnology targeting CUR to specific sites or using CUR as a carrier for other drugs.

3. Inflammatory diseases

CUR has anti-inflammatory effect and inhibits the expression of inflammation-related factors
such as IL-6, IL-8, and TNF-a [56]. Researchers have summarized the anti-inflammatory mechanism
of CUR, proposing that it inhibits inflammation by preventing formation of NOD-like receptor pyrin
domain-containing 3 [57]. Given its anti-inflammatory effects, clinical trials have been carried out on
pulp, periodontal, and peri-implant inflammation.

3.1. Pulp inflammation

2-Hydroxyethyl methacrylate is commonly used in tooth restoration. However, it increases
inflammation in pulp stem cells and causes inflammatory response. CUR-encapsulated liposome
inhibits pathway signaling molecules such as NF-kB, ERK, and pERK to reduce inflammatory side
effects [58]. The next step is to restore tooth anatomy and function. Stable bond between dentin and
resin adhesive is the key to successful restoration. However, matrix metalloproteinases and cathepsin
K will cause collagen degradation in the hybrid layer [59,60], not conducive to dentin and adhesive
connection. CUR has shown long-term effect on inactivating these endogenous proteases, with 200
puM CUR leading to irreversible inactivation of cathepsin K over a 6-month period [61-63], so that a
successful tooth restoration can be guaranteed.

3.2. Periodontital inflammation

Periodontal inflammation is characterized by progressive gingival inflammation and irreversible
alveolar bone loss. Stimulated by lipopolysaccharides (LPS), the NF-kB signaling pathway can be
activated and inflammatory cytokines like IL-1p and TNF-a are produced, causing progressive
destruction. CUR reduces periodontal inflammation by inhibiting TNF-a and IL-1p [64] and reduces
damage to periodontal tissue [65]. Osteoprotegerin (OPG) and soluble receptor activator of nuclear
factor kappa-B ligand (RANKL) are essential for alveolar bone metabolism. CUR attenuates LPS-
induced osteoclast activation and inhibits alveolar bone resorption by down regulating OPG/sRANKL
ratio, as proved in an in vivo study [64]. It also reduces MMP-9 expression to regulate extracellular
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matrix degradation and remodeling [66]. As for clinical treatment of periodontitis, 1% CUR gel offered
equivalent benefits in reducing pocket depth after scaling and root planning [67]. Mouthwashes
containing CUR can treat gingivitis by exerting anti-plaque and anti-inflammatory effects [68]. As for
nCUR, a recent clinical trial using nCUR soft gel capsules locally found it effective on inflammation
in patients with gingivitis and mild periodontitis, with severe decreases in papillary bleeding index
(PBI) and modified gingival index (MGI) [69]. Due to better biological effectiveness and few side
effects, nCUR can be used as a complementary therapy.

3.3. Oral mucosal inflammation

Oral submucous fibrosis (OSMF) is a chronic inflammatory disease invading oral mucosa, which
causes trismus, interferes with normal functions, and leads to malignant transformation [70,71].
Chronic and progressive submucosal fibrosis is a common clinical manifestation, causing decreased
blood vessels and tissue ischemia [72]. Curcumin reduces the transcription level of LTBP2 by
inhibiting HIF-1a, thereby inactivating the NF-kB pathway to alleviate arecoline-induced OSMF [73].
Different treating methods are used clinically, mainly focusing on palliative care rather than complete
cure. Some clinical studies showed that CUR has anti-inflammatory and anti-oxidation effects,
effectively reducing burning sensation and increasing mouth opening [71,74,75]. This is due to CUR’s
ability to reduce expression of pro-inflammatory cytokines and remove ROS [76]. Protein of p53,
TGF-B and iNOS are down-regulated with CUR intake, showing the chemopreventive property of
CUR in OSMF management [77]. Further clinical confirmations are still needed to evaluate CUR’s
potential in the treatment of OSMF [13,78,79].

Recurrent aphthous stomatitis (RAS) is a prevalent inflammatory condition appearing as multiple,
small, cupped, round, or oval-shaped symmetrical lesions of oral mucosa. After topical application of both
1% nCUR gel and 2% CUR gel for 7 days, pain score and lesion size were significantly decreased [80].
Greater reductions of the above indexes were discovered in the nanomicelle group, showing that nCUR
was more effective than CUR and contributed to its better substantivity, solubility, and bioavailability.

3.4. Inflammation after implantion

Success of oral implantation depends on good osseointegration between the implant and
surrounding bone tissues. However, foreign body reactions induced by implant placement may result in
significant inflammation, which in turn affects wound healing and osseointegration and will cause
implant failure [81]. Investigations performed in vivo with animal models revealed that CUR inhibits
activation of Akt/NF-kB/NFATc1 pathways and production of CCL3, thus reducing bone mass loss
[82,83]. Besides, CUR can regulate osteoblastic, osteoclastic, and adipogenic differentiation of
mesenchymal stem cells (MSCs) [84]. It promotes osteoblastic differentiation of MSCs; the signaling
pathways of ER stress, Wnt/B-catenin, Akt/GSK3p, and Keap1/Nrf2/HO-1 have been identified as the
potential mechanisms. CUR has stronger inhibitory effect against osteoclastic differentiation via
inhibition of RANKL/RANK and NF-kB as well as activation of Wnt/B-catenin pathways. Also, it
suppresses MSCs from adipogenic differentiation via AMPK regulation and activation of Wnt
signaling pathway. Furthermore, it attenuates the up-regulation of Akt/NF-kB pathways, PPARy
signaling pathway [85], and p65 phosphorylation and promotes the polarity of macrophages from M1
phenotype to M2 phenotype. Expressions of I[L-4, [L-10, and CD206 are increased and those of IL-1,
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TNF-a, CCR7, and iNOS are decreased, contributing to improved osteogenic microenvironment
[83,85,86]. Recent in vivo researches applying CUR onto Mg or TiO; implant surfaces [26,86,87]
showed that osteogenesis was promoted and local inflammation was reduced around implant post-
modification. Surface modification of implants with CUR can help promote osseointegration as well
as control local inflammation so as to achieve the success of oral implantation.

3.5. Temporomandibular arthritis

CUR can protect temporomandibular cartilage from degradation by inhibiting the expression of
various inflammatory factors. Reviews show that it inhibits the expression of ROS and MMPs induced
by IL-1P [88]. Additionally, it increases the expression of the anti-inflammatory factor Nrf2, up
regulates cartilage synthesis factor COL2A1 and ACAN, and activates ROS/Nrf2/HO-1-SOD2-NQO-
1-GCLC signaling axis, which plays an important role in anti-inflammatory and cartilage protective
effects [88]. This information provides new ideas for the treatment of temporomandibular arthritis,
although more clinical trials are needed.

4. Traumatic diseases

Oral and maxillofacial injuries include soft tissue damage, bone fractures, and teeth and alveolar
processes [89], such as teeth dislocation and fracture, maxilla or mandible injury and traumatic joint
injury [90,91]. Wound healing can be divided into four stages: coagulation, inflammation, migration-
proliferation, and remodeling [92,93], also applicable in oral trauma diseases. There are known
mechanisms of CUR during certain stages of healing for systemic diseases [94], and this section
elaborates the role of CUR in all stages for oral trauma.

In the coagulation stage, clotting and hemostasis start immediately. The coagulation pathway is
activated, causing platelet aggregation. While the hemostatic pathway is ongoing, reactive
vasoconstriction decreases, or even stops, bleeding [95]. CUR can be widely used in thromboembolism
because it can inhibit platelet aggregation, anticoagulation, and fibrinolysis [96,97]. The
pharmacological effects of CUR are the same in the coagulation phase of oral trauma.

During the inflammatory period, inflammatory factors are upregulated with the activation of NF-
kB. These inflammatory factors attract more inflammatory cells, induce production of ROS, and cause
further injury [98]. As widely reported, CUR reduces expression of pro-inflammatory cytokines and
controls the activity of kinases to reduce inflammation [94], as shown in Figure 3. CUR also has
antioxidant effects by scavenging ROS and inhibiting transcription factors related to oxidation [99,100].
In a palatal rat model, topical application of 2% CUR pastes reduced the infiltration rate of
inflammation [101], while in another study, tissue edema was reduced and tissue color was normalized
following periodontal flap surgery using CUR. CUR allows later stages of healing to begin earlier by
limiting the former inflammation [102].
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Figure 3. Types of oral trauma and effects of CUR and nCUR on wound healing in
different stages (IL-1f: interleukin-1B; TNF-a: tumor necrosis factor; NF-xB: nuclear
factor kappa-B; ROS: reactive oxygen species; TF: transcription factors related to
oxidation; AKT, PI3K, IKK: activity of kinase).

During proliferation and remodeling phases, CUR accelerates wound healing by enhancing
fibroblast proliferation and epithelialization, accelerating granulation tissue formation, promoting
collagen fiber deposition, and increasing wound contraction [103—105]. A study showed that CUR
promoted epithelization of oral mucosa epithelial cells in rat primary palatal wounds [100]. Another
showed that topical use of 25% CUR ointment on gingival healing in dogs normalized the degree of
re-epithelialization, and collagenous fibers were arranged in a compact and orderly manner [106]. CUR
strengthens wound closure by upregulating fibroblast growth into trauma, promoting earlier re-
epithelialization, improving neovascularization, and increasing collagen content [105,106]. Moreover,
using CUR after tooth extraction can stimulate fibroblast and collagen fibers proliferations to promote
tissue regeneration [107,108]. A special mechanism of CUR was found in oral wound healing, with a
recent study reporting that CUR significantly upregulates expression of collagen type I, keratinocyte
growth factor-1, and epidermal growth factor receptor, playing a key role to promote wound healing,
in the wound-healing and unwound-healing modes of human gingival fibroblasts [109].

S. Immune disorders
Immune disorders take many forms in oral cavity, including oral carcinoma and mucosal lesions
such as geographic tongue, oral lichen planus, and mucositis [110]. CUR and nCUR regulate immune

cell function, are synergistic with antioxidants, and have anticarcinogenic and anti-inflammatory
properties, which make them appropriate to exert therapeutic action in oral immune disorders.
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5.1. Oral squamous cell carcinoma

CUR has reliable anti-cancer effects whose mechanisms include inhibiting cancer cell proliferation,
promoting apoptosis, regulating miRNA, and epithelial-mesenchymal transition [111,112]. Squamous
cell carcinoma of the head and neck (HNSCC) is considered the sixth most common cancer, which
appears in gums, mucosa, lips, tongue, and hard palate and accounts accounting for approximately 90%
of oral cancers [113]. Tongue cancer is the most common, making up approximately half of all
incidences, presenting a very rich blood supply and a high rate of lymphatic metastasis, thus resulting
in a poor prognosis.

Clinical usage of CUR and nCUR in preventing and treating HNSCC include marked decrease of
oral carcinoma formation in hamster buccal pouch model of carcinogenesis and decrease of
proinflammatory cytokine and IkB kinase-p activity in saliva [11]. The increased permeability and
retention of nCUR improve local accumulation, enhance cellular transport process and thus improve
extracellular level, appearing to be excellent in vivo. As for the mechanism (Figure 4), CUR increases
the cellular ratio of Bax/Bcl-2 in tongue squamous cell carcinoma and increases cleaved Caspase-3
content, causing apoptosis [114,115]. It increases the number of cells staying in S or G2/M phase and
inhibits tumor cell proliferation [115—-117]. CUR inhibits immune tolerance, by the inhibition of signal
transducer and activator of transcription 3 (STAT3) phosphorylation and PD-L1 expression [116—-119].
CUR reduces the number of immunosuppressive cells induced by 4-nitroquinoline-oxide and
effectively reduced tumor volume [117]. As for tumor metastasis, CUR inhibits HGF-induces HSC-4
and Ca9-22 epithelial-mesenchymal transition by inhibiting c-Met and ERK phosphorylation [120].
CUR can inhibit angiogenesis, with researchers believing that CUR’s anti-cancer effect is related to its
enhancement of SIRT1 deacetylation activity [121].
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Figure 4. The potential mechanism of CUR and nCUR against oral squamous cell
carcinoma (MDSCs: myeloid-derived suppressor cells; HGF: hematopoietic growth factor;
c-Met: cellular-mesenchymal epithelial transition factor; ERK: extracellular regulated
protein kinases; E-cadherin: epithelial cadherin; STAT3: signal transducer and activator of
transcription 3; PD-L1: programmed death-ligand).
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Chemotherapy and radiotherapy are commonly utilized in oral carcinoma, but with side effects
like toxicity to normal cells and resistance of tumor cells. CUR combined with chemotherapy enhances
therapeutic effect. In vitro and in vivo studies proved that nCUR combined with 5-fluorouracil can
promote cell apoptosis, and CUR hindered DNA repair combined with Olaparib [122—124]. CUR also
has protective effect during chemotherapy, reduces side effects and prolongs application time [125].
Radiotherapy can cause oxidation and change crystal structure of enamel, which can be prevented by
CUR via resisting oxidative stress [126,127]. Orally taking nCUR helps to reduce the incidence and
severity of radiotherapy-induced mucositis [128], which can be a reasonable approach to hinder oral
mucositis in HNSCC patients requiring radiotherapy.

5.2. Psoriasis and geographic tongue

Psoriasis is an autoimmune disease presenting as characteristic skin [129] and oral lesions [130].
The pathological changes are primarily shown as geography tongue, which is believed to be related to
the severity of psoriasis [131,132]. The production of inflammatory infiltration in psoriatic lesions
were mediated by immune cells, especially T cells. Those inflammatory factors include IL-17, IL-22,
IFN-y, IL-2, IL-8, and TNF-a [133,134]. CUR has anti-inflammatory properties [135]. An animal
experiment indicated that CUR inhibits proliferation of T cells and secretion of inflammatory factors [136].
More trials are needed to confirm its clinical effect.

5.3. Oral lichen planus

Oral lichen planus (OLP) is a kind of oral mucosal disease with chronic inflammation and erosion [137],
which is mediated by T cells and pro-inflammatory mediators released by mast cell degranulation
[138,139]. Topical corticosteroids are commonly used clinically, with many side effects [140]. With
strong anti-inflammatory properties and fewer side effects [141], clinical studies have explored the use
of CUR in OLP to reduce pain and burning sensation. There are statistically significant differences in
pain severity and clinical manifestations after topical treatment with nCUR (as low as 10mg once daily),
but no statistically significant differences with respect to its efficacy versus corticosteroids [142—-144].
Due to CUR’s treatment efficiency and fewer side effects, it can be used as an adjuvant in combination
with corticosteroids.

6. Preparation and production cost of curcumin and its nanoformulation

As a natural polyphenol compound, curcumin has attracted much attention because of its anti-
inflammatory, antioxidant, and anticancer activities, but its clinical application is limited by problems
such as poor water solubility, low bioavailability, and insufficient chemical stability. Nanoformulation
technology significantly improves the therapeutic effect of curcumin by improving its physicochemical
properties. The following will compare curcumin and its nanoformulation in terms of preparation
process, carrier selection, and production cost, and compare the cost-effectiveness of liposomes, PLGA
polymers, and natural polymer carriers.
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6.1. Comparison of curcumin and its nanoformulation

Due to its poor water solubility, low intestinal absorption rate, and fast metabolism, curcumin
requires high doses or frequent administration to achieve curative effects, which increases patients'
medication costs and potential risk of side effects [144]. Nanoformulations can improve solubility and
stability, prolong blood circulation time, and achieve targeted delivery by carrier encapsulation or
composite technology. For example, chitosan nanocomplexes are combined with curcumin by
electrostatic interaction with up to 60% drug loading without complex encapsulation processes,
significantly reducing costs [145]. Furthermore, nanoformulations can enhance tumor targeting
through surface modification and reduce systemic toxicity [146].

6.2. Limitations of liposomes and PLGA polymer carriers

As classical nanocarriers, liposomes have the advantages of high biocompatibility and stable
encapsulation efficiency, but their preparation requires phospholipid materials and precise processes,
such as film hydration method, resulting in high production costs [146]. In addition, liposomes are
prone to oxidative degradation and require low-temperature storage, further increasing the cost of cold
chain transportation. PLGA (polylactic acid-glycolic acid copolymer) is an FDA-approved synthetic
polymer with controlled release characteristics, but its synthesis relies on petroleum-based raw
materials and the cost is high. The preparation of PLGA nanoparticles often requires the use of organic
solvents, such as dichloromethane, which poses environmental and safety risks, and the cumbersome
later purification steps increase the preparation cost [147]. In clinical transformation, the large-scale
production cost of PLGA has become the main bottleneck.

6.3. Cost advantages and innovative applications of natural polymer carriers

Compared with synthetic materials such as liposomes or PLGA, natural polymers, such as
chitosan and gelatin, have become the preferred nano formulations because of their wide range of
sources, good biodegradability and low cost. The amorphous curcumin-chitosan nanocomposite
developed by Nguyen et al. (2015) was prepared by a simple ionic gelation method, avoiding the use
of organic solvents [145]. The drug loading capacity was more than 3 times that of traditional
nanoparticles, and the supersaturated solubility was high, significantly improving bioavailability. The
process saves the packaging step, reduces the production costs by more than 50%, and is suitable for
industrial production.

6.4. Comprehensive analysis of production cost

The cost of nano formulation mainly includes three parts: materials, processes and large-scale
production. Liposomes and PLGA rely on high-purity synthetic materials, accounting for 40%—60%
of the cost [146]; However, the price of natural polymer raw materials such as chitosan is only 1/5-
1/10 of that of synthetic materials [145]. In terms of technology, natural carriers mostly adopt mild
conditions,such as aqueous phase reaction, and energy consumption and equipment investment are low.
For example, curcumin-chitosan complexes can be prepared only by stirring and centrifugation, while
liposomes require complex steps such as high-pressure homogenization [147]. In large-scale
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production, natural polymers are easier to achieve continuous production, which is in line with the
trend of "green chemistry".

While improving the curative effect, nano-curcumin needs to take into account the preparation
economy. Although the performance of liposomes and PLGA is controllable, the cost and process limit
their popularity. Natural polymer carriers have become a more competitive choice by simplifying
processes and reducing raw material costs. Future research should further optimize the stability and
targeted modification of natural materials to promote the transformation of nano-curcumin from
laboratory to clinic.

6.5. Therapeutic efficiency and long-term economics of curcumin and its nanoformulations

Curcumin has attracted much attention due to its anti-inflammatory, antioxidant, and anticancer
properties, but its clinical application has long been limited by low bioavailability (<1%) and frequent
administration requirements. By improving the solubility, targeting and stability of curcumin, nano-
formulation technology significantly improves the treatment efficiency and reduces the economic
burden of long-term medication. The following will be analyzed from the aspects of bioavailability
improvement, medication frequency optimization, nursing cost reduction and side effect management
cost reduction.

Nano-curcumin can break through the biological barrier and greatly improve the drug absorption
efficiency through carrier wrapping or structural modification. Szymusiak et al. (2016) found that the
concentration of curcumin and its active metabolite (curcumin glucuronide) in the central nervous
system of mice orally administered nano-curcumin (particle size < 100 nm) was 5-8 times higher than
that of the traditional curcumin group, indicating that nano-curcumin significantly enhances blood-
brain barrier penetration ability [148]. The improvement of the bioavailability of nano-curcumin
directly reduces the dosage and frequency of administration, and the high curative effect reduces the
frequency of hospitalization or follow-up visits, reduces nursing costs and the burden on patients, and
indirectly saves medical resources. For example, in the treatment of recurrent aphthous ulcer (RAS),
the clinical trial of Bakhshi et al. (2022) showed that the efficacy of 1% nano-curcumin gel (drug
loading optimization) was comparable to that of 2% traditional curcumin gel, but the number of daily
doses was reduced from 4 to 2, and patient compliance was significantly improved. The healing time
of nano-curcumin gel was shortened by 30% compared with traditional preparations, the patient care
cycle was reduced from an average of 14 days to 10 days, the number of outpatient follow-up visits
was reduced, and the comprehensive care cost was reduced by about 25% [149]. Through targeted
delivery and sustained release properties, nanoformulations can accurately act on the lesion area,
shorten the course of treatment and reduce the intensity of care. Hafez Ghoran et al. (2022) pointed
out that curcumin nanoparticles (such as liposomes, micelles) can achieve pH-responsive release in
the tumor microenvironment, and the anti-cancer efficiency is 3-5 times higher than that of free
curcumin [150].

Traditional curcumin requires high-dose administration (usually > 8 g/day) and easily causes
gastrointestinal reactions such as diarrhea and nausea, while nano-formulations significantly improve
safety and reduce side effect management costs by reducing effective doses and systemic exposure.
Szymusiak et al. (2016) confirmed that nano curcumin did not cause elevated liver enzymes or
histopathological damage in mouse models, and its safety profile was better than free curcumin [148].
The clinical trial of Bakhshi et al. (2022) further showed that the incidence of adverse reactions in the
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1% nanogel group (8%) was significantly lower than that in the 2% traditional gel group (24%), and
the cost of additional medical interventions (such as anti-nausea drugs and electrolyte supplementation)
due to side effects was reduced by about 40% [149].

Nano curcumin achieves reduction and efficiency increase by improving bioavailability,
optimizing targeting, and reducing toxic and side effects, thereby reducing drug frequency, nursing
investment, and side effect management costs. In the long run, although the early research and
development cost of nanoformulations is high, their comprehensive economics (such as shortening the
course of treatment and saving medical resources) increase their potential for application in the
treatment of chronic diseases and cancer. In the future, it is necessary to further optimize large-scale
production processes to reduce production costs and promote clinical popularization.

6.6. Economic analysis of curcumin and its nanoformulations in global healthcare systems

As a natural polyphenol compound, curcumin has a wide range of pharmacological abilities in
anti-inflammatory, antioxidant and anticancer fields, but its clinical application is limited by low water
solubility, rapid metabolism and low bioavailability. Nano-formulation technology has significantly
improved the efficacy of curcumin by improving its physical and chemical properties, but its economy
and accessibility are significantly different between developed and developing countries.

6.7. The technical cost of nano-formulations and the application advantages in developed countries

In developed countries, the preparation of nano-curcumin mostly adopts high-precision
technologies, such as liposome encapsulation, polymer nanoparticles (PLGA) and micellar systems.
Although these technologies have high preliminary R&D and equipment investment costs (such as
high-pressure homogenization, supercritical CO> extraction, etc.), they can achieve large-scale
production, thus diluting the cost of a single agent [151]. In addition, the perfect medical insurance
system and high patient payment ability in developed countries have further improved the accessibility
of nano-formulations.

6.8. Cost challenges and potential opportunities for developing countries

Developing countries are limited by technology and funds, and often use natural polymers (such
as chitosan and zein) or simple nano-preparation processes (such as ionic gel method and solvent
evaporation method) to reduce production costs. However, technology reliance on imported equipment
(such as nanoflow cytometry, high performance liquid chromatography) and patent licensing fees still
push up terminal prices.

Developed countries can rapidly promote the clinical application of nano-curcumin by virtue of
their technological advantages and high payment ability. Developing countries need to gradually break
through technical and economic barriers by combining raw material advantages with low-cost
processes. In the future, technology transfer, promotion of green preparation processes (such as plant-
derived nanocarriers), and international collaboration are expected to narrow the gap between the two
and promote the inclusive application of nano-curcumin in the global medical system.
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7. Limitations

Although CUR and nCUR has been proved effective on all kinds of oral diseases, there is no
consensus on CUR’s concentration, irradiation time, and light intensity. High CUR concentration or
excessive light intensity can reduce the activity of mice fibroblasts. CUR of different concentrations
(0.01, 0.1, 1, 10, 100uM) changes activity of human gingival epithelial precursor cells, which decrease
significantly at more than 10 uM [66]. It may promote apoptosis in fibroblasts, although tangible
evidence is still lacking [34]. As for the effect on oral stem cells, one study pointed out that high doses
of CUR (>10 uM) can overexpress miR-126a-3p in human bone marrow mesenchymal stem cells, which
inhibits osteogenic differentiation, reduces bone mass and increases risk of tumor metastasis [152].
Besides, CUR promotes apoptosis and migration, resulting in adverse effects [153]. Higher
concentration or two photodynamic therapy sessions may cause adhesive failure, since the high CUR
concentration or hydrogen peroxide formed during the photodynamic therapy session may react with
calcium ions in hydroxyapatite. [154—156].

CUR and nCUR have a promising future in the treatment of oral diseases. Existing studies have
reported that topical application of about 1% to 2% concentrations of CUR can play an effective
therapeutic role. Research is still necessary to further explore the dose-concentration relationship and
achieve the most beneficial efficiency. While this study centers on mechanistic investigations, critical
evaluation of the cited studies could provide additional translational value, particularly in oral
applications where clinical evidence remains sparse.

8. Conclusions

This review highlights the therapeutic potential of CUR in oral diseases and the advantages of
nCUR in pharmacological effectiveness and clinical application. We briefly illustrate mechanisms of
CUR by inhibiting various proteins and signaling pathways associated with development and
progression of oral diseases. The antioxidant, anti-inflammatory, immune regulating, anticancer
properties of CUR and nCUR are reported, suggesting that they may have positive applications to oral
diseases. CUR has certain shortcomings including low solubility and poor bioavailability, but nCUR,
with more favorable structure, is more beneficial and stable [14]. Local application is shown to be
more effective for oral diseases, which directly targets specific areas, provides more precise treatment,
and allows for higher concentration and better bioavailability.

The therapeutic application of CUR and nCUR should be considered in oral diseases including
oral infection, inflammation, traumatic disease, and immune disorder. Still, additional systematic trials
are required, as the existing evidence is not sufficient for clinical standard, and the specific dose and
clinical procedure need to be established. In the future, it is necessary to further study the optimal
concentration range of nanocurcumin in different diseases, and how to further improve its distribution
and targeting in vivo by optimizing the design and preparation process of nanocarriers. Furthermore,
more preclinical and clinical studies are needed to determine the optimal irradiation time of curcumin
and nano formulations in different cancer types and treatment regimens, and how to optimize their
combined application with radiotherapy. Further research on the photochemical reaction mechanism
of curcumin under different light intensities and how to improve its stability and bioavailability by
optimizing light treatment conditions is needed.
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