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Abstract: Artificial intelligence (Al) has emerged as a transformative tool in gastric cancer pathology,
driving advancements in detection, diagnosis, prognostic modeling, and molecular biomarker
identification. Building on these advances, algorithmic innovations such as digital pathology, deep
learning, and supervised learning frameworks have facilitated Al integration into clinical practice.
Further clinical implementation will require multimodal learning strategies, foundation model
development, prospective validation studies, and robust ethical governance. In this review, we provide
an updated overview of current applications, technological progress, and prospects for leveraging big
data in pathology to achieve Al-driven precision medicine in gastric cancer.
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1. Introduction

Gastric cancer (GC) remains a significant global health burden, ranked as the fifth most common
malignant cancer and the third leading cause of cancer-related death worldwide [1]. GC shows clinical
and histologic heterogeneity [2], posing challenges for tumor diagnosis, particularly in accurate staging
and optimal treatment decision-making in clinical practice. Histopathology serves as the diagnostic
gold standard [3], providing definitive insights into tumor type, grade, and pattern of invasion.
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Digitization of pathology, which generates big data by scanning pathology slides into whole-slide
images (WSIs), enables pathologists to analyze the morphologic features of histologic slides using
computer-based technology [4].

Artificial intelligence (Al), particularly deep learning (DL), has emerged as a powerful adjunct in
pathology, offering high throughput, standardized, and reproducible analyses. DL models applied to
digitized pathology slides demonstrate high accuracy in critical clinical tasks, such as tumor detection,
diagnostic classification, prognosis prediction, and even molecular biomarker inference [5-7].
Nonetheless, Al-driven precision medicine is still in its infancy and is not yet widely adopted in routine
clinical workflows, due to limitations such as model interpretability, generalizability, and data scarcity.

Although Al applications in medical imaging and pathology have been reviewed previously [8,9],
there remains a need for an updated, gastric cancer—focused synthesis. In this review, we summarize
current Al applications throughout the gastric cancer patient journey, from initial detection and diagnosis
to prognostic and molecular prediction. Additionally, we briefly review the technological evolution of
Al in digital pathology, discuss current limitations, and outline future directions (Figure 1). We aim to
provide clinicians and researchers with a comprehensive overview of the current progress in Al
applications in pathology for precision medicine in gastric cancer.
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Figure 1. Overview of Al integration in digital pathology for GC. This schematic
illustrates the end-to-end workflow of Al in GC pathology. (A) Digitization: Histological
analysis begins with the preparation of tissue specimens, after which the slides are scanned
into whole-slide images (WSIs) at high resolution. (B) Modeling: DL and machine learning
frameworks are trained to perform computational pathology tasks, with supervision
strategies evolving from fully supervised to weakly and self-supervised learning. (C)
Application: Al models enable a range of applications, including diagnostic classification,
prognosis, and treatment response prediction. (D) Future directions: Emerging paradigms
such as multimodal integration and foundation models are expected to define future
directions. This figure was created with BioRender.com.
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1.1. Review methodology

This article is a narrative review. We performed targeted searches of PubMed for English-
language studies on artificial intelligence in gastric cancer pathology published from 2020 onward,
using combinations of terms such as “gastric cancer”, “digital pathology”, “whole-slide imaging”,
“deep learning”, and “computational histopathology”. We also screened the reference lists of key

primary studies to identify additional relevant work.
2. Application of pathology Al in GC

Pathology remains a cornerstone of GC management [ 10], underpinning the full clinical trajectory,
including initial detection, diagnosis, and prognosis. However, many of these assessments require
labor-intensive, expert-dependent interpretation, which has become more consistent and scalable
through Al integration [11]. In this section, we group Al applications according to their position along
the gastric cancer care pathway. Detection tasks aim to automatically identify or quantify key
pathologic findings such as lymph node metastasis or lymphovascular invasion. Diagnostic tasks focus
on histological classification and nodal staging prediction. Prognostic modeling goes one step further
to predict outcomes such as overall survival, recurrence, and response to therapy. Molecular prediction
tasks aim to infer biomarkers in genomics, transcriptomics, and proteomics from pathology images.

2.1. Detection

The detection of crucial pathologic features is a crucial ground-truth task that underpins
downstream clinical decisions [12]. The diagnosis of GC begins with the identification of subtle
pathologic features such as tumor infiltration, lympho-vascular invasion, and micro metastasis. Since
these features sometimes escape detection by human observers, particularly in high-volume centers,
Al-based tools may improve sensitivity and efficiency while minimizing diagnostic oversight.

2.1.1. Lymph node metastasis detection

In gastrectomy specimens, a routine D2 gastrectomy typically yields around 25—40 nodes [13],
and micro metastases in slides of lymph nodes (LN) can be easily overlooked [14]. DL might
substantially alleviate this burden by segmenting regions with U-Net architectures or highlighting
suspicious areas via object detection networks [15]. For instance, Huang et al. [16] trained CNNs
using 5-gigapixel images. With 5907 LN images, they achieved an AUC of 0.994 for slide-level
metastasis detection, with the micro-metastasis sensitivity rising from 82% (clinical) to 96% (clinical
with Al assistance). Their workflow also reduced review time by 31.5% and showed robust
performance across multiple centers (AUC 0.983). Similarly, Hu et al. [17], using 921 WSIs,
developed an automated system tuned to detect lymph node metastasis, achieving around 0.9 IoU.
Beyond detection, Al has enabled the discovery of novel prognostic metrics. For example, a study
in Nature Communications [18] proposed a DL framework that localized lymph nodes, detected
tumor deposits, and computed the tumor-to-lymph node area ratio (T/MLN). This ratio not only
correlated strongly with expert assessments but also emerged as an interpretable and independent
prognostic factor across multiple cohorts. These studies illustrate how Al significantly improves
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detection accuracy, reducing missed diagnoses and supporting pathologists in making more reliable
clinical judgments.

2.1.2. Lymph-vascular invasion (LVI) detection

In addition to lymph node metastasis, lymphovascular invasion, wherein tumor cells infiltrate
lymphatic or blood vessels, is a critical adverse prognostic marker [19]. Al has shown promising results
in detecting LVI. In 2023, Lee et al. [20] combined a transformer-based model (ConViT) with an object
detector (YOLOX) to identify LVI foci on H&E-stained slides, achieving an external AUC of 0.94.
Another study applied a hard negative mining strategy to train a DL model to detect lymphatic invasion
in GC, yielding an AUROC of 0.97 [21]. These advancements demonstrate the feasibility of Al-
assisted detection of clinically meaningful yet subtle pathological features. Collectively, these Al-
driven detection advances establish a strong foundation for precise diagnosis and prognostic
assessment, enhancing clinical decision-making throughout the patient’s disease trajectory. However,
despite these encouraging results, such models have not yet been widely adopted in routine clinical
practice, highlighting the ongoing need for prospective validation and regulatory approval.

2.2. Diagnosis
2.2.1. Diagnosis subtype classification

Accurate histopathological diagnosis remains demanding due to the wide morphologic spectrum
of GC [22], from well-differentiated tubular adenocarcinoma to poorly cohesive diffuse types. Recent
DL approaches provide reproducible, high-throughput alternatives with expert-level accuracy [23]. In
a routine biopsy setting, Park et al. prospectively tested a CNN on 7440 endoscopic biopsies, achieving
an AUROC 0f 0.979 for tumor classification: NFD (no further disease) versus positive (all non-NFD
cases), with 100% sensitivity and 97.5% specificity for epithelial lesions. DL assistance reduced
average review time by 47%—a compelling case for workload reduction [24].

For general histological classification, lizuka et al. trained weakly supervised CNN/RNN models
on 4128 gastric WSIs, reporting an AUC of 0.980 for classification (adenocarcinoma versus adenoma)
on internal data, and the model reached 95.6% accuracy versus 85.9% for 23 pathologists under timed
conditions [25]. For subtype classification, Veldhuizen et al. built an attention MIL network that
separated Lauren intestinal and diffuse types with a mean AUROC of 0.93. More importantly, they
independently stratified 5-year survival in both European and Asian cohorts (HR: 1.4—-1.5 vs 1.1-1.2
for pathologists), demonstrating clinical utility beyond morphology [26]. Taken together, these
diagnostic advancements underscore how Al provides standardized, reproducible classification
systems, which in turn enhance clinical consistency.

2.2.2. Nodal stage prediction
Accurate nodal (N) staging remains pivotal in the diagnosis of GC. Especially for early GC,
defined as adenocarcinoma confined to the mucosa (T1a) or submucosa (T1b), patients managed

endoscopically (EMR/ESD) do not yield lymph node tissue for histological analysis, and cross-
sectional imaging (CT/MRI) is insensitive to micrometastasis. Recent DL models trained directly on
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routine H&E slides can now infer metastatic propensity based on primary tumor morphology [27].
Sung et al. [28] were the first to develop an interpretable DL model using morphological features from
H&E-stained slides to predict lymph node metastasis (LNM) in early GC, achieving an AUC of up to
0.92 in external validation. For N staging, another study [29] trained an attention-based MIL model on
1146 resections across three hospitals; the lymph node status classifier achieved moderate
discrimination (AUROC: 0.71). Guo et al. [30] further integrated multiscale WSI features with
baseline clinicopathologic variables; five-fold cross-validation produced a mean AUC of 0.88 for
predicting lymph node metastasis on surgical slides and 0.73 on preoperative biopsy slides,
demonstrating promising generalizability for real-time surgical decision-making. Collectively, these
studies show that slide-based Al can extract nodal metastasis risk signals across the clinical spectrum
of GC. In early GC, it provides a decision aid for determining whether to escalate from endoscopic
resection to radical surgery or to intensify surveillance. In advanced GC, it offers additional insight to
guide surgical planning, determine the extent of lymph node dissection, and potentially stratify patients
for adjuvant therapy.

2.3. Prognostic modeling

Beyond refining diagnosis, pathology-based Al has begun to anticipate clinical trajectories
directly from routine H&E slides—predicting occult nodal spread, long-term survival, recurrence, and
therapeutic response [31].

2.3.1. Predicting OS and recurrence

Conventional pathological prognostic factors—such as TNM stage, tumor differentiation grade,
Lauren subtype, and serosal or vascular invasion—remain the backbone of overall survival prediction
in GC [32]. Recently, pathology-based DL models have enabled automated and reproducible
prognostic stratification based on routine histology slides. Huang et al. [33] developed a multiple
instance learning model for gastric cancer (MIL-GC), which was trained on over 1000 patients. Those
authors generated a slide-level risk score that remained an independent predictor of overall survival
after stage adjustment (HR 1.8) and retained a C-index of 0.657 in external validation, indicating the
model correctly ranked the patient with the shorter survival first in 65.7% of comparable pairs. Another
study [34] used machine learning to distill 12 quantitative pathomics features into a PSGC signature;
when combined with TNM, it increased the 5-year OS AUROC t0 0.901 and, crucially, identified
stage [I-1II patients with low PSGC who benefited from adjuvant chemotherapy, whereas high-PSGC
patients did not. Moreover, Tian et al. [35] introduced a multiscale DeepRisk network that achieved a
C-index of 0.84 for OS. These Al-driven histological features complement conventional staging by
offering more granular, reproducible prognostic insights.

Recurrence, particularly occult peritoneal relapse [36], remains the principal driver of
postoperative failure in GC. Yet, existing risk models still rely heavily on anatomical factors such as
T stage, serosal breach, and nodal ratio [37]. Recent Al-driven studies now show that histology alone
can stratify recurrence risk with clinically actionable fidelity. Zhang et al. [38] transformed whole-slide
images into compact graphs based on tumor microenvironment features and input them into an adaptive
graph clustering network (AGCNet); the model achieved 82% accuracy and an AUC of0.77 for
recurrence prediction in GC. Chen et al. [39] focused on serosa-invasive cases, extracting 186

AIMS Medical Science Volume 12, Issue 4, 350—369.



355

handcrafted pathomics features from routine H&E tiles and reducing them to an 11-feature signature via
LASSO. The signature, when incorporated into a competing risk nomogram alongside CA19-9, depth of
invasion, and nodal status, delivered 5-year peritoneal recurrence AUROCsSs of 0.89 (external validation)
and a concordance index of 0.81. These advancements illustrate how Al-derived recurrence features,
extracted directly from routine pathology slides, enhance and complement traditional staging systems.

2.3.2.  Predicting therapy response

Routine H&E-stained slides, long considered insufficient for predicting treatment response in GC,
are now recognized as a valuable substrate for treatment prediction using Al-driven analysis. Recent
DL studies [40] show that routine H&E slides alone can stratify patients for immunotherapy, cytotoxic
chemotherapy, and targeted therapy. Liu et al. [41] developed ICIsNet, an ensemble model that distilled
148181 biopsy patches into an immune checkpoint inhibitor response score (ICIsRS). Across four
independent cohorts, it predicted the benefits of first line PD-1 plus chemotherapy with AUCs of 0.92—
1.00 and separated responders from nonresponders at p < 0.001. Similarly, another study [42] built a
CRSNet from 69564 biopsy patches; it identified pathological major responders to neoadjuvant
chemotherapy with an internal AUC of 0.936 and reproduced an AUC of 0.923 externally, again with
highly significant score differences between response groups. Zhou et al. [43] applied a contrastive-
learning CLAM Sim pipeline to predict HER2 amplification and downstream trastuzumab efficacy. It
reached an AUC of 0.847 for slide-level HER2 status in resections, 0.723 in biopsies, and, crucially,
an AUC of 0.833 for distinguishing treatment responders (CR/PR) from nonresponders (SD/PD).
These advancements underscore a paradigm shift: Al-based histological biomarkers can serve as
universally accessible, cost-effective companion diagnostics, ultimately democratizing precision
therapy decisions in GC.

2.4. Molecular prediction

Molecular characterization via DNA mutations, transcriptomic profiles, and protein biomarkers
plays a critical role in guiding treatment strategies in GC [44]. However, conventional molecular
profiling methods are costly and constrained by limited tissue availability.

2.4.1. Gene mutation

Recent advances have shown promising potential in predicting genetic alterations from H&E-
stained slides. For instance, a clinically actionable subtype, Epstein—Barr virus—positive (EBV+) GC,
shows strong predictive performance: Vuong et al. developed a DL classifier that predicted EBV status
from endoscopic biopsy specimens, reporting an AUC of 0.872 [45]. Microsatellite instability (MSI)
and high tumor mutational burden (TMB-H) have also been predicted with moderate to strong success;
notably, Hinata et al. reported an MSI prediction model achieving an AUC of 0.880 [46]. However,
the broader landscape remains challenging. Attempts to predict mutations in CDHI, ERBB2, KRAS,
PIK3CA, and TP53 have yielded more modest AUCs (0.661 to 0.858, Jang et al.) [47], suggesting that
some genomic alterations do not produce discernible histopathological features or that existing datasets
lack sufficient statistical power. Furthermore, a recent pan-cancer study [48] evaluating 178 GC driver
genes found that while 58 achieved a mean AUC > 0.70, only about 5 genes (~3%) surpassed the more
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stringent threshold of mean AUC > 0.80, highlighting the rarity of truly high-performing, histologically
predictable mutations in current datasets.

2.4.2. Transcriptomic expression

RNA-level molecular profiling is emerging as a transformative frontier, offering deeper biological
insights into tumor heterogeneity and clinical behavior. The initial proof of concept was demonstrated
by HE2RNA [49], which predicted gene expression values from 8725 TCGA WSIs spanning 28 tumor
types, including 371 GC cases, inferring approximately 3000 genes solely from H&E-stained slides
without requiring molecular annotations. Building on this foundation, the linearized transformer model
SEQUOIA [50] scaled to 7584 tumors across 16 organs. In the GC subset, it achieved gene-level
Pearson correlations of approximately 0.46 and linked predicted pathways, such as inflammatory
response and cell cycle regulation, to recurrence risk (Pizurica et al., 2024). The leading edge is now
virtual spatial transcriptomics, which employs weak supervision on spatial transcriptomics Visium
spots, using H&E slides to infer super-resolution cell spatial profiles that capture cell types, cell
states, and their spatial relationships at single-nucleus resolution. Recent Al advancements affirm
the clinical viability of RNA inference from pathology images, particularly spatial transcriptomics,
establishing a crucial foundation for next-generation, interpretable molecular diagnostics.

2.4.3. Protein biomarkers

Inference of protein expression directly from routine H&E images represents a rapidly evolving
field, especially for biomarkers with clear therapeutic implications. Liao etal. [51] used strong
supervision to predict HER2 status across a multicenter cohort of 531 WSIs, attaining ~90% external
accuracy. Notably, attention heatmaps generated by the model were validated against HER2
immunohistochemistry (IHC) on adjacent tissue slides and demonstrated a strong spatial concordance
that strengthens the biological credibility of the model’s predictions. Extending beyond oncogene
amplification, Jin et al. [52] applied a teacher—student multiple-instance learning framework (MILTS)
to 832 stomach adenocarcinoma slides and achieved an AUROC o0f0.85 for programmed death
ligand 1 (PD-L1). Tile-level probability maps revealed patchy PD-LI1-high niches within inflamed
glandular mucosa, which showed strong concordance with IHC and made immune checkpoint biology
visually accessible to practicing pathologists. For mismatch-repair-deficient (AIMMR/MSI-H) tumors,
Zheng etal. [53] introduced the ensemble model MMRNet, whose GAN-driven “MMR-Mapping”
module achieved an internal AUROC of0.93 while highlighting syncytial architecture and dense
tumor-infiltrating lymphocytes—morphologic hallmarks that enhance the interpretability of otherwise
opaque attention heatmaps. These Al-based protein biomarker models deliver not only biomarker-
specific predictions but also actionable interpretations that support targeted clinical interventions.
Collectively, these molecular prediction capabilities underscore AI’s role as a bridge between
histopathological images and molecular diagnostics, significantly enriching the clinical utility of
pathology throughout the patient journey (Table 1).
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Table 1. Summary of studies on protein biomarker prediction in GC.

Study Training cohort Specimen _

Year  Model ) Prediction task Performance

(author) size type

Valieris 369 patient Surical Gene

ien rgi
etal. 2020 ResNet-34 patients YT SionatureMMRD  AUC: 0.81
(TCGA-STAD) resections

[54] status

Schmauch . . . .

371 patients Surgical mRNA expression:  Significant

et al. 2020 HE2RNA i .

[49] (TCGA-STAD) resections  3000~4000 genes  correlation, P < 0.05
Gene mutations: Mutation AUC:
TP53, MTOR, 0.66~0.78 (gene-

Kather . . FBXW7, PIK3CA;  dependent);

321 patients Surgical ) .
et al. 2021  ShuffleNet i gene expression expression
(TCGA-STAD) resections ) )

[55] signatures: signatures AUC >
proliferation, 0.75 (proliferation
stemness and stemness)
Gene mutations:

Jang et CNN-based Surgical CDHI1, ERBB2,

2021 TCGA-STAD, NS : AUC: 0.661~0.858
al. [47] Model resections KRAS, PIK3CA,
TP53
183 IHC WSIs .
Han et CNN-based . Surgical Molecule: HER2 F1:0.91; accuracy
2022 (Fujian Cancer i
al. [56] Model i . resections  status 94%
Hospital, China)
Jeong et 319 patients Surgical
2022 EBVNet . Gene: EBV status  AUC: 0.88; F1: 0.71
al. [57] (TCGA-STAD) resections
137,184 patches
from TMAs and Surgical )
Vuong et ) . Biopsy AUC:
1. [45] 2022  EfficientNet WSIs (Kangbuk resections  Gene: EBV status 0.8723
al. .
Samsung Hospital, + biopsies
Korean)
Flinner . . Molecular AUC: 0.76 (4-class
133 patients Surgical
et al. 2022  DenseNetl61 i subtypes: EBV, model, external
(TCGA-STAD) resections oy

[58] MSI, GS, CIN UKC validation)

. . AUC 0.902; AUC

Lee et CNN-based 331 patients Surgical

2023 . MSI status 0.968 (external
al. [59] model (TCGA-STAD) resections e
validation)
Surgical
. . resections  Gene mutations:
Wei et CNN-based 347 patients AUC: 0.828~0.923
L6017 model TcGAsTAD) M KRAS, PIRCA, ternal validati
al. 160] mode ( i ) submucosa TP53, MUCI16 (external validation)
1 dissection
Jin et al. 832 slides (TCGA-  Surgical mRNA expression:
2024  MILTS i AUC: 0.85
[52] STAD) resections PD-L]
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Stud; Traini hort Speci
Y Year  Model .rammg cono pecimen Prediction task Performance
(author) size type
AUC: 0.749;
Lietal. 2004 CNN-based 326 patients Surgical Gene signature: multimodal (image
[61] model (TCGA-STAD) resections TMB + mRNA) AUC:
0.971
520 patients
Liao et 2025 HERNet (Nanfang Hospital, Surgic'al Molecule: HER2 AUC: 0.98
al. [51] Southern Medical  resections  status
University)
Surgical: 300 )
. . Surgical
patients; biopsy: i AUC: 0.847
Wu et al. . . resections  Molecule: HER2 .
[42] 2025 CLAM Sim 101 patients d atu (surgical); AUC:
an status
(Fujian Cancer .. 0.723 (biopsy)
biopsies

Hospital, China)

*Note: Abbreviations: TMA (tissue microarray), IHC (immunohistochemistry), EBV (Epstein—Barr virus), TMB (tumor
mutational burden), MMRD (mismatch-repair deficiency), CLAM (clustering-constrained attention multiple-instance

learning), MSI-H (microsatellite instability—high), N'S (not specified).
3. Advances in Al algorithms for pathology
3.1. Digital pathology

The transition from conventional glass-slide microscopy to digital pathology marked the
foundational step in applying Al to histopathology [62,63]. Early advances in WSI technology enabled
the creation of high-resolution, interactive digital slides that preserved the intricate details of
histological specimens. Commercial scanners, such as those from Aperio and Hamamatsu,
standardized the digitization process and facilitated high-volume data storage and sharing [64]. A
regulatory milestone arrived in 2017 when the U.S. FDA granted de novo clearance to the Philips
IntelliSite Pathology Solution, authorizing WSI for primary diagnosis [65]. This breakthrough not
only legitimized the use of digital slides in routine clinical practice but also unlocked unprecedented
opportunities for computational analysis [62]. As hospitals and research institutions began digitizing
vast archives of pathology slides, large annotated datasets became available, laying the groundwork
for training Al models [66]. Public repositories like the Cancer Genome Atlas (TCGA) and
institutional datasets provided diverse, real-world data essential for developing robust, generalizable
algorithms [67]. This digital transformation generates massive amounts of big data in pathology,
forming the foundation for the development of deep learning algorithms.

3.2. Deep learning emergence
The first generation of computer vision studies in pathology resembled traditional image analysis:
investigators hand-crafted features such as texture co-occurrence matrices, color histograms, and

Haralick statistics, and fed them into support vector machines or random forests [68]. While these
pipelines produced proof-of-concept classifiers, they were brittle; every new stain, scanner, or fixation
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protocol necessitated painstaking retuning [69]. Computational pathology researchers pivoted to
convolutional neural networks in the mid-2010s; by 2015-2016, CNN-based pipelines were already
supplanting hand-engineered feature sets as the default approach [70]. By learning hierarchical
representations directly from raw pixels, CNNs rapidly outperformed feature engineering on patch-
level cancer detection and subtype classification [71]. U-Net and its medical offspring (Attention-,
Res-, and nnU-Net) became the de facto “digital microtome”, delivering pixel-accurate gland and tumor
bed segmentations that underpinned quantitative histomorphometry and tumor-infiltrating lymphocyte
scoring [72]. In GC specifically, where distinguishing epithelial, mucosal, and muscular layers—or
annotating particular cell populations such as cancer cells or cancer-associated fibroblasts (CAFs)—is
clinically crucial, DL has markedly enhanced both diagnostic support and interpretability [73]. HoVerNet,
moreover, introduced a dual-branch architecture that simultaneously separates touching nuclei (via
horizontal and vertical distance maps) and labels each nucleus type, enabling studies that correlate spatial
immune-cell ecology with prognosis [74]. In parallel, object-detection frameworks such as YOLO eased
the manual labeling bottleneck: annotators could mark hundreds of mitoses or signet-ring cells per
minute, a capability that accelerated the creation of specialist datasets for GC [75]. Taken together,
these developments replaced the ad hoc feature pipelines with end-to-end trainable models, unlocked
reliable segmentation of gigapixel slides, and laid the technical groundwork for whole-slide inference,
a development that also began to shift the pathologist’s role from manual feature identification to Al-
assisted decision-making [12].

3.3. Supervised learning

Early DL models demanded that every patch on a whole-slide image be manually labeled—often
tens of thousands of marks per case—a process known as “fully supervised learning”, which was labor-
intensive [76]. The turning point came in 2019 [69], when weak supervision frameworks such as
multiple-instance learning (MIL) began treating the entire slide as a single “bag” of tiles and learning,
from only a slide-level label, which regions truly matter [77]. The CLAM approach refined this idea
by clustering morphologically similar tiles so that the network could distinguish “positive” from
“negative” tissue without pixel-level guidance; adapted to GC, it now predicts MSI status and key
driver mutations with minimal extra effort from the pathologist [78]. Subsequent MIL variants that
introduce transformers or hierarchical pooling follow the same clinical logic: clinicians supply one
label per slide, and the algorithm handles the groundwork [79]. In parallel, self-supervised pre-training
allows models to learn histologic patterns from millions of unlabeled patches; once fine-tuned with
only slide-level labels, these encoders achieve mutation prediction accuracy on par with fully
supervised pipelines while remaining robust across scanners and staining protocols [80]. Together,
weak and self-supervised learning shift the pathologist’s role from laborious annotation to rapid
validation, enabling true multicenter studies and bringing Al-driven decision support within reach of
everyday gastric cancer care [81].

3.4. Limitations
Despite promising advancements, significant limitations still constrain the practical deployment

of Al in GC pathology. First, interpretability remains a major challenge [82]. DL models are often
criticized as “black boxes”, with thousands of parameters and weights that make it difficult to
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understand how decisions are made. While interpretability techniques such as attention-based
heatmaps can highlight image regions that influence predictions, they are often coarse and insufficient
to support clinical trust or meet regulatory standards. Second, generalizability is limited [83].
Variations in slide scanners, staining protocols, and tissue preparation across institutions and regions
can introduce substantial batch effects [84]. As a result, models trained on one dataset may perform
poorly on external data [85], and relatively strong internal performance, reflecting overfitting to color
distributions, artifacts, or local case-mix rather than robust histological signal, especially when
combined with weakly supervised learning that suffers from noisy slide-level labels. Although
techniques such as stain normalization, domain adaptation, and generative adversarial networks [86]
can mitigate these discrepancies by generating style-invariant virtual slides [87], their success remains
variable. Third, data scarcity [88], especially for rare molecular subtypes, poses a serious issue. Certain
GC subtypes, such as Scirrhous GC [89], and genomic alterations are underrepresented, resulting in
imbalanced training data and reduced predictive power [90]. Strategies such as data collection,
oversampling, or basic augmentation (e.g., flipping, rotation) can help increase sample size [91], but
they are far from resolving the underlying limitations of data heterogeneity and rarity. Multimodal
deep-learning and pathology foundation models can partly mitigate the limitations of data scarcity, but
multimodal architecture often involves long, heterogeneous processing pipelines that are difficult to
standardize across centers, maintaining limited reproducibility. In summary, improving model
transparency, cross-cohort robustness, and rare-case coverage will be crucial for the next phase of Al
development in GC pathology.

4. Direction toward clinical implementation
4.1. Multimodal learning

The integration of histopathology with clinical modalities is rapidly reshaping gastric cancer Al
First, the fusion of pathomics and genomics has matured from simple concatenation to true cross-
modal reasoning: the M2EF-NNs framework couples Swin Transformer tile embeddings with gene set
vectors and, through Dempster—Shafer evidence weighting, improves the C-index/AUC for survival
across three TCGA cohorts [92]. Second, pathomics—transcriptomics models such as HE2RNA learn
a 256-dimensional “transcriptomic representation” that reconstructs expression of =3600 genes per
cancer type and, when transferred, boosts MSI detection (AUC 0.81 versus 0.68 on TCGA-CRC) even
when no molecular data are available at inference [49]. Third, pathomics—radiopathomic fusion
extends these gains to imaging: a Guangxi group extracted 1834 CT radiomics and 512 WSI pathomics
features, then combined the top signatures into a nomogram that discriminated stages [-II from III with
an external test AUC 0.837, significantly higher than either modality alone [93]. Taken together, these
findings show that cross-modal learning enriches H&E morphology, delivering more accurate and
biologically interpretable predictions that move Al closer to tangible clinical application.

4.2. Foundation model
Pre-training is rapidly redefining how GC Al models can overcome data scarcity, easing

translation into clinical practice. A vision-only foundation model, Virchow, trained on approximately
1.5 million WSIs spanning 17 tissues, delivers a specimen-level AUC of 0.95 across nine common and
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seven rare cancers, and still reaches 0.94 on slides from external hospitals while matching, or even
surpassing, tissue-specific clinical-grade products despite using far fewer training slides [94]. The
visual-language model CONCH pushes label efficiency further: in zero-shot mode, it attains 91.3%
accuracy on breast cancer subtyping and, in few-shot experiments, needs only 8 labels per class to
outperform models that require 64 [95]. Building on such encoders, the multimodal assistant PathChat
fuses a pathology vision backbone with a 13B LLM and achieves 89.5% diagnostic accuracy on 54
multi-organ cases when given images plus clinical context, outperforming GPT-4V and other
biomedical chatbots [96]. Altogether, these results show that cross-cancer pre-training, few-shot
adaptation, and multimodal alignment are converging into a clinically oriented toolkit. This approach
enables rapid fine-tuning on limited gastric cancer data, facilitating direct integration with routine
pathological workflows for GC diagnosis.

4.3. Prospective research

A central challenge in the clinical translation of Al for GC lies in the need for high-quality,
prospective evidence that demonstrates real-world utility. Several studies have begun to address this
gap. Park et al. [24] prospectively evaluated 7440 endoscopic biopsies and showed that a CNN could
classify benign versus neoplastic tissue with an AUROC of 0.979 while reducing pathologists’ review
time by 47% when used as a screening aid. Another study [97] brought Al technology directly into
the endoscopy suite: a U-Net-driven femtosecond SRS pipeline produced H&E-like images from
fresh biopsies in under 60 s and exceeded 96% diagnostic accuracy, laying the groundwork for real -
time intraprocedural decision-making. Complementing these gastric-specific achievements, Raciti
et al. [98] delivered the first FDA-cleared evidence that Al-augmented pathology can safely increase
sensitivity (+8 pp t0 96.6%) and specificity (+0.7 pp) across 610 multicenter prostate biopsies,
reducing human detection errors by 70% and proving regulatory and workflow feasibility. Looking
ahead, we see that the true driver of clinical translation lies not in incremental performance gains
but rather in the accumulation of large-scale, prospective, multicenter, real-world evidence. Such
studies not only validate model utility but also foster the clinical confidence essential for integrating
Al into patient care.

4.4. Ethical governance

As Al models for digital pathology increasingly rely on patient-derived images and clinical
annotations, it will remain crucial to ensure data privacy, mitigate algorithmic bias, and maintain
ethical standards [99]. Techniques such as data de-identification and federated learning [100] enable
cross-institutional model training without direct sharing, while generative methods such as GANs
can produce synthetic yet biologically meaningful images that reduce the risk of patient re-
identification [101]. Nevertheless, DL models may still encode latent privacy risks within their
learned weights. To address this, many research groups opt to release source code or partially trained
models rather than disclosing complete weight files. Because DL models require large, diverse
datasets to achieve robust generalization [102], carefully governed data sharing remains crucial to
ensure reproducibility and accelerate community-wide progress. At present, most Al systems for GC
digital pathology are still used as research tools or decision support, and the final responsibility remains
with the pathologist. However, if future workflows were to rely on Al-generated diagnoses, this would
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require more prospective validation, allocation of legal responsibility, and explicit patient-informed
consent regarding the use of Al tools, given the black-box nature of deep learning models.

5. Conclusions

Al has rapidly advanced the field of GC pathology, offering transformative capabilities across
detection, diagnosis, prognostication, and molecular prediction, and paving the way toward precision
medicine. As DL methodologies continue to evolve, the integration of multimodal data and the
development of pan-cancer foundation models are expected to further expand Al’s clinical relevance.
Future research should prioritize more interpretable and robust models and studies that evaluate the
impact on clinical decision-making. Real-world validation, regulatory approval, and ethical data
practices remain critical for translating these advances into routine clinical care. Ongoing collaboration
among clinicians, pathologists, and IT scientists is essential to unlock AI’s full potential and to realize
a future where precision pathology informs every step of GC management.
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