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Abstract: Artificial intelligence (AI) has emerged as a transformative tool in gastric cancer pathology, 

driving advancements in detection, diagnosis, prognostic modeling, and molecular biomarker 

identification. Building on these advances, algorithmic innovations such as digital pathology, deep 

learning, and supervised learning frameworks have facilitated AI integration into clinical practice. 

Further clinical implementation will require multimodal learning strategies, foundation model 

development, prospective validation studies, and robust ethical governance. In this review, we provide 

an updated overview of current applications, technological progress, and prospects for leveraging big 

data in pathology to achieve AI-driven precision medicine in gastric cancer. 
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1. Introduction 

Gastric cancer (GC) remains a significant global health burden, ranked as the fifth most common 

malignant cancer and the third leading cause of cancer-related death worldwide [1]. GC shows clinical 

and histologic heterogeneity [2], posing challenges for tumor diagnosis, particularly in accurate staging 

and optimal treatment decision-making in clinical practice. Histopathology serves as the diagnostic 

gold standard [3], providing definitive insights into tumor type, grade, and pattern of invasion. 
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Digitization of pathology, which generates big data by scanning pathology slides into whole-slide 

images (WSIs), enables pathologists to analyze the morphologic features of histologic slides using 

computer-based technology [4]. 

Artificial intelligence (AI), particularly deep learning (DL), has emerged as a powerful adjunct in 

pathology, offering high throughput, standardized, and reproducible analyses. DL models applied to 

digitized pathology slides demonstrate high accuracy in critical clinical tasks, such as tumor detection, 

diagnostic classification, prognosis prediction, and even molecular biomarker inference [5–7]. 

Nonetheless, AI-driven precision medicine is still in its infancy and is not yet widely adopted in routine 

clinical workflows, due to limitations such as model interpretability, generalizability, and data scarcity. 

Although AI applications in medical imaging and pathology have been reviewed previously [8,9], 

there remains a need for an updated, gastric cancer–focused synthesis. In this review, we summarize 

current AI applications throughout the gastric cancer patient journey, from initial detection and diagnosis 

to prognostic and molecular prediction. Additionally, we briefly review the technological evolution of 

AI in digital pathology, discuss current limitations, and outline future directions (Figure 1). We aim to 

provide clinicians and researchers with a comprehensive overview of the current progress in AI 

applications in pathology for precision medicine in gastric cancer. 

 

Figure 1. Overview of AI integration in digital pathology for GC. This schematic 

illustrates the end-to-end workflow of AI in GC pathology. (A) Digitization: Histological 

analysis begins with the preparation of tissue specimens, after which the slides are scanned 

into whole-slide images (WSIs) at high resolution. (B) Modeling: DL and machine learning 

frameworks are trained to perform computational pathology tasks, with supervision 

strategies evolving from fully supervised to weakly and self-supervised learning. (C) 

Application: AI models enable a range of applications, including diagnostic classification, 

prognosis, and treatment response prediction. (D) Future directions: Emerging paradigms 

such as multimodal integration and foundation models are expected to define future 

directions. This figure was created with BioRender.com. 
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1.1. Review methodology 

This article is a narrative review. We performed targeted searches of PubMed for English-

language studies on artificial intelligence in gastric cancer pathology published from 2020 onward, 

using combinations of terms such as “gastric cancer”, “digital pathology”, “whole-slide imaging”, 

“deep learning”, and “computational histopathology”. We also screened the reference lists of key 

primary studies to identify additional relevant work. 

2. Application of pathology AI in GC 

Pathology remains a cornerstone of GC management [10], underpinning the full clinical trajectory, 

including initial detection, diagnosis, and prognosis. However, many of these assessments require 

labor-intensive, expert-dependent interpretation, which has become more consistent and scalable 

through AI integration [11]. In this section, we group AI applications according to their position along 

the gastric cancer care pathway. Detection tasks aim to automatically identify or quantify key 

pathologic findings such as lymph node metastasis or lymphovascular invasion. Diagnostic tasks focus 

on histological classification and nodal staging prediction. Prognostic modeling goes one step further 

to predict outcomes such as overall survival, recurrence, and response to therapy. Molecular prediction 

tasks aim to infer biomarkers in genomics, transcriptomics, and proteomics from pathology images. 

2.1. Detection 

The detection of crucial pathologic features is a crucial ground-truth task that underpins 

downstream clinical decisions [12]. The diagnosis of GC begins with the identification of subtle 

pathologic features such as tumor infiltration, lympho-vascular invasion, and micro metastasis. Since 

these features sometimes escape detection by human observers, particularly in high-volume centers, 

AI-based tools may improve sensitivity and efficiency while minimizing diagnostic oversight. 

2.1.1. Lymph node metastasis detection 

In gastrectomy specimens, a routine D2 gastrectomy typically yields around 25–40 nodes [13], 

and micro metastases in slides of lymph nodes (LN) can be easily overlooked [14]. DL might 

substantially alleviate this burden by segmenting regions with U-Net architectures or highlighting 

suspicious areas via object detection networks [15]. For instance, Huang et al. [16] trained CNNs 

using 5-gigapixel images. With 5907 LN images, they achieved an AUC of 0.994 for slide-level 

metastasis detection, with the micro-metastasis sensitivity rising from 82% (clinical) to 96% (clinical 

with AI assistance). Their workflow also reduced review time by 31.5% and showed robust 

performance across multiple centers (AUC 0.983). Similarly, Hu et al.  [17], using 921 WSIs, 

developed an automated system tuned to detect lymph node metastasis, achieving around 0.9 IoU. 

Beyond detection, AI has enabled the discovery of novel prognostic metrics. For example, a study 

in Nature Communications [18] proposed a DL framework that localized lymph nodes, detected 

tumor deposits, and computed the tumor-to-lymph node area ratio (T/MLN). This ratio not only 

correlated strongly with expert assessments but also emerged as an interpretable and independent 

prognostic factor across multiple cohorts. These studies illustrate how AI significantly improves 
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detection accuracy, reducing missed diagnoses and supporting pathologists in making more reliable 

clinical judgments. 

2.1.2. Lymph-vascular invasion (LVI) detection 

In addition to lymph node metastasis, lymphovascular invasion, wherein tumor cells infiltrate 

lymphatic or blood vessels, is a critical adverse prognostic marker [19]. AI has shown promising results 

in detecting LVI. In 2023, Lee et al. [20] combined a transformer-based model (ConViT) with an object 

detector (YOLOX) to identify LVI foci on H&E-stained slides, achieving an external AUC of 0.94. 

Another study applied a hard negative mining strategy to train a DL model to detect lymphatic invasion 

in GC, yielding an AUROC of 0.97 [21]. These advancements demonstrate the feasibility of AI-

assisted detection of clinically meaningful yet subtle pathological features. Collectively, these AI-

driven detection advances establish a strong foundation for precise diagnosis and prognostic 

assessment, enhancing clinical decision-making throughout the patient’s disease trajectory. However, 

despite these encouraging results, such models have not yet been widely adopted in routine clinical 

practice, highlighting the ongoing need for prospective validation and regulatory approval. 

2.2. Diagnosis 

2.2.1. Diagnosis subtype classification 

Accurate histopathological diagnosis remains demanding due to the wide morphologic spectrum 

of GC [22], from well-differentiated tubular adenocarcinoma to poorly cohesive diffuse types. Recent 

DL approaches provide reproducible, high-throughput alternatives with expert-level accuracy [23]. In 

a routine biopsy setting, Park et al. prospectively tested a CNN on 7440 endoscopic biopsies, achieving 

an AUROC of 0.979 for tumor classification: NFD (no further disease) versus positive (all non-NFD 

cases), with 100% sensitivity and 97.5% specificity for epithelial lesions. DL assistance reduced 

average review time by 47%—a compelling case for workload reduction [24].  

For general histological classification, Iizuka et al. trained weakly supervised CNN/RNN models 

on 4128 gastric WSIs, reporting an AUC of 0.980 for classification (adenocarcinoma versus adenoma) 

on internal data, and the model reached 95.6% accuracy versus 85.9% for 23 pathologists under timed 

conditions [25]. For subtype classification, Veldhuizen et al. built an attention MIL network that 

separated Lauren intestinal and diffuse types with a mean AUROC of 0.93. More importantly, they 

independently stratified 5-year survival in both European and Asian cohorts (HR: 1.4–1.5 vs 1.1–1.2 

for pathologists), demonstrating clinical utility beyond morphology [26]. Taken together, these 

diagnostic advancements underscore how AI provides standardized, reproducible classification 

systems, which in turn enhance clinical consistency. 

2.2.2. Nodal stage prediction 

Accurate nodal (N) staging remains pivotal in the diagnosis of GC. Especially for early GC, 

defined as adenocarcinoma confined to the mucosa (T1a) or submucosa (T1b), patients managed 

endoscopically (EMR/ESD) do not yield lymph node tissue for histological analysis, and cross-

sectional imaging (CT/MRI) is insensitive to micrometastasis. Recent DL models trained directly on 
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routine H&E slides can now infer metastatic propensity based on primary tumor morphology [27]. 

Sung et al. [28] were the first to develop an interpretable DL model using morphological features from 

H&E-stained slides to predict lymph node metastasis (LNM) in early GC, achieving an AUC of up to 

0.92 in external validation. For N staging, another study [29] trained an attention-based MIL model on 

1146 resections across three hospitals; the lymph node status classifier achieved moderate 

discrimination (AUROC:  0.71). Guo et al. [30] further integrated multiscale WSI features with 

baseline clinicopathologic variables; five-fold cross-validation produced a mean AUC of 0.88 for 

predicting lymph node metastasis on surgical slides and 0.73 on preoperative biopsy slides, 

demonstrating promising generalizability for real-time surgical decision-making. Collectively, these 

studies show that slide‑based AI can extract nodal metastasis risk signals across the clinical spectrum 

of GC. In early GC, it provides a decision aid for determining whether to escalate from endoscopic 

resection to radical surgery or to intensify surveillance. In advanced GC, it offers additional insight to 

guide surgical planning, determine the extent of lymph node dissection, and potentially stratify patients 

for adjuvant therapy. 

2.3. Prognostic modeling 

Beyond refining diagnosis, pathology‐based AI has begun to anticipate clinical trajectories 

directly from routine H&E slides—predicting occult nodal spread, long-term survival, recurrence, and 

therapeutic response [31]. 

2.3.1. Predicting OS and recurrence 

Conventional pathological prognostic factors—such as TNM stage, tumor differentiation grade, 

Lauren subtype, and serosal or vascular invasion—remain the backbone of overall survival prediction 

in GC [32]. Recently, pathology-based DL models have enabled automated and reproducible 

prognostic stratification based on routine histology slides. Huang et al. [33] developed a multiple 

instance learning model for gastric cancer (MIL-GC), which was trained on over 1000 patients. Those 

authors generated a slide-level risk score that remained an independent predictor of overall survival 

after stage adjustment (HR 1.8) and retained a C-index of 0.657 in external validation, indicating the 

model correctly ranked the patient with the shorter survival first in 65.7% of comparable pairs. Another 

study [34] used machine learning to distill 12 quantitative pathomics features into a PSGC signature; 

when combined with TNM, it increased the 5-year OS AUROC to 0.901 and, crucially, identified 

stage II–III patients with low PSGC who benefited from adjuvant chemotherapy, whereas high-PSGC 

patients did not. Moreover, Tian et al. [35] introduced a multiscale DeepRisk network that achieved a 

C-index of 0.84 for OS. These AI-driven histological features complement conventional staging by 

offering more granular, reproducible prognostic insights. 

Recurrence, particularly occult peritoneal relapse [36], remains the principal driver of 

postoperative failure in GC. Yet, existing risk models still rely heavily on anatomical factors such as 

T stage, serosal breach, and nodal ratio [37]. Recent AI-driven studies now show that histology alone 

can stratify recurrence risk with clinically actionable fidelity. Zhang et al. [38] transformed whole-slide 

images into compact graphs based on tumor microenvironment features and input them into an adaptive 

graph clustering network (AGCNet); the model achieved 82% accuracy and an AUC of 0.77 for 

recurrence prediction in GC. Chen et al. [39] focused on serosa-invasive cases, extracting 186 
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handcrafted pathomics features from routine H&E tiles and reducing them to an 11-feature signature via 

LASSO. The signature, when incorporated into a competing risk nomogram alongside CA19-9, depth of 

invasion, and nodal status, delivered 5-year peritoneal recurrence AUROCs of 0.89 (external validation) 

and a concordance index of 0.81. These advancements illustrate how AI-derived recurrence features, 

extracted directly from routine pathology slides, enhance and complement traditional staging systems. 

2.3.2. Predicting therapy response 

Routine H&E-stained slides, long considered insufficient for predicting treatment response in GC, 

are now recognized as a valuable substrate for treatment prediction using AI-driven analysis. Recent 

DL studies [40] show that routine H&E slides alone can stratify patients for immunotherapy, cytotoxic 

chemotherapy, and targeted therapy. Liu et al. [41] developed ICIsNet, an ensemble model that distilled 

148181 biopsy patches into an immune checkpoint inhibitor response score (ICIsRS). Across four 

independent cohorts, it predicted the benefits of first line PD-1 plus chemotherapy with AUCs of 0.92–

1.00 and separated responders from nonresponders at p < 0.001. Similarly, another study [42] built a 

CRSNet from 69564 biopsy patches; it identified pathological major responders to neoadjuvant 

chemotherapy with an internal AUC of 0.936 and reproduced an AUC of 0.923 externally, again with 

highly significant score differences between response groups. Zhou et al. [43] applied a contrastive-

learning CLAM Sim pipeline to predict HER2 amplification and downstream trastuzumab efficacy. It 

reached an AUC of 0.847 for slide-level HER2 status in resections, 0.723 in biopsies, and, crucially, 

an AUC of 0.833 for distinguishing treatment responders (CR/PR) from nonresponders (SD/PD). 

These advancements underscore a paradigm shift: AI-based histological biomarkers can serve as 

universally accessible, cost-effective companion diagnostics, ultimately democratizing precision 

therapy decisions in GC. 

2.4. Molecular prediction 

Molecular characterization via DNA mutations, transcriptomic profiles, and protein biomarkers 

plays a critical role in guiding treatment strategies in GC [44]. However, conventional molecular 

profiling methods are costly and constrained by limited tissue availability. 

2.4.1. Gene mutation 

Recent advances have shown promising potential in predicting genetic alterations from H&E-

stained slides. For instance, a clinically actionable subtype, Epstein–Barr virus–positive (EBV+) GC, 

shows strong predictive performance: Vuong et al. developed a DL classifier that predicted EBV status 

from endoscopic biopsy specimens, reporting an AUC of 0.872 [45]. Microsatellite instability (MSI) 

and high tumor mutational burden (TMB-H) have also been predicted with moderate to strong success; 

notably, Hinata et al. reported an MSI prediction model achieving an AUC of 0.880 [46]. However, 

the broader landscape remains challenging. Attempts to predict mutations in CDH1, ERBB2, KRAS, 

PIK3CA, and TP53 have yielded more modest AUCs (0.661 to 0.858, Jang et al.) [47], suggesting that 

some genomic alterations do not produce discernible histopathological features or that existing datasets 

lack sufficient statistical power. Furthermore, a recent pan-cancer study [48] evaluating 178 GC driver 

genes found that while 58 achieved a mean AUC ≥ 0.70, only about 5 genes (∼3%) surpassed the more 
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stringent threshold of mean AUC ≥ 0.80, highlighting the rarity of truly high-performing, histologically 

predictable mutations in current datasets.  

2.4.2. Transcriptomic expression 

RNA-level molecular profiling is emerging as a transformative frontier, offering deeper biological 

insights into tumor heterogeneity and clinical behavior. The initial proof of concept was demonstrated 

by HE2RNA [49], which predicted gene expression values from 8725 TCGA WSIs spanning 28 tumor 

types, including 371 GC cases, inferring approximately 3000 genes solely from H&E-stained slides 

without requiring molecular annotations. Building on this foundation, the linearized transformer model 

SEQUOIA [50] scaled to 7584 tumors across 16 organs. In the GC subset, it achieved gene-level 

Pearson correlations of approximately 0.46 and linked predicted pathways, such as inflammatory 

response and cell cycle regulation, to recurrence risk (Pizurica et al., 2024). The leading edge is now 

virtual spatial transcriptomics, which employs weak supervision on spatial transcriptomics Visium 

spots, using H&E slides to infer super-resolution cell spatial profiles that capture cell types, cell 

states, and their spatial relationships at single-nucleus resolution. Recent AI advancements affirm 

the clinical viability of RNA inference from pathology images, particularly spatial transcriptomics, 

establishing a crucial foundation for next-generation, interpretable molecular diagnostics. 

2.4.3. Protein biomarkers 

Inference of protein expression directly from routine H&E images represents a rapidly evolving 

field, especially for biomarkers with clear therapeutic implications. Liao et al. [51] used strong 

supervision to predict HER2 status across a multicenter cohort of 531 WSIs, attaining ~90% external 

accuracy. Notably, attention heatmaps generated by the model were validated against HER2 

immunohistochemistry (IHC) on adjacent tissue slides and demonstrated a strong spatial concordance 

that strengthens the biological credibility of the model’s predictions. Extending beyond oncogene 

amplification, Jin et al. [52] applied a teacher–student multiple-instance learning framework (MILTS) 

to 832 stomach adenocarcinoma slides and achieved an AUROC of 0.85 for programmed death 

ligand 1 (PD-L1). Tile-level probability maps revealed patchy PD-L1-high niches within inflamed 

glandular mucosa, which showed strong concordance with IHC and made immune checkpoint biology 

visually accessible to practicing pathologists. For mismatch-repair-deficient (dMMR/MSI-H) tumors, 

Zheng et al. [53] introduced the ensemble model MMRNet, whose GAN-driven “MMR-Mapping” 

module achieved an internal AUROC of 0.93 while highlighting syncytial architecture and dense 

tumor-infiltrating lymphocytes—morphologic hallmarks that enhance the interpretability of otherwise 

opaque attention heatmaps. These AI-based protein biomarker models deliver not only biomarker-

specific predictions but also actionable interpretations that support targeted clinical interventions. 

Collectively, these molecular prediction capabilities underscore AI’s role as a bridge between 

histopathological images and molecular diagnostics, significantly enriching the clinical utility of 

pathology throughout the patient journey (Table 1).  
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Table 1. Summary of studies on protein biomarker prediction in GC. 

Study 

(author) 
Year Model 

Training cohort 

size 

Specimen 

type 
Prediction task Performance 

Valieris 

et al. 

[54] 

2020 ResNet-34 
369 patients 

(TCGA-STAD) 

Surgical 

resections 

Gene 

Signature:MMRD 

status 

AUC: 0.81 

Schmauch 

et al. 

[49] 

2020 HE2RNA 
371 patients 

(TCGA-STAD) 

Surgical 

resections 

mRNA expression: 

3000~4000 genes 

Significant 

correlation, P < 0.05 

Kather 

et al. 

[55] 

2021 ShuffleNet 
321 patients 

(TCGA-STAD) 

Surgical 

resections 

Gene mutations: 

TP53, MTOR, 

FBXW7, PIK3CA; 

gene expression 

signatures: 

proliferation, 

stemness 

Mutation AUC: 

0.66~0.78 (gene-

dependent); 

expression 

signatures AUC > 

0.75 (proliferation 

and stemness) 

Jang et 

al. [47] 
2021 

CNN-based 

Model 
TCGA-STAD, NS 

Surgical 

resections 

Gene mutations: 

CDH1, ERBB2, 

KRAS, PIK3CA, 

TP53 

AUC: 0.661~0.858 

Han et 

al. [56] 
2022 

CNN-based 

Model 

183 IHC WSIs 

(Fujian Cancer 

Hospital, China) 

Surgical 

resections 

Molecule: HER2 

status 

F1: 0.91; accuracy 

94% 

Jeong et 

al. [57] 
2022 EBVNet 

319 patients 

(TCGA-STAD) 

Surgical 

resections 
Gene: EBV status AUC: 0.88; F1: 0.71 

Vuong et 

al. [45] 
2022 EfficientNet 

137,184 patches 

from TMAs and 

WSIs (Kangbuk 

Samsung Hospital, 

Korean) 

Surgical 

resections

+ biopsies 

Gene: EBV status 
Biopsy AUC: 

0.8723 

Flinner 

et al. 

[58] 

2022 DenseNet161 
133 patients 

(TCGA-STAD) 

Surgical 

resections 

Molecular 

subtypes: EBV, 

MSI, GS, CIN 

AUC: 0.76 (4-class 

model, external 

UKC validation) 

Lee et 

al. [59] 
2023 

CNN-based 

model 

331 patients 

(TCGA-STAD) 

Surgical 

resections 
MSI status 

AUC 0.902; AUC 

0.968 (external 

validation) 

Wei et 

al. [60] 
2023 

CNN-based 

model 

347 patients 

(TCGA-STAD) 

Surgical 

resections 

and 

submucosa

l dissection 

Gene mutations: 

KRAS, PIK3CA, 

TP53, MUC16 

AUC: 0.828~0.923 

(external validation) 

Jin et al. 

[52] 
2024 MILTS 

832 slides (TCGA-

STAD) 

Surgical 

resections 

mRNA expression: 

PD-L1 
AUC: 0.85 

Continued on next page 
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Study 

(author) 
Year Model 

Training cohort 

size 

Specimen 

type 
Prediction task Performance 

Li et al. 

[61] 
2024 

CNN-based 

model 

326 patients 

(TCGA-STAD) 

Surgical 

resections 

Gene signature: 

TMB 

AUC: 0.749; 

multimodal (image 

+ mRNA) AUC: 

0.971 

Liao et 

al. [51] 
2025 HER2Net 

520 patients 

(Nanfang Hospital, 

Southern Medical 

University) 

Surgical 

resections 

Molecule: HER2 

status 
AUC: 0.98 

Wu et al. 

[42] 
2025 CLAM_Sim 

Surgical: 300 

patients; biopsy: 

101 patients 

(Fujian Cancer 

Hospital, China) 

Surgical 

resections 

and 

biopsies 

Molecule: HER2 

status 

AUC: 0.847 

(surgical); AUC: 

0.723 (biopsy) 

*Note: Abbreviations: TMA (tissue microarray), IHC (immunohistochemistry), EBV (Epstein–Barr virus), TMB (tumor 

mutational burden), MMRD (mismatch-repair deficiency), CLAM (clustering-constrained attention multiple-instance 

learning), MSI-H (microsatellite instability‒high), NS (not specified). 

3. Advances in AI algorithms for pathology 

3.1. Digital pathology 

The transition from conventional glass-slide microscopy to digital pathology marked the 

foundational step in applying AI to histopathology [62,63]. Early advances in WSI technology enabled 

the creation of high-resolution, interactive digital slides that preserved the intricate details of 

histological specimens. Commercial scanners, such as those from Aperio and Hamamatsu, 

standardized the digitization process and facilitated high-volume data storage and sharing [64]. A 

regulatory milestone arrived in 2017 when the U.S. FDA granted de novo clearance to the Philips 

IntelliSite Pathology Solution, authorizing WSI for primary diagnosis [65]. This breakthrough not 

only legitimized the use of digital slides in routine clinical practice but also unlocked unprecedented 

opportunities for computational analysis [62]. As hospitals and research institutions began digitizing 

vast archives of pathology slides, large annotated datasets became available, laying the groundwork 

for training AI models [66]. Public repositories like the Cancer Genome Atlas (TCGA) and 

institutional datasets provided diverse, real-world data essential for developing robust, generalizable 

algorithms [67]. This digital transformation generates massive amounts of big data in pathology, 

forming the foundation for the development of deep learning algorithms. 

3.2. Deep learning emergence 

The first generation of computer vision studies in pathology resembled traditional image analysis: 

investigators hand-crafted features such as texture co-occurrence matrices, color histograms, and 

Haralick statistics, and fed them into support vector machines or random forests [68]. While these 

pipelines produced proof-of-concept classifiers, they were brittle; every new stain, scanner, or fixation 
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protocol necessitated painstaking retuning [69]. Computational pathology researchers pivoted to 

convolutional neural networks in the mid-2010s; by 2015–2016, CNN–based pipelines were already 

supplanting hand-engineered feature sets as the default approach [70]. By learning hierarchical 

representations directly from raw pixels, CNNs rapidly outperformed feature engineering on patch-

level cancer detection and subtype classification [71]. U-Net and its medical offspring (Attention-, 

Res-, and nnU-Net) became the de facto “digital microtome”, delivering pixel-accurate gland and tumor 

bed segmentations that underpinned quantitative histomorphometry and tumor-infiltrating lymphocyte 

scoring [72]. In GC specifically, where distinguishing epithelial, mucosal, and muscular layers—or 

annotating particular cell populations such as cancer cells or cancer-associated fibroblasts (CAFs)—is 

clinically crucial, DL has markedly enhanced both diagnostic support and interpretability [73]. HoVerNet, 

moreover, introduced a dual-branch architecture that simultaneously separates touching nuclei (via 

horizontal and vertical distance maps) and labels each nucleus type, enabling studies that correlate spatial 

immune-cell ecology with prognosis [74]. In parallel, object-detection frameworks such as YOLO eased 

the manual labeling bottleneck: annotators could mark hundreds of mitoses or signet-ring cells per 

minute, a capability that accelerated the creation of specialist datasets for GC [75]. Taken together, 

these developments replaced the ad hoc feature pipelines with end-to-end trainable models, unlocked 

reliable segmentation of gigapixel slides, and laid the technical groundwork for whole-slide inference, 

a development that also began to shift the pathologist’s role from manual feature identification to AI-

assisted decision-making [12]. 

3.3. Supervised learning 

Early DL models demanded that every patch on a whole-slide image be manually labeled—often 

tens of thousands of marks per case—a process known as “fully supervised learning”, which was labor-

intensive [76]. The turning point came in 2019 [69], when weak supervision frameworks such as 

multiple-instance learning (MIL) began treating the entire slide as a single “bag” of tiles and learning, 

from only a slide-level label, which regions truly matter [77]. The CLAM approach refined this idea 

by clustering morphologically similar tiles so that the network could distinguish “positive” from 

“negative” tissue without pixel-level guidance; adapted to GC, it now predicts MSI status and key 

driver mutations with minimal extra effort from the pathologist [78]. Subsequent MIL variants that 

introduce transformers or hierarchical pooling follow the same clinical logic: clinicians supply one 

label per slide, and the algorithm handles the groundwork [79]. In parallel, self-supervised pre-training 

allows models to learn histologic patterns from millions of unlabeled patches; once fine-tuned with 

only slide-level labels, these encoders achieve mutation prediction accuracy on par with fully 

supervised pipelines while remaining robust across scanners and staining protocols [80]. Together, 

weak and self-supervised learning shift the pathologist’s role from laborious annotation to rapid 

validation, enabling true multicenter studies and bringing AI-driven decision support within reach of 

everyday gastric cancer care [81]. 

3.4. Limitations 

Despite promising advancements, significant limitations still constrain the practical deployment 

of AI in GC pathology. First, interpretability remains a major challenge [82]. DL models are often 

criticized as “black boxes”, with thousands of parameters and weights that make it difficult to 
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understand how decisions are made. While interpretability techniques such as attention-based 

heatmaps can highlight image regions that influence predictions, they are often coarse and insufficient 

to support clinical trust or meet regulatory standards. Second, generalizability is limited [83]. 

Variations in slide scanners, staining protocols, and tissue preparation across institutions and regions 

can introduce substantial batch effects [84]. As a result, models trained on one dataset may perform 

poorly on external data [85], and relatively strong internal performance, reflecting overfitting to color 

distributions, artifacts, or local case-mix rather than robust histological signal, especially when 

combined with weakly supervised learning that suffers from noisy slide-level labels. Although 

techniques such as stain normalization, domain adaptation, and generative adversarial networks [86] 

can mitigate these discrepancies by generating style-invariant virtual slides [87], their success remains 

variable. Third, data scarcity [88], especially for rare molecular subtypes, poses a serious issue. Certain 

GC subtypes, such as Scirrhous GC [89], and genomic alterations are underrepresented, resulting in 

imbalanced training data and reduced predictive power [90]. Strategies such as data collection, 

oversampling, or basic augmentation (e.g., flipping, rotation) can help increase sample size [91], but 

they are far from resolving the underlying limitations of data heterogeneity and rarity. Multimodal 

deep-learning and pathology foundation models can partly mitigate the limitations of data scarcity, but 

multimodal architecture often involves long, heterogeneous processing pipelines that are difficult to 

standardize across centers, maintaining limited reproducibility. In summary, improving model 

transparency, cross-cohort robustness, and rare-case coverage will be crucial for the next phase of AI 

development in GC pathology. 

4. Direction toward clinical implementation 

4.1. Multimodal learning 

The integration of histopathology with clinical modalities is rapidly reshaping gastric cancer AI. 

First, the fusion of pathomics and genomics has matured from simple concatenation to true cross-

modal reasoning: the M2EF-NNs framework couples Swin Transformer tile embeddings with gene set 

vectors and, through Dempster–Shafer evidence weighting, improves the C-index/AUC for survival 

across three TCGA cohorts [92]. Second, pathomics–transcriptomics models such as HE2RNA learn 

a 256-dimensional “transcriptomic representation” that reconstructs expression of ≈3600 genes per 

cancer type and, when transferred, boosts MSI detection (AUC 0.81 versus 0.68 on TCGA-CRC) even 

when no molecular data are available at inference [49]. Third, pathomics‒radiopathomic fusion 

extends these gains to imaging: a Guangxi group extracted 1834 CT radiomics and 512 WSI pathomics 

features, then combined the top signatures into a nomogram that discriminated stages I–II from III with 

an external test AUC 0.837, significantly higher than either modality alone [93]. Taken together, these 

findings show that cross-modal learning enriches H&E morphology, delivering more accurate and 

biologically interpretable predictions that move AI closer to tangible clinical application. 

4.2. Foundation model 

Pre-training is rapidly redefining how GC AI models can overcome data scarcity, easing 

translation into clinical practice. A vision-only foundation model, Virchow, trained on approximately 

1.5 million WSIs spanning 17 tissues, delivers a specimen-level AUC of 0.95 across nine common and 
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seven rare cancers, and still reaches 0.94 on slides from external hospitals while matching, or even 

surpassing, tissue-specific clinical-grade products despite using far fewer training slides [94]. The 

visual-language model CONCH pushes label efficiency further: in zero-shot mode, it attains 91.3% 

accuracy on breast cancer subtyping and, in few-shot experiments, needs only 8 labels per class to 

outperform models that require 64 [95]. Building on such encoders, the multimodal assistant PathChat 

fuses a pathology vision backbone with a 13B LLM and achieves 89.5% diagnostic accuracy on 54 

multi-organ cases when given images plus clinical context, outperforming GPT-4V and other 

biomedical chatbots [96]. Altogether, these results show that cross-cancer pre-training, few-shot 

adaptation, and multimodal alignment are converging into a clinically oriented toolkit. This approach 

enables rapid fine-tuning on limited gastric cancer data, facilitating direct integration with routine 

pathological workflows for GC diagnosis. 

4.3. Prospective research 

A central challenge in the clinical translation of AI for GC lies in the need for high-quality, 

prospective evidence that demonstrates real-world utility. Several studies have begun to address this 

gap. Park et al. [24] prospectively evaluated 7440 endoscopic biopsies and showed that a CNN could 

classify benign versus neoplastic tissue with an AUROC of 0.979 while reducing pathologists’ review 

time by 47% when used as a screening aid. Another study [97] brought AI technology directly into 

the endoscopy suite: a U-Net-driven femtosecond SRS pipeline produced H&E-like images from 

fresh biopsies in under 60 s and exceeded 96% diagnostic accuracy, laying the groundwork for real -

time intraprocedural decision-making. Complementing these gastric-specific achievements, Raciti 

et al. [98] delivered the first FDA-cleared evidence that AI-augmented pathology can safely increase 

sensitivity (+8 pp to 96.6%) and specificity (+0.7 pp) across 610 multicenter prostate biopsies, 

reducing human detection errors by 70% and proving regulatory and workflow feasibility. Looking 

ahead, we see that the true driver of clinical translation lies not in incremental performance gains 

but rather in the accumulation of large-scale, prospective, multicenter, real-world evidence. Such 

studies not only validate model utility but also foster the clinical confidence essential for integrating 

AI into patient care. 

4.4. Ethical governance 

As AI models for digital pathology increasingly rely on patient-derived images and clinical 

annotations, it will remain crucial to ensure data privacy, mitigate algorithmic bias, and maintain 

ethical standards [99]. Techniques such as data de-identification and federated learning [100] enable 

cross-institutional model training without direct sharing, while generative methods such as GANs 

can produce synthetic yet biologically meaningful images that reduce the risk of patient re-

identification [101]. Nevertheless, DL models may still encode latent privacy risks within their 

learned weights. To address this, many research groups opt to release source code or partially trained 

models rather than disclosing complete weight files. Because DL models require large, diverse 

datasets to achieve robust generalization [102], carefully governed data sharing remains crucial to 

ensure reproducibility and accelerate community-wide progress. At present, most AI systems for GC 

digital pathology are still used as research tools or decision support, and the final responsibility remains 

with the pathologist. However, if future workflows were to rely on AI-generated diagnoses, this would 
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require more prospective validation, allocation of legal responsibility, and explicit patient-informed 

consent regarding the use of AI tools, given the black-box nature of deep learning models. 

5. Conclusions 

AI has rapidly advanced the field of GC pathology, offering transformative capabilities across 

detection, diagnosis, prognostication, and molecular prediction, and paving the way toward precision 

medicine. As DL methodologies continue to evolve, the integration of multimodal data and the 

development of pan-cancer foundation models are expected to further expand AI’s clinical relevance. 

Future research should prioritize more interpretable and robust models and studies that evaluate the 

impact on clinical decision-making. Real-world validation, regulatory approval, and ethical data 

practices remain critical for translating these advances into routine clinical care. Ongoing collaboration 

among clinicians, pathologists, and IT scientists is essential to unlock AI’s full potential and to realize 

a future where precision pathology informs every step of GC management. 
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