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Abstract: Microalgae biomasses are excellent sources of diverse bioactive compounds such as lipids, 

polysaccharides, carotenoids, vitamins, phenolics and phycobiliproteins. Large-scale production of 

these bioactive substances would require microalgae cultivation either in open-culture systems or 

closed-culture systems. Some of these bioactive compounds (such as polysaccharides, 

phycobiliproteins and lipids) are produced during their active growth phase. They appear to have 

antibacterial, antifungal, antiviral, antioxidative, anticancer, neuroprotective and chemo-preventive 

activities. These properties confer on microalgae the potential for use in the treatment and/or 

management of several neurologic and cell dysfunction-related disease conditions, including 

Alzheimer's disease (AD), AIDS and COVID-19, as shown in this review. Although several health 

benefits have been highlighted, there appears to be a consensus in the literature that the field of 

microalgae is still fledgling, and more research needs to be carried out to ascertain the mechanisms of 

action that underpin the effectiveness of microalgal compounds. In this review, two biosynthetic 

pathways were modeled to help elucidate the mode of action of the bioactive compounds from 

microalgae and their products. These are carotenoid and phycobilin proteins biosynthetic pathways. 

The education of the public on the importance of microalgae backed with empirical scientific evidence 
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will go a long way to ensure that the benefits from research investigations are quickly rolled out. The 

potential application of these microalgae to some human disease conditions was highlighted. 

Keywords: active compounds; carotenoids; Alzheimer's disease; oxidative stress 

 

1. Introduction 

Microalgae are considered a healthy food due to their balanced nutritional and bioactive 

components. The diversity of microalgae species also gives rise to various nutritional and bioactive 

molecules, which makes microalgae the richest natural resource for nutritional and bioactive 

components. In addition, the absence of cellulose cell wall makes for easy digestion of biomass after 

consumption. Interestingly, studies have shown that nutritional supplements, such as vitamin C, 

vitamin E and omega-3 fatty acids, which are contained in healthy foods [1,2] and found in microalgae, 

can reduce the risk of some health disorders [3,4]. This has heightened the growing interest in the 

search for a nutraceutical as a possible replacement for synthetic drugs which have a myriad of side 

effects for the treatment or prevention of many diseases. 

The production of microalgae biomass can be cost-effective, as basic resources, such as water, 

carbon(IV) oxide and sunlight, required for cultivation are cheap and readily available. Many species, 

such as Chlorella, Dunaliella and Haemaotococcus, have been commercialized as health food due to 

their ability to accumulate some nutritional and bioactive compounds [5]. The multiple bioactive 

compounds accumulated in microalgae biomass, such as vitamins C and E, lipids and carotenoids [6], 

phycobiliproteins and polysaccharides, confer on it a wide range of possible medical applications, 

amongst which is the treatment of Alzheimer's disease [7], HIV and SARS-CoV-2 [8]. Microalgal-

derived antioxidants, according to Ataie et al. [9], prevent radical-induced neuronal damage and AD 

progression by scavenging free radicals which harm the brain cells. Microalgae accumulate these 

antioxidants as a means of protecting themselves under stressed conditions. These stressed conditions 

have been artificially created by many researchers to induce the accumulation of antioxidants in 

microalgae by metabolic or environmental engineering [6]. However, currently, genetic engineering is 

used to manipulate microalgae for the high accumulation of these antioxidants / bioactive molecules. 

Each of the manipulative strategies for high induction of bioactive molecules affects the cellular 

metabolism due to adjustments of some metabolic pathways that lead to the production of such desired 

bioactive molecules. Hence, there is a need to understand the biosynthetic pathway for the production 

of these bioactive molecules to enable researchers to identify easily the points of manipulation for the 

induction of bioactive molecules. Although there were reviews in the literature that addressed the 

bioactive compounds by microalgae [10,11], the provision of various biosynthetic pathways for the 

various bioactive molecules by microalgae as discussed in this review has not been carried out. This 

review focused on bioactive molecules by microalgae, microalgae biomass production, bioactive 

compounds biosynthetic pathways and mechanisms of action, which form the basis of 

curative/preventive potentials of microalgae against several diseases. 

The work was carried out using the standard narrative review method. To generate phrases for the 

search activities, “benefits of microalgae” and “microalgae uses” were used for a search on the 

databases Web of Science, PubMed, Google Scholar and Scopus. Duplicate reports generated were left 

out, after which the carotenoids and phycobilin proteins biosynthetic model pathways were developed.  
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2. Microalgae biomass 

Microalgae are known to be very diverse photosynthetic unicellular eukaryotic or prokaryotic 

organisms, believed to be among the earlier forms of life [5,12]. They were first discovered as a source 

of food because of their rich nutritive value, and later, some species were commercially produced as 

healthy foods in some parts of Asia [5,13]. The health-related nature of microalgae is predicated on 

some intracellularly-produced bioactive molecules which can either be extracted from the cell biomass 

or used as whole cell biomass depending on the end product. The accumulation of these bioactive 

molecules in microalgae, which is species-specific [14] and under varying culture conditions 

depending on the bioactive molecule of interest, has endeared microalgae biomass to pharmaceutical, 

food, chemical, textile and cosmetic industries. Due to the micro size of the microalgae species, 

biomass production is indispensable for commercial applications either as bioactive molecule extracts 

or as the whole cell.  

Various types and designs of photobioreactors have been developed and reviewed elsewhere [15,16], 

although new designs for cost-efficient production of microalgae biomass as well as for enhanced 

specific or simultaneous accumulation of many bioactive molecules are still emerging [6,17]. However, 

the closed system is recommended for products meant for human consumption due to the high level of 

sterility ensured during production [15,16]. Furthermore, the closed system can be optimized for high 

productivity to leverage the high cost of photobioreactors. Microalgae biomass cultivation requires 

potable or non-potable water, light (natural or artificial) and carbon sources (organic or inorganic), 

carbon(IV) oxide (from air or exhaust fumes of machines) [17]. However, the cultivation conditions 

can be different depending on the resources utilized during cultivation. For instance, the phototropic 

condition entails cultivation using light and inorganic carbon sources, while the mixotrophic or 

heterotrophic condition entails cultivation using organic carbon sources and light or without light, 

respectively [17]. Each of the cultivation conditions can be employed during microalgae biomass 

production using cost-efficient and contamination-prone open culture systems (ponds, lakes, etc.) or 

cost-intensive and sterile-conditioned closed culture systems (photobioreactors) [6]. Although the open 

culture system is cheap due to ease of design and readily available resources, it is limited by culture 

contamination, a requirement for space and a lack of culture control. For instance, Eze et al. [17] reported 

an airlift photobioreactor inclined with a reflective broth guide for enhanced light utilization by 

microalgae cells during cultivation. Several strategies have been employed for improved biomass 

productivity by microalgae which range from metabolic (media components) to genetic (genes and 

nucleic acids), environmental (temperature, salt concentration, pH, etc.) and culture system (one stage, 

two stages) engineering [18].  

Each of these engineering strategies influences the diverse biosynthetic pathway leading to the 

biomass accumulation of various bioactive molecules. For example, when subjected to high light 

conditions, most carotenoids and chlorophyll contents of the marine microalga Chlamydomonas sp. 

JSC4 decreased, while zeaxanthin and antheraxanthin contents increased [19]. Another study [20] on 

the effect of light found that there was good mixotrophic growth and savings of energy for glucose in 

a continuous light-deficient condition. To reduce costs that make large-scale cultivation expensive, a 

mathematical model using the cultivation of Tetradesmus obliquus has been developed [21]. In the 

model, it was suggested that biomolecule production prediction in a particular condition could improve 

time and productivity and make the process more profitable. 

Using western blotting, it was found by Guo et al. [22] that overweight protection was achieved 
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by microalgae polysaccharides through increased lipolysis and decreased lipogenesis in the liver. Other 

investigators [23] found that the metabolic rewiring in the tricarboxylic acid (TCA) intermediates, 

amino acid metabolism and starch metabolism helps the cells to concentrate carbon pools for producing 

neutral lipids. It has also been suggested [24] that simultaneous inorganic carbon supply and pH control 

can be a cost-effective measure without compromising biomass and lipid productivities if the sole use 

of bicarbonates is applied in microalgae culture. 

In another study, using semi-continuous cultivation with a medium replacement ratio of 75% 

resulted in a higher lutein productivity and lutein concentration of 6.24 mg/L/d and 50.6 mg/L, 

respectively, which were markedly higher than those obtained from batch and fed-batch cultivation [25]. 

An exposition on the biosynthetic pathways of some of these bioactive molecules provides a platform 

for direct manipulation of microalgae for enhanced accumulation of the desired bioactive molecules.  

2.1. Algae taxonomy 

The evolution of algae from primary and multiple secondary endosymbiotic events has probably 

conferred a unique and spectacular genetic diversity on this group of eukaryotes, which correlates with 

their phenotypic diversity expressed in size and occupation of diverse ecological niches [26]. 

Taxonomy [27] has improved tremendously with the emergence of genomic sequencing, which has 

given rise to bioprospecting for novel bioactive compounds as well as genetic manipulation of relevant 

species for the economy [26]. The application of genomic data in taxonomy has resolved some 

difficulties and confusion created by morphologically-dependent taxonomy [28,29]. For instance, 

Sequence data generated during a Canadian barcode survey (COI-5P) of the tribes Polysiphonieae and 

Streblocladieae, a large and taxonomically challenging group of red algae, revealed significant 

taxonomic confusion and hidden species diversity [30]. According to Bringloe et al. [28], recent multi-

locus and genome-scale analyses have revolutionized our understanding of brown algal phylogeny, 

providing a robust framework to test evolutionary hypotheses and interpret genomic variation across 

diverse brown algal lineages. Sehgal et al. report [26] that 18S rDNA and internal transcribed spacer (ITS) 

region of the nuclear genome are two of the most commonly used regions for taxonomically 

differentiating microalgal species from one another. Despite the trends in algal genome sequencing 

from 2007 up until 2019, as reviewed by Hanschen et al. [26], and the technological advancement in 

algal genomic sequencing evidenced by the growing list of publicly available algal genomes, the 

abundance of genome projects has barely scratched the surface of algal biodiversity [26]. Also, it was 

observed that the quality of algal genome assemblies is declining [26], which limits the expected 

taxonomical impacts on the resolution of evolutionary relationships. However, some authors were of 

the view that integrative taxonomy which involves the use of phylogenetic, morphological, physiological 

and ecological data was more appropriate for the resolution of taxonomic relationships [29]. By and large, 

genome sequencing moves that resolve the large gaps in algal biodiversity and evolutionary history 

will definitely reveal nascent principles of algal biology and evolution, and lead to the discovery of 

novel proteins, biochemical pathways and untapped natural products [31]. 

2.2. Bioactive molecules in microalgae 

Microalgae inhabit complex and extreme environments with varying conditions. They produce 

various biologically active secondary metabolites and other environment-specific basal metabolites, 
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which other organisms do not produce, to survive these adverse conditions [32,33], and these 

substances effectively delay or prevent free radicals' effect on these organisms [34]. Some of these 

bioactive molecules possess some therapeutic properties such as antioxidant, antibacterial, antiviral, 

antifungal, antitumor, antimalarial effects and anti-inflammatory properties with great 

commercialization possibilities in the near future [35–37]. According to Gulçin et al. [38], commercial 

antioxidant supplements like butylated hydroxyl toluene (BHT), butylated hydroxyl anisole (BHA), 

propyl gallate and α-tocopherol have been applied in oxidative damage mitigation, but Munir et al. [34] 

suggested that these synthetic antioxidants showed some side effects like carcinogenesis and some 

damages to the liver. This prompted the need for alternative antioxidants that will protect these 

organisms from radical reactive oxygen and nitrogen species (OH-, O2.-, HO2., NO) as well as non-

radical forms of oxygen species (H2O2, and O2) with no side effects [39–41].  

The algal groups are the most genetically diverse group of organisms, and the presence of 

pigments in these organisms aids them in photosynthetic processes as well as in their grouping. For 

instance, some contain pigments [42]. The primary pigments in algal groups help them in their growth, 

thus increasing their biomass, while their ability to produce secondary metabolites protects them from 

harm during stress conditions. The major stress faced by them is oxidative stress where oxidated 

radicals are generated in the peroxisomes, chloroplasts or mitochondria as metabolic pathways by-

products in these organelles as a result of the high oxidizing activity or intense electron flow which is 

lethal to their existence. In plants, however, oxidated radicals are also produced in the apoplast and 

endoplasmic reticulum (ER) besides their cytoplasm. These radicals cause lots of damage to the 

intracellular molecules such as lipid peroxidation, irreversible protein oxidation and damage in the 

DNA such as deletion of bases, pyrimidine dimers, cross-links as well as breaks in the DNA strands 

thereby harming them [43,44]. Mitigation processes for the removal of the effects of these radicals 

involve the upregulation of the genes that encode the enzymes superoxide dismutases, peroxidases, 

reductases and catalases, Filiz et al. [44] further stated. 

There is an increase in the current demand for these compounds due to their health benefits when 

consumed as nutraceuticals or included in functional foods as well as the toxicity of synthetic ones, 

thus increasing prospecting in algal research for more beneficial biomolecules in microalgae [34]. Both 

eukaryotic and prokaryotic microalgae such as cyanobacteria have been reported to synthesize 

numerous secondary metabolites via acetate mevalonic/non-mevalonic acid and shikimic acid 

pathways [42,45]. They synthesize some biomolecules like antioxidants when exposed to light and 

high concentrations of oxygen to mitigate the damaging effects of reactive oxygen species and free 

radicals, as suggested by Bhosale [46]. 

3. Biosynthesis of bioactive metabolites from microalgae 

Several bioactive metabolites are produced by microalgal species at their various growth stages 

to actively survive the prevailing environmental conditions. For instance, microalgal species such as 

Chlorella sp., Nannochloropsis sp., Spirulina/Arthrospira/Limnospira sp., Dunaliella sp., 

Synechococcus sp., Phaeodactylum sp. (Bacillariophyta), Rhodomonas salina (Cryptista), Limnospira 

maxima (formerly Spirulina maxima) (Cyanobacteria) and Tetraselmis chuii (Chlorophyta) produce 

natural antioxidants with free radical scavenging abilities [12]. Most of these biosynthetic pathways 

are studied mainly in cyanobacteria and land plants since plants have similar pathways [47]. Some 

metabolites (such as carbohydrates, proteins and lipids) are produced during their active growth phase 
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through polyketide, mevalonate (MVA)/non-mevalonic or shikimate pathways and subsequently 

utilized by these organisms during nutrient starvation [37,46,48–50]. Reports by Huang et al. [51] and 

Takaichi et al. [52] suggested that carotene and zeaxanthin are present in most microalgal species, and 

the carotenoid compounds are numerous and serve as biomarkers for their chemotaxonomic 

classification. The biosynthetic pathways of microalgal carotenoids from phytoene to lycopene are 

conserved in eukaryotic strains while the downstream synthesis of different carotenoids from lycopene 

differs according to the carotenoids being produced, as suggested by Tamaki et al. [50].  

The five-carbon unit (C5) backbone of carotenoids, Isopentenyl pyrophosphate (IPP), is usually 

synthesized through two independent pathways, namely, the mevalonate (MVA) pathway or non-

mevalonate (1-deoxy-Dxylulose 5-phosphate/2-C-methylerythritol 4-phosphate) (DOXP/MEP) 

pathway in most microalgae species, except in Euglenophyta species that solely depend on MVA 

pathway and Chlorophyceae that depends on DOX/MEP pathway to produce carotenoids [52,53]. 

According to Takaichi [47] the mevalonate pathway generates IPP from acetyl-coenzyme A, while the 

non-mevalonate pathway generates IPP by the combination of glyceraldehyde and pyruvate molecules. 

The IPP then combines with farnesyl pyrophosphate (C15) generated from three IPP molecules to yield 

geranylgeranyl pyrophosphate (GGPP), a C20 molecule, in a reaction catalyzed by geranylgeranyl 

pyrophosphate synthase (CrtE or GGPS).  

Then, two molecules of GGPP are condensed into phytoene, which is the first carotenoid by 

phytoene synthase (CrtB or PSY), and this stage is regarded as the rate-limiting step in the carotenoid 

synthesis, as noted by Rodríguez-Villalón et al. [54]. Furthermore, the enzyme phytoene      

desaturase (CrtP or PDS) catalyzes the desaturation of phytoene, which is further non-enzymatically photo-

isomerized, as suggested by Huang et al. [51]. This molecule is then desaturated by carotene  

desaturase (CrtQ or ZDS) [50,51]. The all-trans lycopene can be converted to two carotenoids sub-

family carotenes (α and β carotene) and xanthophylls (zeaxanthin, lutein, zeinoxanthin, neoxanthin 

etc.). Also, Huang and colleagues [51] reported that the formations of α and β- carotenes were 

catalyzed by the enzyme lycopene α-cyclase and lycopene β-cyclase, respectively. The α and β- 

carotenes serve as the major precursors in the synthesis of the other carotenoids in the different 

microalgal species. Although some of the synthetic pathways have been established, some of the 

enzymes involved in the processes are yet to be identified, especially those carotenoids synthesized 

from lutein (monadoxanthin, crocoxanthin, siphonaxanthin, monadoxanthin and prasinoxanthin), as 

suggested by Tamaki et al. [50].  

The phycobiliproteins synthesis depends majorly on the products of glycolytic pathways such as 

pyruvate, succinyl coA, L-glutamate and glycine to produce δ- aminolaevulinic acid (ALA) in a series 

of reactions catalyzed by different enzymes. The heme proteins, according to Li et al. [55], are then 

metabolized into various phycobilins. Also, antioxidative ascorbate, which is a major electron donor 

to reactive oxygen species (ROS) scavenging enzyme ascorbate peroxidase (APX), is usually produced 

in photosynthetic organisms and some animals via D-galacturonate (Euglena) pathway and D-

mannose/L-galactose (plant) pathway [50]. These pathways convert D-glucose-6-phosphate into the 

intermediate L-galactono-1,4-lactone via a series of reaction steps. This intermediate is then 

dehydrogenated into L-ascorbate by L-galactono-1,4-lactone dehydrogenase, they further stated. The 

major role played by the ascorbate is to donate electrons that will be used in converting harmful 

hydrogen peroxide (H2O2) into water, thus reducing its effect on the system. APX function is similar 

to that of glutathione peroxidase which accepts electrons from glutathione (GSH) or thioredoxin in 

H2O2, lipid peroxide and hydroperoxide detoxification with other GSH-mediated redox regulations [56]. 
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A summary of a developed model of the carotenoid pathway (Figure 1) and phycobilin proteins 

biosynthetic pathway (Figure 2) based on the aforementioned literature shows the synthesis of various 

compounds. 

 

Figure 1. Carotenoids biosynthetic pathway. 
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Figure 2. Phycobilin proteins biosynthetic pathway. 

4. Mechanism of actions of microalgae produced bioactive compounds 

The various bioactive compounds produced by microalgae exhibit different modes of action 

depending on the active ingredient present in them. Microalgae in recent years have been shown to be 

an important source of functional foods with therapeutic potentials in the treatment of some health 

disorders and chemoprevention. Most non-communicable diseases that usually develop due to the 

individual's lifestyle, such as cancer and obesity, can be managed by the application of bioactive 

molecules of microalgal origin [57]. The presence of antioxidative and anti-inflammatory components 

makes microalgae a potential agent for the prevention and delay of the onset of some diseases such as 

cancer and cardiovascular disorders [58,59]. A wide range of bioactive compounds and their 

applications are found in Table 1. 
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Table 1. Bioactive compounds from micro-algae and their applications. 

Continued on next page 

  

S/No Bioactive Compound(s) Source(s) Applications References 

1 Carotenoids: 

β-carotene 

 

 

 

 

Lutein 

Botryococcus braunii, 

Chlamydocapsa sp., Chlorella 

sorokiniana, Chlorococcum sp., Chondria 

tenuissima var.striolata (formerly Chondria 

striolata), Dunaliella sp,  

Scenedesmus sp., Muriellopsis sp., C. 

sorokiniana 

Cosmetics additives, natural food coloring agents and health 

food, Anti-aging, coronary disease prevention, cancer, immune 

control, retinal and sensory disability enhancement and low-

density lipoprotein oxidation inhibition 

 

Antioxidant and anti-inflammatory properties 

[59,84–86] 

 

 

 

 

 

[87] 

 Astaxanthin, Canthaxanthin, 

Violaxanthin 

Haematococcus sp., Chlorolobion 

braunii (formerly Ankistrodesmus  

braunii), Chlamydomonas nivalis, Chlorella 

vulgaris, Chondria striolata, Monoraphidium 

sp., Tetradesmus obliquus (formerly 

Scenedesmus obliquus), Chlamydocapsa sp., 

Chlorococcum sp., Neospongiococcum sp. 

Skin protection, eye health enhancement, muscle strength and 

endurance improvement, protects against oxidative damages, 

aquaculture feed additives, nutraceuticals, cancer defense, 

inflammation, metabolic 

syndrome, diabetes, neurodegenerative and ocular diseases, lung 

injury, repressed alveolar wall swelling and myeloperoxidase 

activity. Anti-proliferative activity, Increases Vitamin E, 

antioxidative, anti-inflammatory and neuroprotective properties 

[88–92,5] 

2 Phycobiliproteins e.g. 

Phycocyanin, phycoerythrin, 

porphyridium and chlorophyll 

A Proteins (amino acids) 

Cyanobacteria, Rhodophyta, Cryptomonads, 

Dolichospermum flos-aquae (formerly 

Anabaena. flos-aquae, Caulerpa racemose, 

Ulva lactuca (formerly Ulva fasciata), 

Caulerpa racemosa Spirulina, Porphyridium, 

Scenedesmus, Chlorella sp., Microcystis 

aeruginosa, Nitzschia incerta, Green algae 

 

Improves light utilization efficiency, food coloring agents, food 

antioxidants, humans and plants 

 

Functional foods, animal feed supplements, bioplastics 

production, antioxidant properties, immune activators, prevent 

atherosclerosis, cancer, and coronary diseases, and also used in 

photo-ageing protective formulations, cytotoxicity towards 

tumoral cells 

 

[93–112] 
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S/No Bioactive Compound(s) Source(s) Applications References 

3 Vitamins Spirulina sp., Chlamydomonas sp., Chlorella 

sp., Scenedesmus sp., Dunaliella tertiolecta, 

Prototheca zopfii (formerly Prototheca 

moriformis), T. suecica, Nannochloropsis 

oculata, Chaetoceros calcitrans 

Antioxidants, Food supplements, Sources of essential vitamins, 

breast cancer risks reduction, DNA repair and histone 

methylation as well as chemo-preventive activities, 

Nutraceuticals, cosmetics 

[113,114–117] 

4 Polysaccharides e.g., Starch, 

cellulose, hemicellulose, 

pectin 

 

Sulphated polysaccharides 

e.g. carrageenan, naviculan, 

fucoidans, lectin, agar, ulvans, 

laminaran, galactan, alginate, 

Stypodiol, taondiol, 

isoepitaondiol, 

glycosaminoglycan 

Chlorella vulgaris, Fucus vesiculosis (a marine 

brown macroalgae), Margalefidinium 

polykrikoides (formerly Cochlodinium 

polykrikoides), 

Porphyridium sp., Turbinaria conoides, 

Sargassum wightii, Porphyra sp. 

(note: Turbinaria conoides, Sargassum wightii, 

Porphyra sp., Sargassum wightii, Porphyra sp., 

are marine macroalgae) 

Nanocellulose, biofilters, biofuels, cosmeceuticals, bioplastics, 

etc. 

Laminaria sp., 

 

Preventive and curative agents for various stages of viral 

infections such as blockage of reverse transcriptase in HIV 

infections as well as inhibition of cytopathic effects and cell 

adhesions during viral infections. Specific algae-derived 

molecules can be applied in vaccines and antibody production 

for COVID-19 prevention and cure. Also exhibits antioxidative, 

immunomodulatory and anti-inflammatory properties 

[62,32,118–

121] 

5 Phenolic acids e.g. 

chlorogenic acids, caffeic 

acids 

Isochrysis sp., Chlorella vulgaris, 

Nannochloropsis sp. 

Anticancer activity inhibits HIV-1 integrase and carcinogenic 

compounds mutagenicity possesses antioxidant and 

antispasmodic properties 

[122–123] 

6 Lipids e.g. mono- and 

polyunsaturated fatty acids 

(Arachidonic acid, 

Eicosapentaenoic acid, 

Docosahexaenoic acid)  

Spirulina, Porphyridium sp., Scenedesmus, 

Lobosphaera incisa (formerly Parietochloris 

incisa), Crypthecodinium cohnii, 

Nannochloropsis sp., Schizochytrium 

sp., Ulkenia sp., Phaeodactylum 

tricornutum  

Cardiovascular benefits, mental 

development and support, 

anti-inflammatory protects against atherosclerosis, improves the 

nervous system and brain function, improves infants' growth, 

functional development and vision  

[49,48,124,86] 

 



65 

AIMS Microbiology  Volume 9, Issue 1, 55–74. 

According to Alam et al. [37], the oceans where microalgae predominantly reside contain a lot of 

bioactive molecules with preventive, immunostimulatory and immunomodulatory properties for the 

management of viral infections. Marine algae and microalgae synthesized bioactive molecules such as 

amino acids and vitamins have also been reported to improve the immune system and thus help in 

enveloped virus replication inhibition with sulfated polysaccharides and bacterial infections [60,61]. 

Carrageenan, the most commonly used polysaccharide in viral infections treatment, and iota-

carrageenan have proved to be effective antiviral agents against human immunodeficiency virus (HIV), 

human rhinovirus (HRV) and human papillomavirus (HPV), acting to prevent these viral agents from 

initial binding to the host cells during infection stage [37,61]. 

The recent COVID-19 global pandemic caused by corona viruses has been reported to be checked 

by inactivation of the virions before actual viral infection using modified chitosan, especially during 

low pathogenic infections [62,63]. Also, chitosan and carrageen were reported to block viral infections 

by enveloping virions via viral internalization and absorption inhibition, uncoating, improving host 

immune response [63]. HIV was also reported to be inhibited by sulfated polysaccharides, which also 

inhibit the activation and expression of receptor pathway epidermal growth factor to suppress 

coronavirus [64,65]. This bioactive agent works in various capacities, such as stopping spikes, 

interaction with receptors in coronavirus infection, as Joseph et al. [66] suggested. The antioxidative 

properties of these bioactive molecules aid in scavenging free radicals and quenching superoxide 

radicals generated during oxidative stress conditions [67,68]. The accumulation of these radicals can 

cause lipid peroxidation, thus attacking the brain cells due to damage to membranes, polyunsaturated 

fatty acids (PUFA), and some redox metals like aluminum and iron also generate these radicals by 

ccatalyzingreactive oxygen species [12]. The damage to PUFA contributes to the progression and 

pathogenesis of the neurological disorder Alzheimer's disease (AD), associated with neuronal damage, 

cholinergic dysfunction, oxidative stress, cognitive development protein aggregation and misfolding, 

neuronal plasticity, synaptic transmission and memory functions, as suggested by Olasehinde et al. [12]. 

This disease can be treated or managed by the neuroprotective and chemo-preventive potentials of 

bioactive molecules synthesized by microalgal species.  

Microalgal-derived antioxidants, according to Ataie et al. [9], prevent radical-induced neuronal 

damage and AD progression by scavenging free radicals which harm the brain cells. Also, extracts 

from Chlorella vulgaris have been reported to be effective in reducing oxidative stress as well as lead-

induced oxidative damage in rat brains by decreasing levels of malondialdehyde (MDA) and at the 

same time increasing glutathione (GSH), catalase (CAT), glutathione peroxidase (GPX) and 

superoxide dismutase, respectively. These enzymes are important in the mitigation of oxidative 

radicals' damaging effects in the cells, and their absence makes the cells liable to oxidative damage. 

The antioxidative properties were linked to their phenolic, carotenoid and fatty acid (myristic, oleic 

acid and palmitic acids) contents [12,69,70]. Peroxidation of these lipids by free radicals generated 

oxidative stress; metal-induced peroxidation results in the malfunctioning of the brain and other AD-

associated symptoms like Aβ-induced neurotoxicity [71,72]. Also, sulfated polysaccharides prevent 

cell death and damage to neuronal cells as well as contribute to the antioxidant characteristics of some 

microalgae. Besides antioxidant ability, anti-inflammatory, immunomodulatory, anticoagulant and 

anticancer activities have been associated with polysaccharides of microalgal origin [73,59,44]. The 

presence of phytosterols in the cells helps to regulate membrane permeability, integrity and fluidity to 

carry out their normal physiological processes [74,12]. As suggested by some authors, sterols exhibit 
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neuroprotective abilities on the nerves, scavenge free radicals and chelate metals, thus inhibiting metal-

induced peroxidation in the brain [9,75,76].  

Memory impairment in AD patients has been reported to be caused by the breakdown of the 

neurotransmitter acetylcholine by acetylcholine esterase and butyryl choline esterase, which impairs 

memory function and cognition [77]. Thus, choline esterase inhibitors (such as gallic acids, quercitrin, 

chlorogenic acids and quercetin) are usually employed in AD management since they stop the activities 

of esterases and thus improve the availability of acetylcholine in the neurons [31,75,78]. The choline 

esterase inhibitors also stop β-amyloid aggregation, which usually resulted from misfolding of proteins 

to form plaques, by the activities of transmembrane aspartate protease, β-secretase or β-site APP 

cleaving enzyme (BACE-1) and γ-secretase or presenilin protein, which affects the neurons [79,80]. 

The occurrence of AD with its neurodegenerative effects has been proven to be alleviated by 

microalgae metabolites with no side effects, as compared to synthetic drugs that have been used until 

now. 

A comprehensive review by Zhou et al. [81] highlighted the several health benefits and 

mechanisms microalgal compounds use to show a positive effect. They also probed different industries 

for potential commercial applications. It was concluded that there was compelling evidence for the 

benefits of microalgal compounds, but further research on their digestive mechanism is required. This 

has been reiterated by other workers [82–83] who posited that fermentation of microalgae has potential, 

but it is still a fairly new area. It was suggested that more work should be carried out to ascertain the 

true composition of microalgae to enable manipulation into other products.  

5. Conclusions 

In summary, the biosynthesis of microalgal bioactive molecules aids in their adaptation to 

different environmental conditions as well as their maintaining various cellular processes for their 

survival. Also, they have proved to be a source of secondary metabolites with numerous applications, 

especially in the management of health conditions associated with oxidative stresses, such AD and 

diabetes. Some species of microalgae have shown the potential of alleviating the impact of the SARS-

CoV-2 virus responsible for the global pandemic being experienced in recent years. Although these 

numerous potentials have been proposed, only a few, such as astaxanthin, extracted 

from Haematococcus lacustris (formerly Haematococcus pluvialis) (Chlorophyta), and retinol or b-

carotene, from D. salina (Chlorophyta), have been applied due to safety and lack of awareness. 

There is, therefore, the need for the proper education of the populace alongside more complex research 

to harness these benefits so that they can be effectively applied to the prevention and cure of different 

diseases. 
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