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Abstract: Saclipin A and saclipin B are bioactive oxylipin compounds derived from an edible 

cyanobacterium, Aphanothece sacrum. Saclipins have been shown to have potent anti-aging properties, 

including antioxidative, antiglycative, anti-wrinkle, and skin-whitening activities. In this study, we 

demonstrate that the anti-collagenase and anti-hyaluronidase activities of saclipins are additional anti-

wrinkle properties of these compounds. Furthermore, we reveal that saclipins exert angiotensin-

converting enzyme (ACE) inhibitory activities, which can mitigate hypertension. These results suggest 

that saclipins are promising natural products with applications not only for skincare products but also 

as medical supplements. 

Keywords: saclipin; cyanobacteria; Aphanothece sacrum; angiotensin-converting enzyme inhibition; 

collagenase inhibition; hyaluronidase inhibition 

 

 



114 

AIMS Molecular Science  Volume 12, Issue 2, 113–121. 

1. Introduction 

Aphanothece sacrum (Suringar) Okada (hereafter A. sacrum) is an edible cyanobacterium endemic 

to Japan. This organism was originally reported as Phylloderma sacrum by Suringar in 1872 [1,2]. 

Subsequently, Okada reclassified this cyanobacterium as the genus Aphanothece [2,3]. Aphanothece 

sacrum forms clumps that can exceed 10 cm in length. In Japan, the vernacular name for A. sacrum is 

Suizenji-nori, and it has been used as a food source for more than 300 years [2,4]. The only known 

natural habitat of A. sacrum is the Kogane River in Asakura City, Fukuoka Prefecture [5]. 

The A. sacrum samples used in this study were obtained from Endokanagawa-Do, which operates 

an aquaculture business on the Kogane River. Recently, novel ultraviolet (UV)-absorbing compounds, 

saclipin A and saclipin B, were discovered in A. sacrum [6]. Saclipin A and saclipin B, which are cis-

trans isomers, show absorption maxima at 316 and 319 nm, respectively, and molar extinction 

coefficients of 26,454 and 30,555 M−1 cm−1, respectively [6]. Functional assessment revealed that saclipins 

exhibit antioxidative and antiglycative activities in addition to their UV-absorbing properties [6]; therefore, 

saclipins are thought to be promising ingredients for cosmetic applications. This is because the 

progression of skin aging caused by UV radiation stress is closely related to the generation of reactive 

oxygen species (ROS) and the glycation of proteins found in the skin [7]. In addition to extrinsic skin 

aging caused by external environmental stress, predominantly UV exposure, intrinsic skin aging is 

known to be associated with programmed aging and cellular aging caused by endogenous oxidative 

stress and cellular damage [8]. It has been reported that the accumulation of ROS can indirectly activate 

the dermal enzymes collagenase and elastase, which degrade collagen and elastin, respectively [9]. 

Collagen, which is the most abundant protein in the human dermis, maintains the tensile strength of 

skin, while elastin is a protein that is a component of elastic fibers, which support collagen fibers [9]. 

Therefore, the activation of elastase and collagenase accelerates skin aging through the formation of 

wrinkles and sagging skin as collagen and elastin are broken down [10]. 

Another important substance found in the skin is hyaluronic acid, which is abundant in the dermis 

and epidermis and contributes to the smoothness of skin, helping to reduce wrinkles due to its excellent 

water retention properties [9]. It is important to maintain the hyaluronic acid content of the skin to help 

keep the skin looking youthful, but hyaluronic acid levels decrease with age, and it is also broken down 

by hyaluronidase [11]. We recently found that saclipins possess bioactivities, including elastase 

inhibition and the promotion of collagen and hyaluronic acid production in human fibroblasts [12]. 

These properties of saclipins may contribute to maintaining skin firmness and preventing wrinkles. 

These advantageous activities, together with the high stability of saclipins under light irradiation and 

heat treatment, suggest that saclipins have potential in formulations for skincare cosmetics and oral 

supplements [12]. In this brief report, we describe the additional bioactivities of saclipins that have 

anti-wrinkle effects. Furthermore, we show that saclipins exhibit useful anti-hypertensive effects when 

taken orally.  

2. Preparation of purified saclipins 

For the assays, we prepared purified saclipins A and B as described in [12]. Briefly, dried A. 

sacrum (10 g), purchased from Endokanagawa-Do (Fukuoka, Japan), was pulverized using a food 

processor (IFM-C20G, Iwatani, Tokyo, Japan). The resulting powder was mixed with 50 mL of 

methanol and sonicated using a Model UR-200P sonicator (TOMY SEIKO, Tokyo, Japan). The 
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suspension was centrifuged at 2,330g for 15 min at 4℃, and the resulting supernatant was transferred 

to another tube and then dried in a VC-36R centrifugal concentrator (Taitec, Saitama, Japan). The dried 

materials were dissolved in 5 ml of acetonitrile/formic acid/water (55/0.1/44.9, v/v/v) and then passed 

through a 0.22 μm-pore-size filter. The samples were subjected to preparative HPLC with an Inertsil 

ODS-3 column (10 µm; 250 × 20 mm) connected to a guard column (50 × 20 mm) containing the same 

packing materials. The mobile phase was acetonitrile/formic acid/water (55/0.1/44.9, v/v/v), and the 

flow rate was 10.0 ml/min. The volume of samples injected was 5 ml. Saclipins were detected at 320 

nm. In this preparative HPLC, saclipins A and B were eluted as the same fraction, and this fraction was 

lyophilized. All purification steps were performed in the dark, and the resulting sample contained 

saclipins A and B in a ratio of 0.92:0.08, which was used as purified saclipin A (Figure 1). For the 

preparation of purified saclipin B, purified saclipin A was dissolved in ethanol and then exposed to 

6,000 lux light irradiation for 24 h to isomerize saclipin A to saclipin B. The resulting sample contained 

saclipins A and B in a ratio of approximately 0.09:0.91, which was used as purified saclipin B (Figure 

1). The purified saclipins were analyzed by HPLC analysis as reported in [6], with some modifications. 

In brief, a polymeric ODS column (Inertsil ODS-P; 3 μm, 150 × 4.6 mm) connected to a guard column 

(3 μm, 30 × 4.6 mm) was used as the stationary phase, and a mixture of acetic acid/acetonitrile/water 

(0.5:50:49.5, v/v/v) was used as the mobile phase. The mobile phase flow rate was maintained at 0.5 

mL/min, and the column temperature was maintained at 40℃. The volume of samples injected was 10 

μl. The quantification of saclipins was performed by peak area integration at 320 nm. 

 

Figure 1. Chemical structures and HPLC chromatograms of saclipin A-rich (A) and 

saclipin B-rich (B) materials used for the evaluation of their bioactivities. 

3. Evaluation of anti-wrinkle effects of saclipins 

To evaluate the anti-wrinkle effects of saclipins, we investigated their collagenase inhibitory 

activities and hyaluronidase inhibitory activities. The accumulation of collagen and hyaluronic acid in 

dermal fibroblasts is important for maintaining skin firmness and elasticity [13]. Collagenase is a well-

known proteolytic enzyme that breaks down collagen and is associated with skin aging [14]. We 

previously reported that collagenase inhibitory activity was not detectable in extracts containing 

saclipins at concentrations of less than 31.25 M [15], but this activity was observed at the higher 
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concentrations used in the present study. As shown in Figure 2A, both saclipins A and B showed 

collagenase inhibitory activities with an IC50 value of <400 μM. Their IC50 values are comparable to 

those of mycosporine-like amino acids (MAAs), which are known to be important UV-absorbing 

compounds in cyanobacteria [16-18]. Interestingly, when comparing saclipins A and B, saclipin A 

exhibited greater activity than saclipin B. At a concentration of 9.8 mM, there was no notable difference 

in inhibitory activity between saclipins A and B, but at the lower concentration of 0.4 mM, saclipin B 

inhibited 67% while saclipin A inhibited 85%. This result indicates that lower concentrations of 

saclipin A exert a greater inhibitory effect on collagenase. Considering that saclipins can inhibit 

collagen glycation [6], these findings suggest that saclipins can not only inhibit collagen degradation 

but also protect its function and thus could play an effective role in skin anti-aging. Saclipins also show 

inhibitory activity against hyaluronidase, which degrades hyaluronic acid [19] (Figure 2B). Saclipins 

A and B showed similar activity in inhibiting hyaluronidase, both showing IC50 values of <400 μM. 

These results, together with the previously identified activities, strongly suggest that saclipins are 

promising compounds that have anti-aging effects. These advantageous activities have great potential 

for the development of functional skincare products. 

 

Figure 2. Inhibitory effects of saclipins on collagenase and hyaluronidase. (A) Anti-

collagenase activity of saclipins. (B) Anti-hyaluronidase activity of saclipins. The error 

bars show standard deviations across three different tests. Asterisks indicate a statistically 

significant difference between saclipin A and saclipin B at that concentration (*p < 0.05, 

**p < 0.01, unpaired t-test). 

The evaluations of collagenase inhibitory activities and hyaluronidase inhibitory activities were 

performed by Kanagawa Institute of Industrial Science and Technology (KISTEC, Kanagawa, Japan). 

For the collagenase inhibition assay, collagenase was dissolved at 0.02 mg/mL in 50 mM Tris buffer 

(pH 7.3) to prepare the enzyme solution. To prepare the substrate solution, MOCAc-Pro-Leu-Gly-Leu-

A2pr (Dnp)-Ala-Arg-NH2 was dissolved at 1 mM in DMSO and diluted 200-fold with 50 mM Tris 

buffer (pH 7.3) immediately before use. Measurements were performed using a 96-well microplate. 

Aliquots of sample solution (50 μL) and enzyme solution (100 μL) were added and incubated at 37°C 

for 10 minutes. Then, 50 μL of substrate solution was added and the mixture was stirred. After 

incubation at 37 ℃ for 60 minutes, the fluorescence intensity (excitation wavelength 320 nm, emission 
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wavelength 405 nm) was measured. Collagenase inhibitory activity was calculated based on the change 

in fluorescence intensity. For the hyaluronidase inhibition assay, the enzyme solution was prepared by 

dissolving bovine hyaluronidase at 4 mg/mL in 0.1 M acetate buffer (pH 4.0). The substrate solution 

was prepared by dissolving potassium hyaluronate at 0.8 mg/mL in acetate buffer (pH 4.0). The 

enzyme activation solution was prepared by dissolving Compound 48/80 at 0.5 mg/mL in acetate 

buffer (pH 4.0). The color-development stock solution was prepared by dissolving p-

dimethylaminobenzaldehyde at 0.1 g/mL in a mixture of hydrochloric acid and acetic acid, which was 

diluted 10-fold with acetic acid just before use. The reaction was carried out in a microtube. Aliquots 

of sample solution (50 μL) and enzyme solution (25 μL) were added and incubated at 37℃ for 20 

minutes. Next, 50 μL of enzyme activation solution was added and incubated at 37°C for 20 minutes. 

Then, 125 μL of substrate solution was added and incubated at 37℃ for 40 minutes. The reaction was 

then stopped by adding 50 μL of 0.4 N sodium hydroxide solution, then 50 μL of 0.8 M borate buffer 

(pH 9.0) was added. The mixture was heated in a heat block at 105℃ for 5 minutes. It was then 

thoroughly cooled on ice, and 50 μL of the mixture was transferred to a 96-well microplate. Color-

developing solution (200 μL) was added, and the mixture was incubated at 37℃ for 30 minutes, after 

which the absorbance at 585 nm was measured. Hyaluronidase inhibitory activity was calculated based 

on the change in absorbance. 

4. Evaluation of anti-hypertensive property of saclipins 

Due to their ability to absorb UV radiation, saclipins have been evaluated for their biological 

activity in terms of anti-aging of the skin. As A. sacrum is also used as a food product, it is important 

to evaluate the function of saclipins as oral drugs or supplements. In this study, we evaluated the 

angiotensin-converting enzyme (ACE) inhibitory effect of saclipins to determine whether they have 

anti-hypertensive properties. ACE is known to convert angiotensin I to the active vasoconstrictor 

angiotensin II, a compound that triggers increased blood pressure by inducing vasoconstriction and the 

release of aldosterone [20]. ACE inhibitors suppress the formation of angiotensin II, thereby preventing 

an increase in blood pressure. As shown in Figure 3, both saclipins A and B notably inhibited ACE 

activity. Saclipin A exhibited a greater inhibitory effect than saclipin B. The IC50 values of saclipins A 

and B were 0.5 and 1.2 mM, respectively. These results indicate that saclipins have potential as anti-

hypertensive agents and that A. sacrum itself may be a suitable food ingredient for modulating blood 

pressure. The molecular mechanism underlying the ACE inhibitory effects of saclipins is currently 

unknown and would be an interesting topic for future research. Most of the currently available ACE 

inhibitors are short peptides and their derivatives, and their activities are based on antagonism at the 

three active sites of ACE that recognize angiotensin I [21]. The interaction of ACE inhibitors with the 

zinc ion present in the active center of ACE is also important [21]. It has been reported that the ketone 

groups of ketone-containing ACE inhibitors bind to the zinc ion in ACE in the form of a hydrated 

geminal diolate [22]; therefore, it is possible that the two ketones in saclipins can bind to the zinc ion 

in ACE. The difference in inhibitory activity between saclipins A and B is thought to be due to 

differences in their conformations, such as the formation of hydrogen bonds due to the smaller distance 

between the two ketone groups in saclipin B than in saclipin A, as we discussed previously [6]. 
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Figure 3. Inhibitory effects of saclipins on ACE. The error bars show standard deviations 

for three separate assays. Asterisks indicate a statistically significant difference between 

saclipin A and saclipin B at that concentration (*p < 0.05, **p < 0.01, unpaired t-test). 

The evaluations were performed by KISTEC. ACE inhibitory activity was calculated using ACE 

Kit-WST (Dojindo Laboratories, Kumamoto, Japan) according to the manufacturer’s protocol. This 

kit is based on a method that detects the absorbance at 450 nm of the enzyme reaction product of 3-

hydroxybutyric acid generated from 3-hydroxybutyryl-Gly-Gly-Gly, which is used as a substrate for 

ACE [23,24]. 

5. Conclusions 

In this study, we showed for the first time that saclipins possess the physiological activity of 

suppressing hypertension, in addition to collagenase and hyaluronidase inhibition activity. Since the 

identification of saclipins from A. sacrum was first reported in 2023 [6], various useful properties of 

saclipins have been discovered, as shown in Table 1. Comparing saclipin A and saclipin B, saclipin A 

has greater singlet oxygen quenching, anti-elastin glycation, anti-elastase, and anti-ACE activities, 

while saclipin B has superior UV absorption, ABTS radical-scavenging, and anti-collagen glycation 

activities. Although saclipin A is quantitatively more abundant than saclipin B in A. sacrum, saclipin 

A is readily photoisomerized to saclipin B upon exposure to light [6]. Therefore, the ability of saclipin 

B to absorb UV is likely to be useful for applications in topical skin products. One possible application 

for saclipin B is in skincare creams. Saclipin B is a fat-soluble compound derived from a fatty acid 

(probably α-linolenic acid), and its application could be differentiated from water-soluble MAAs, 

which are also UV-absorbing compounds derived from cyanobacteria and have already been 

commercialized [14]. Conversely, the ACE inhibitory activity of saclipin A is promising for the 

development of applications involving oral products. By incorporating saclipin A into oral supplements, 

it is possible that the antioxidant and antiglycation effects of saclipin A may contribute to anti-aging 

from within the body. 

In conclusion, this study has provided new information regarding the functionality of saclipins. 

This functionality can add value not only to saclipins but also to A. sacrum. The natural habitat of A. 

sacrum has been shrinking due to environmental changes, and it is now only found in a small area of 

the Kyushu region of Japan [5]. It is a rare species that has been designated as a Class IA endangered 
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species by Japan’s Ministry of the Environment [5]. It is anticipated that the knowledge of this 

organism’s added value will lead to conservation activities and revitalization of the aquaculture 

industry involving A. sacrum. 

Table 1. Biological and pharmacological activities of saclipins. 

Characteristics and activities Saclipin A Saclipin B Ref. 

UV-absorption properties 

Molar extinction coefficient 26,454 M−1 cm−1 (316 nm) 30,555 M−1 cm−1 (319 nm) [6] 

Antioxidant activities 

ABTS radical-scavenging Weak (IC50: 717 μM) Weak (IC50: 142 μM) [6] 

Singlet oxygen quenching Weak (IC50: 1.2 mM) Weak (IC50: 2.1 mM) 
 

Antiglycative activities 

Anti-elastin glycation Yes (IC50: < 4 mM) Yes (IC50: > 4 mM) [6] 

Anti-collagen glycation Yes (IC50: 1.9 mM) Yes (IC50: 0.9 mM) [6] 

Anti-wrinkle activities 

Anti-elastase Yes (IC50: < 12.5 μM) Yes (IC50: < 25.0 μM) [12] 

Anti-collagenase Yes (IC50: < 400 μM) Yes (IC50: < 400 μM) This study 

Anti-hyaluronidase Yes (IC50: < 400 μM) Yes (IC50: < 400 μM) This study 

Collagen production promotion Yes Yes [12] 

Hyaluronic acid production 

promotion 

No Yes [12] 

Skin-whitening effects 

Anti-tyrosinase Yes Yes [12] 

Melanin production inhibition Yes Yes [12] 

Melanin precursor darkening 

inhibition 

No No [12] 

Anti-hypertensive activity 

Anti-ACE Yes (IC50: 0.5 mM) Yes (IC50: 1.2 mM) This study 
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