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Abstract: Breast cancer, a prominent form of cancer in women, arises from the inner lining of
mammary glands, ducts, and lobules. With an approximate prevalence rate of 1 in 8 women, the
standard treatment methods for this condition include the surgical excision of afflicted tissues,
chemotherapy, radiation, and hormone therapy. The BCL-2 gene, also known as the B cell lymphoma
gene, prevents apoptosis in eukaryotic cells. It is commonly found to be excessively active in many
types of malignancies, such as leukemia, carcinomas, and breast cancer. The excessive expression of
this gene has a role in the advancement of cancer by inhibiting apoptosis. Recent research emphasizes
the function of microRNAs (miRs) in regulating the expression of BCL-2. These miRs can either
decrease or increase the activity of specific genes involved in programmed cell death, thus making
them potential targets for therapeutic interventions. This review explicitly examines the regulatory
impacts of several miRs on BCL-2, thereby investigating their ability to trigger apoptosis and function
as targeted treatments for breast cancer. By comprehending the complex interplay between miRs and
BCL-2, it is possible to devise novel therapeutic approaches that can augment the efficacy of breast
cancer treatments, thus eventually enhancing patient outcomes.
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1. Introduction

Breast cancer (BC) is a complex and diverse condition marked by notable differences among
those affected, thus posing a considerable obstacle in the development of successful therapies [1,2].
Notwithstanding the intricacy involved, improvements in diagnostic technologies have decreased the
mortality rates related to BC [3,4]. Further advancements in the timely identification, assessment,
and mitigation of BC are essential to enhance the survival rates [5—7]. BC is mainly caused by
unregulated cell growth in the inner lining of mammary glands and ducts [8]. The uncontrolled
growth of cells is frequently aided by the suppression of apoptosis, which is a biological process
controlled by the BCL-2 protein family [9]. Conventional BC therapies include hormone therapy,
surgical procedures, chemotherapy, and radiation therapy [10]. Although these treatments can yield
positive results, they frequently come with notable adverse effects such as post-operative infections,
sensory impairments, toxicities, and drug resistance [11]. The intricate origin of BC encompasses various
phases, including tumor initiation, development, metastasis, invasion, angiogenesis, and recurrence [12].
Disturbances in cellular and molecular signaling networks mark each stage. These characteristics
emphasize the necessity for more focused and less harmful therapeutic approaches [13].

Among the several genetic variables implicated in BC, the BCL-2 gene emerges as a pivotal
controller of programmed cell death (apoptosis) [14]. BCL-2, a proto-oncogene, acts as an inhibitor
of cell death and is a member of a protein family with essential responsibilities in regulating
programmed cell death [15]. The change in a chromosomal location, t(14;18), which is found in
certain types of cancer of the lymphatic system, such as non-Hodgkin's lymphoma, results in the
over-production of the BCL-2 protein that aids cancer growth [16]. Additionally, this upregulation
has been detected in many solid malignancies, including BC [17]. In addition to its involvement in
cancer, the BCL-2 family of proteins regulates apoptosis, tissue formation, and immunological
responses to pathogens [18]. Mammals possess more than twelve fundamental proteins in the BCL-2
family, which exhibit structural resemblances to BCL-2 and play several crucial functions in
biological processes, such as controlling programmed cell death [19].

Recent studies have emphasized the substantial influence of microRNAs (miRs) in the control
of BC [20-22]. miRs are tiny, single-stranded RNA molecules that indirectly affect physiological
activities and directly regulate gene transcription [23]. miRs can either enhance or inhibit gene
expression depending on their biological roles, thereby functioning as either tumor suppressor
miRNAs (tsmiRs) or oncogenic miRNAs (oncomiRs) [24]. The dysregulated expression of miRs has
been detected at several phases of BC, ranging from the early stages of tumor development to cell
death [25]. By influencing critical processes such as cell proliferation, apoptosis, and cancer cell
metastasis, TsmiRs and oncomiRs are essential in BC control [26].

Recent research suggests that miRs have a role in regulating the expression of BCL-2, thus
indicating that manipulating miRs could potentially increase apoptosis in BC cells [27,28]. This
offers a hopeful treatment approach, as miRs that decrease the expression of BCL-2 can counteract
one of the main ways BC cells avoid programmed cell death [29]. By prioritizing the regulatory
correlation between miRs and BCL-2, it is possible to devise novel therapeutic approaches that are
more specific and potentially less harmful than conventional treatments [30]. Implementing these
measures can greatly enhance the treatment outcomes for patients with BC. This review emphasizes
the possibility of miR-based therapeutics as a new and successful to treat BC by studying the
different miRs that control BCL-2 expression and their ability to trigger apoptosis. By gaining a
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more profound comprehension of the miR-BCL-2 regulatory axis, we can devise inventive
therapeutic approaches that augment the effectiveness of BC treatments and eventually boost the
patient outcomes.

2. BCL-2 family proteins in apoptosis

The BCL-2 protein family is crucial in controlling apoptosis, which involves maintaining a
careful balance between cell survival and programmed cell death (PCD) [31]. This family includes
substances that prevent and promote apoptosis, thus demonstrating its essential role in maintaining
cellular balance [32]. BCL-2 proteins, which vary in size from 20 to 37 kDa, have substantial
similarities in their amino acid sequences [33]. They are categorized into three primary
classifications, depending on their functions in apoptosis. Antiapoptotic proteins can prevent
apoptosis and have BCL-2 homology domains BH-1, BH-2, BH-3, and BH-4 [34]; notable members
of this class include BCL-2, BCL-W, MCL1, BCL-XL, BCL-2A1, and BCL-B. Pro-apoptotic
proteins promote apoptosis and typically possess three BH domains [35]; the proteins BAX, BAK,
and BOK are noteworthy members of this category. The pro-apoptotic class of proteins is
characterized by its diversity and consists solely of proteins with the BH-3 domain (i.e., BH3-only
proteins) (Figure 1); some examples of proteins in this class include BIK, BID, BAD, BIM, BMF,
NOXA, HRK, and PUMA [36,37]. These proteins can attach to and control antiapoptotic BCL-2
proteins, resulting in the initiation of apoptosis.
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Figure 1. Sequence homology of BCL-2 protein.

BCL-2 proteins primarily function on the outer membranes of the mitochondria and the
endoplasmic reticulum [38]. Their location and activity are facilitated by a hydrophobic anchor
located near the C-terminal of the BCL-2 homologous region. BCL-2 proteins typically adopt a
structural conformation characterized by a-helical hairpins and tend to form heterodimers [39].
Heterodimerization occurs when the BH3 region of a pro-apoptotic protein binds to the hydrophobic
groove of an antiapoptotic protein, which contains BH1, BH2, and BH3 domains. The BH3 domain
plays a crucial role in promoting apoptosis, whereas antiapoptotic proteins need numerous BH
domains to successfully carry out their action [40]. Mitochondrial Outer Membrane Permeabilization
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(MOMP) is a crucial mechanism that regulates apoptosis by BCL-2 proteins [41]. MOMP causes the
liberation of apoptotic components, including cytochrome ¢ and Apoptosis Promoting Factor (APF),
from the mitochondria into the cytoplasm [42]. The caspase cascade, which causes cells to die, starts
with this occurrence. Antiapoptotic proteins are promoted by pro-apoptotic proteins, such as BAX
and BAK [43]. In addition to inhibiting antiapoptotic proteins, BH3-only proteins can enhance the
activation of BAX and BAK. This dual action ultimately leads to the promotion of apoptosis [44].

3. miRs regulating BCL-2

miRs are small RNA molecules which naturally occur within an organism and have a single
strand [23]. miRs are synthesized from double-stranded DNA by RNA polymerases Il and Ill, thus
forming primary miRNAs (pri-miRs) [45]. The enzyme Drosha, which belongs to the RNA POL Il
family, processes these pri-miRs that produce precursor miRNAs (pre-miRs) in the nucleus [46].
Pre-miRs are subsequently transported to the cytoplasm by Exportin-5, which is a protein that relies
on GTP for its function [47]. Within the cytoplasm, the enzyme Dicer, which belongs to the RNA POL
Il family, trims pre-miRs to produce mature miRs [48]. These miRs are generally around 20-22
nucleotides long. The mature miRs are integrated into the RNA-induced silencing complex (RISC),
which aids in breaking target miRs, thus suppressing gene expression [49]. When miRs attach to the
3" untranslated region and 5' untranslated region of target miRs, it leads to the inhibition of
translation, which effectively inhibits gene expression. miRs participate in diverse biological
processes, such as cell proliferation, cellular specialization, morphogenesis, and apoptosis [50].
Figure 2 demonstrates that miRs selectively cut target-specific mMRNAs to prevent non-specific
binding and control these biological processes. Significantly, a solitary miR can control numerous
genes, while a solitary gene can be subjected to the influence of multiple miRs.

Recent research has extensively concentrated on identifying certain miRs linked to cancer
apoptosis and their corresponding target genes [51]. Tumor suppressor miRs, frequently
downregulated in cancer, are crucial in impeding tumor growth by negatively influencing oncogenes
or genes that control cell differentiation and apoptosis [52]. Tumor-suppressing miRs can be
downregulated due to deletions, epigenetic silencing, or a lower expression of transcription factors.
Due to their crucial involvement in multiple biological processes, changes in miR expression are
associated with a wide range of human illnesses, including cancer [53]. Research has demonstrated
that malignant tumors and tumor cell lines display extensive and abnormal miR expression compared
to normal tissues [54]. During carcinogenesis, miRs play a crucial role in regulating apoptosis.
Cancer cells can modify miRs to govern cell survival during cancer development [55].

The intrinsic pathway is a well-researched mechanism of apoptosis [56]. In this process,
cytochrome c is released from the mitochondria and moves into the cytoplasm. Once in the
cytoplasm, it triggers the activation of caspases by interacting with the apoptotic peptidase activating
factor-1 [57]. Hence, miRNAs that govern these molecules can profoundly impact the efficacy of
anticancer medications [58]. A comprehensive understanding of these regulatory systems is crucial
to identify and develop effective treatment targets for BC [59].
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Figure 2. The intrinsic route initiates with either post-translational activation or
BH3-only protein induction, which inactivates several BCL-2 family members. As a
result, BAX and BAK activation are no longer inhibited, which encourages apoptosis. It's
possible that specific BH3-only proteins, such as PUMA and BIM, can also activate
BAX and/or BAK (as shown by the dotted line). Once activated, BAX and BAK
encourage the release of cytochrome ¢ and mitochondrial fission, which causes APAF1
to become an apoptosome and triggers caspase-9 to trigger caspase-3. The cell is
destroyed by caspase, which cleaves several substrates and activates DNases. By passing
the mitochondrial step, the extrinsic route can immediately activate caspase-8, which
causes caspase-3 to activate and destroy cells.

Many researchers have aimed to find miRs linked to cancer apoptosis and their corresponding
target genes [60]. Table 1 provides a comprehensive list of several miRs that control the BCL-2
family, emphasizing their potential as targets for therapeutic interventions in BC. By manipulating
the expression and function of these miRs, it would be feasible to augment the efficacy of BC
treatments, enhance the patient outcomes, and devise novel therapeutic approaches. The
comprehensive comprehension of miR control of BCL-2 and its family members offers vital clues
that underlie BC and presents new possibilities for targeted therapies [44].
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Table 1. Different miRNAs up or downregulating BCL-2, particularly in BC.

Target gene miR Regulation Reference
BCL-2 miR-7 Inhibits target BCL-2 gene directly [61]
BCL-2 miR-15a/16 Inhibits target BCL-2 gene directly [62]
BCL-2 miR-21 Activates target BCL-2 gene directly [63]
BCL-2 miR-24-2 Inhibits target BCL-2gene directly [64]
BIM miR-24-3p Inhibits target BIM gene directly [65]
BCL-2 miR-31 Inhibits target BCL-2 gene directly [66]
BCL-2 miR-34a Inhibits target BCL-2 gene directly [67]
BCL-2 miR-93 Inhibits target BCL-2 gene directly [68]
BAX Inhibits target BAX gene directly
BCL-2 miR-106 Activates target BCL-2 gene directly [69]
BCL-2 miR-122-5p Inhibits target BCL-2gene directly [70]
BCL-2 miR-125b Inhibits target BCL-2 gene directly [71,72]
BAK1 Inhibits target BAK1 gene directly
BCL-2 miR-134 Inhibits target BCL-2 gene directly [73]
BAX miR-149-5p Inhibits target BAX gene directly [74]
BIM miR-181b Inhibits target BIM gene directly [75]
BAD miR-192-5b Inhibits target BAD gene directly [76]
Inhibits target BCL-2 gene indirectly
BCL-2 miR-195 Inhibits target BCL-2 gene directly [77]
BCL-XL miR-203a-3p  Inhibits target BCL-XL gene directly [78]
miR-203b-3p  Inhibits target BCL-XL gene directly
BIM BAX BAK miR-221 Inhibits target BIM gene directly [79]
BIM miR-222 Inhibits target BIM gene directly [80]
BCL-2 miR-451 Inhibits target BCL-2 gene directly [81]
BCL-2 miR-489 Inhibits target BCL-2 gene directly [82]
BAX* miR-663b Activates target BCL-2 gene directly [83]

The table provides a concise overview of different miRs that control the expression of BCL-2
and other genes involved in programmed cell death in BC. Several miRs, including miR-7,
miR-15a/16, miR-24-2, miR-31, miR-34a, miR-93, miR-122-5p, miR-125b, miR-134, miR-195,
miR-451, and miR-489, directly hinder the expression of the BCL-2 gene, which is known to
facilitate programmed cell death, and hence function as tumor suppressors. Additional miRNAs,
such as miR-21 and miR-106, stimulate the activation of BCL-2, which hinders programmed cell
death and potentially enhances the ability of cancer cells to survive. In addition, miRs such as
miR-93, miR-125b, and miR-192-5b can target both pro-apoptotic genes BAX and BAK1, thus
suggesting the existence of an intricate regulatory network. miR-149-5p, miR-181b, miR-221, and
miR-222 precisely target genes such as BIM and BAD, thereby exerting an additional influence on
the pathways that regulate cell death (apoptosis). Remarkably, miR-663b stimulates the activation of
BCL-2, which contrasts with its typical suppression by other miRs. The varied regulatory impacts of
these miRs on BCL-2 and the associated genes emphasize their potential as therapeutic targets to
manipulate apoptosis in breast cancer, thus providing opportunities to enhance cancer cell death and
overcome resistance to traditional treatments.
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Numerous studies have shown that miRs significantly affect the upregulation or downregulation
of BCL-2 family proteins, which is pivotal in regulating apoptosis in breast cancer. Several principal
miR species have been identified that interact with BCL-2 to influence tumor cell viability directly.
For example, miR-34a is a recognized tumor suppressor often downregulated in breast cancer and
has been shown to post-translationally control BCL-2 by binding to its 3' UTR [84]. This interaction
facilitates the degradation of BCL-2, thereby initiating apoptotic pathways that result in the death of
tumor cells. Similarly, miR-15a/16, which is often deleted or downregulated in several neoplasms,
including breast cancer, diminishes BCL-2 levels and promotes apoptosis [85]. Conversely, some
miRs, such as miR-21, have been identified to elevate BCL-2 levels, thus enhancing chemoresistance
by facilitating the survival of cancer cells [86]. The pro-survival effect is particularly significant in
breast cancer, where miR-21 is overexpressed and linked to an unfavorable prognosis. Furthermore,
it has been shown that miR-125b directly interacts with BCL-2, thereby altering the apoptotic
threshold to promote cancer cell survival [72]. These miRs target BCL-2 within a complex signaling
network that, in addition to influencing the mitochondrial integrity, also governs essential apoptotic
events, including the release of cytochrome ¢ and the activation of caspases. The deregulation of
these miRs in breast cancer may indicate their potential as biomarkers for early diagnoses and
therapeutic approaches [87]. Clarifying the complex mechanisms via which miRs regulate BCL-2
and its associated family members is crucial to develop novel miRNA-based therapeutic approaches
aimed at inducing tumor cell apoptosis and surmounting resistance to standard treatments.

The fundamental characteristics of miR activities suggest a complex interaction with upstream
regulators, co-activators, co-repressors, and post-transcriptional regulators that influence miRNA
synthesis, stability, and functionality. G protein-coupled receptors may promote and inhibit miR
transcription, as other transcription factors such as p53 and MYC are implicated in the transcriptional
activation or repression of apoptosis-related pathways and gene networks [88]. An interesting research
showed that other epigenetic changes, including DNA methyltransferases and histone-modifying
enzymes, might influence the promoter of miRNA genes, therefore either silencing or activating
specific miRs [89,90]. Moreover, RNA-binding proteins, including Argonaute (AGO) proteins, are
essential to form the RNA-induced silencing complex, which is necessary for target recognition with
miR and facilitates either mRNA destruction or translational repression [91]. Furthermore,
crosstalking ceRNAs, such as IncRNA and circRNA, function as miRNA sponges, hence modulating
the availability of miR to its target mRNAs, which are reviewed in the literature [92]. The several
levels of control illustrate the intricacy of miRNA-mediated gene silencing and emphasize the need
to explore upstream regulators and co-factors to effectively harness miRNAs as therapeutic targets in
breast cancer.

4. BCL-2 as a BC target

Apoptosis is essential for the development and upkeep of multicellular creatures, as it eliminates
cells that are damaged, aged, or affected by autoimmune conditions [93]. The last stages of apoptosis
entail initiating cell death proteases, which trigger a series of protein breakdown processes, including
effector caspases (Figure 3). Cancer cells can avoid apoptosis, which allows them to survive in
challenging conditions, unlike healthy cells. They accomplish this through several means, such as
modifying the balance between apoptotic molecules. Significantly, the balance is linked to the
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proliferation of tumors and their capacity to withstand the effects of drugs such as cisplatin (DDP)
and paclitaxel [94].

Cancer cells can adjust the equilibrium between pro-apoptotic and antiapoptotic factors to avoid
undergoing apoptosis [95]. Research has demonstrated that the BCL-2 protein is frequently
expressed at higher levels in the cytoplasm of fully developed BC cells. At the same time, its
expression is lower in less specialized cancer cells [96]. These findings indicate that the modulation
of BCL-2 is vital in controlling apoptosis and suppressing tumor growth, thus impacting the destiny
of BC cells [97]. Undifferentiated BC cells are more susceptible to apoptosis compared to
well-differentiated cells [98].

The BCL-2 and BCL-XL families have attracted interest as targets for therapy because of their
essential functions in controlling cell death. Scientists have investigated different approaches to
regulate apoptosis, such as retroviral systems, alterations to the localization machinery, antibodies
that impede action, RNA interference (RNAI), and miRNAs [99]. Nevertheless, BH3-mimetic drugs
have been demonstrated to be the most efficacious strategy to specifically target the BCL-2 family.
Comprehending the molecules implicated in apoptosis is essential advance novel or enhanced
chemotherapies [100].
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Figure 3. miRNA biogenesis and functions. RNA polymerase II synthesizes primary
miRNAs (Pri-miRNAs) from miRNA transcripts. Drosha and Pasha work together in the
nucleus to trim Pri-miRNAs into precursors miRNA (Pre-miRNAs). Exportin 5
transports pre-miRNAs from the nucleus to the cytoplasm, where Dicer processes them
into mature miRNAs. After maturation, these miRs become part of the RNA-induced
silencing complex (RISC), which may be used to silence genes encoding proteins by
interacting with their 3'-UTRs or their messenger RNAs (mRNAs).
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miRs' swift post-transcriptional impacts and capacity to control numerous target genes,
including transcription factors, may present superior therapeutic possibilities to address neurological
illnesses compared to medications that focus on a solitary gene. Nevertheless, the specific cells and
the physiological or pathological circumstances in which the miR family affects the BCL-2 family
proteins still need to be better understood. Although pretreatment with miRs has shown efficacy in
animal models' cerebral ischemia, conducting tests on these treatments is still essential as a vital part
of developing a therapy for neurological illnesses. Several miRs are being tested in clinical trials for
liver illnesses, thereby indicating that creating and administering miR therapeutics for new disease
situations or targets will be possible. However, delivering miR treatments to the central nervous
system (CNS) presents substantial difficulties and remains a crucial barrier to therapeutic use.
However, specific challenges about miR-based therapeutics remain pertinent and must be addressed
to enable their practical implementation in clinical settings: miRs exhibit instability in bodily fluids
due to degradation by nucleases; thus, developing ways to enhance their stability is necessary.
Several chemical changes, including 2'-O-methylation, phosphorothioate backbones, and locked
nucleic acids (LNAs), have been shown to improve the stability of miR while preserving its
biological activity. Thus, encapsulation in lipid nanoparticles, polymeric carriers, or exosomes offers
enhanced protections against degradation while facilitating targeted administration [101,102]. The
ultimate problem pertains to off-target effects that arise from the ability of miRs to bind to several
mRs since they just use a segment of their sequence for this interaction, potentially leading to gene
silence in unintended targets. Recent advancements in computational target prediction and
experimental validation enhance the sequence selectivity and minimize off-target effects. Moreover,
alterations in the seed area of miR mimics and antagomiRs have improved the targeting efficacy
[103]. A further issue in delivering miRs to the CNS is that the blood-brain barrier impedes this
distribution. Recent techniques using nanoparticles, liposomes, and Adeno-Associated Viruses have
shown enhanced CNS uptake by receptor-mediated transcytosis and direct stereotaxic injection [104].
Despite the positive outcomes demonstrated in preclinical investigations, additional advancements in
the delivery methods, dose regulation, and safety concerns remain important. Addressing these
difficulties will be essential to realize the full potential of miR therapies in neurological and other
illnesses.

5. Future research directions

Notwithstanding these advancements, several challenges and inquiries remain unresolved, thus
continuing to stimulate researchers' interest. A comprehensive knowledge of the context-dependent
regulation of miRs and the influence of various cellular and physiological conditions on their targets,
including the BCL-2 family, is essential. Comprehending miR's biology and regulation may reveal
novel gene expression regulatory mechanisms and potential therapeutic targets. Nonetheless, the
precise delivery mechanisms for miR-based therapeutics remain in the developing phase, particularly
for targeting the CNS due to obstacles such as the blood-brain barrier. Cancer-targeted nanoparticles,
exosome-based drug delivery systems, and ligand-conjugated carriers have promise; nevertheless,
more research is necessary to improve the targeting efficacy and minimize adverse effects.
Comprehensive clinical trials are required to evaluate miR therapeutics' long-term safety profiles and
potential immune responses. Concurrently, creating novel miR bioinformatics resources to predict
and experimentally validate the targets of these therapeutics is essential to reduce the off-target
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effects. From a translational perspective, using miRs with conventional chemotherapy, radiation, and
immunotherapy may provide synergistic benefits and reduce resistance in certain aggressive
malignancies. Moreover, discovering miR expression patterns in patients may facilitate the
establishment of biomarkers for diagnosis, prognosis, and therapy response monitoring, thus
representing a crucial advancement toward personalized treatment strategies. The observed gaps
provide avenues for future research, thus expanding the therapeutic uses of miRs and presenting
novel strategies for conventional challenges in treating cancer and neurological illnesses. This review
emphasizes the innovative role of miRNA regulation and its intricate involvement in apoptosis, thus
offering guidance for future research to leverage these insights for therapeutic advancements.

6. Conclusions

The primary objective of BC research has been to comprehend the etiology and mechanisms
underlying the neoplastic alterations that impact the epithelial tissue of the mammary gland. While
post-transcriptional mechanisms are important, recent research has demonstrated that miRs are
crucial in regulating BC. Lately, the significance of BCL-2 in BC has been acknowledged, as miRs
can either suppress or stimulate cancer development. Studies suggest that cancer cells display
varying levels of miRs, which can either increase or decrease the expression of the BCL-2 protein
family. This control has a significant effect on the prediction of the course of a disease and assists in
ensuring consistent levels of gene expression in various types of cancers. Scientists have discovered
that monitoring the level of BCL-2 expression can be utilized to monitor a patients' progress and
identify the most optimal therapy approaches. While numerous miRs have been found that can
selectively target and influence specific genes differently, further investigation is required to
establish definitive findings and comprehensively comprehend the function of miRs in controlling
the BCL-2 family proteins in treating BC.
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