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Abstract: Cyanobacteria are distributed in diverse environments on Earth. They have evolved to
synthesize a variety of secondary metabolites to combat and serve as barriers to protect them from
distinct environments. Some of these metabolites and compounds exhibit useful physiological
activities and are expected to be applied to a wide range of fields, including medicine, agriculture, food,
and the cosmetics industry. Due to their photosynthetic ability, cyanobacteria are promising sources
for sustainable production of these useful substances. It is expected that future research will lead to the
development and efficient production of new compounds. These resources may provide great benefits
to our lives and to the environment. This editorial provides an overview of the ultraviolet (UV)-
absorbing substances produced by cyanobacteria and discusses future prospects.
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Cyanobacteria have developed mechanisms for coping with high UV radiation. One of the
mechanisms is the production of natural UV-absorbing compounds (sunscreen compounds) to
overcome the detrimental effects of UV radiation. These UV-absorbing compounds have attracted
great interest as new biotechnological resources and ingredients with a high potential for applications
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in natural sunscreens and skin protection agents. Additionally, natural UV-absorbing compounds are
generally considered to be less toxic than chemically synthesized sunscreen ingredients. Therefore,
they are expected to be used as ingredients for skin care products. Moreover, natural UV-absorbing
compounds have less impact on the environment and minimize the adverse effects on the marine
ecosystem. Currently, the known UV-absorbing substances biosynthesized by cyanobacteria include
mycosporine-like amino acids (MAAs), scytonemin, and saclipins.

MAAs are the most well-characterized UV-absorbing substances from cyanobacteria and are
already distributed on the market as cosmetic ingredients [1]. MAAs are found in a variety of
organisms including cyanobacteria, algae, fungi, and lichens. The regulation of MAA biosynthesis has
been thoroughly investigated and the genes in this pathway were first reported in cyanobacteria
in 2010 [2]. In specific strains of cyanobacteria, it has been reported that MAAs are induced by UVB
radiation stress or salt stress. Therefore, they are thought to contribute to UV stress defense and
osmoregulation [3]. Currently, more than 60 chemical structures of MAAs have been identified from
various organisms, including cyanobacteria, and most are water soluble. The basic structures of MAAs
include monosubstituted types in which one amino acid is bound to a cyclohexenone ring and
disubstituted types in which two amino acids are bound to a cyclohexenimine ring (Figure 1). Although
the absorption maximum varies depending on the structure of the substituent, many MAAs can
efficiently absorb UVB (280-320 nm) and UVAII (320-340 nm). The molar extinction coefficients of
MAAs are large, ranging from 20,900 to 58,800 M~' cm™!. MAAs not only absorb UV rays but also
exhibit various useful physiological activities [4]. It is well documented that many MAAs have
antioxidant activity. In particular, mycosporine-glycine has been reported to have stronger antioxidant
activity than ascorbic acid [5]. Substances with antioxidant properties can eliminate reactive oxygen
species that promote skin aging, so products containing MAAs also exhibit anti-aging activity. In
addition to antioxidant activity, MAAs exhibit useful effects, such as anti-inflammatory activity, anti-
glycation activity, and collagenase inhibitory activity, making them suitable as ingredients in skin care
cosmetics. A robust MAA production strategy is crucial for the wider use of MAAs in industrial
applications. Currently, the chemical synthesis of MAAs is notoriously difficult and the development
of production process technologies using microorganisms is promising. To date, the industrial
production of MAAs using cyanobacteria remains a challenge. However, some progress has been
reported in establishing large production systems using other microorganisms. For example, Jin et al.
in [6] used the yeast Yarrowia lipolytica which harbored MAA biosynthetic genes derived from
cyanobacteria to synthesize MAAs (shinorine and porphyra-334) and achieved a yield of 249.0 mg/L.
Moreover, Park et al. created a shinorine-producing Saccharomyces cerevisiae yeast strain by
introduction of the MAA biosynthetic genes from the Gram-positive bacteria Actinosynnema mirum
and Pseudonocardia pini and obtained a yield of 267.9 mg/L of shinorine [7]. They also reported that
the yield was increased to 1.7 g/L of shinorine using a corn steep liquor medium with a mixture of
glucose and xylose [7]. Since it is known that the degree of MAA bioactivity varies depending on its
chemical structure [8], the selection of the MAA to be produced is also important. For instance, Kim
et al. developed an engineered S. cerevisiae yeast strain to produce various specific MAAs, including
shinorine, porphyra-334, and mycosporine-2-glycine. This was achieved by the introduction of
specific cyanobacterial genes for attaching the second amino acid residues to mycosporine-glycine for
the bioproduction of these disubstituted MAAs [9]. Interestingly, it has been reported recently that
compounds synthesized based on the chemical structure of MAAs exhibited UV absorption ability, as
well as antioxidant and anti-tumor activity [10].
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Figure 1. Structures of representative MAAs. Mycosporine-glycine (monosubstituted type)
and shinorine, porphyra-334, and mycosporine-2-glycine (disubstituted type) are shown.

Scytonemin constitutes another important class of UV-absorbing compounds. Scytonemin is a
hydrophobic pigment present in the extracellular polysaccharide sheaths (EPSs) of specific
cyanobacterial strains [11]. In scytonemin-producer strains, the content reached 5% of the dry weight
of the cyanobacterial cells [12]. Scytonemin is formed by two polycyclic alkaloid monomers consisting
of an indolic ring and a phenolic ring and has a molecular weight of 544 Da (Figure 2) [13]. The
biosynthetic pathway of scytonemin has been elucidated in previous reports [3,14]. The color of
scytonemin can change depending on its redox state, exhibiting a yellow-brown oxidized form or a red
reduced form. Scytonemin has an absorption maximum in the UVA range of approximately 370 nm in
vivo with additional absorption in the wavelength range of UVB and UVC [13]. Its large molecular
extinction coefficient of 136,000 M' cm™! at 384 nm indicates that scytonemin can protect
cyanobacterial cells by effectively absorbing UVA [15]. Although scytonemin has not yet been applied
in the industrial field, it has been reported to exhibit useful properties, such as antioxidant and anti-
inflammatory effects [3]. Since scytonemin is a hydrophobic compound, it may be possible to
incorporate it into products that are distinct from the products that contain water-soluble MAAs.

Oxidized scytonemin Reduced scytonemin

Figure 2. Structure of scytonemin.

Recently, two novel cyanobacterial oxylipin compounds, referred to as saclipin A and saclipin B,
were isolated from the cyanobacterium Aphanothece sacrum [16]. Oxylipins are a group of oxygenated
natural products formed from fatty acids through pathways involving oxidation [17]. The chemical
structures of saclipins A and B were elucidated, and it was found that they were all-E and 127 in the
triene structure, respectively, and had an isomeric relationship (Figure 3). The preferred International
Union of Pure and Applied Chemistry (IUPAC) names for saclipins A and B are (10E,12E,14E)-9,16-
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dioxoocta-deca-10,12,14-trienoic acid and (10E,12Z,14E)-9,16-dioxoocta-deca-10,12,14-trienoic acid,
respectively. The characteristic chemical properties of saclipins have been documented. The trans-form
saclipin A can be isomerized to the cis-form saclipin B by photoirradiation. Due to a five conjugated
double bond system in both structures, saclipins A and B exhibit a UV absorption maximum at 316
and 319 nm, respectively. The molar extinction coefficients of saclipins A and B were found to be
26,454 and 30,555 M"! cm™, respectively, at each absorption maxima. Thus, saclipins are novel UV-
absorbing compounds in cyanobacteria. Interestingly, it was revealed that saclipins could be induced
by desiccation stress in A. sacrum [16]. Currently, the biosynthetic pathway of saclipins is completely
unknown. Importantly, saclipins possess several biological activities that may benefit skin care.
Saclipins exhibited relatively weak free radical scavenging activity but potently inhibited the glycation
of collagen and elastin [16]. In addition, it has recently been revealed that saclipins inhibit both elastase
activity and tyrosinase activity. They also promote collagen and hyaluronic acid production, and inhibit
melanogenesis [ 18]. Since saclipins exhibit biocompatibility with human skin cells, they are promising
natural compounds for incorporation into skin care products.

HO = N N

SaclipinA

SaclipinB

Figure 3. Structures of two isomers of saclipin.

Photosynthetic microorganisms, such as cyanobacteria and microalgae, are thought to play a very
important role in the future of biotechnology. In addition to the UV-absorbing substances outlined in
this paper, useful biologically active compounds derived from these organisms may lead to the
development of compounding agents for pharmaceuticals, cosmetics, and functional foods. These
compounds may even lead to breakthroughs that could greatly change human life, such as the
development of carbon-neutral biofuels.
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