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Abstract: Ultrasound imaging plays a vital role in evaluating thyroid nodules, aiding in the assessment 

of malignancy risk, monitoring size progression, and serving as a guiding tool for thyroid nodule 

biopsies. Computer-aided diagnosis (CAD) systems have emerged to assist in diagnosing thyroid 

lesions, reducing unnecessary biopsies, and contributing to the overall improvement of diagnostic 

accuracy. The segmentation process plays a crucial role in CAD systems because it marks the region 

of interest. If segmentation were sufficiently accurate, then it would improve the entire diagnostic 

process and bring CAD systems closer to routine clinical practice. As far as we know, there are 

currently only three publicly available datasets of ultrasound images of the thyroid gland that can be 

used for the purpose of thyroid nodules segmentation. The Thyroid Digital Image Database (TDID) is 

a long-standing benchmark dataset but faces limitations due to the data ambiguities. The TN3K dataset 

is more robust than TDID, and the Thyroid Ultrasound Cine-clip dataset offers recent alternatives. In 

this paper, we implemented a deep learning segmentation model based on UNet with a ResNet encoder. 

We trained this model on all available data and evaluated it on the TN3K test set. The achieved results 

for the Dice score, IoU score, accuracy, precision, and recall were 84.24%, 75.48%, 97.24%, 82.75%, 

and 88.98%, respectively. These results represent the most advanced state-of-the-art scores compared 

to previously published studies and demonstrate that UNet with a ResNet encoder has the capability 

to accurately segment thyroid nodules in ultrasound images. 
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1. Introduction 

Ultrasound (US) imaging, typically ranging from 7.5 to 15 MHz, holds significant importance in 

the evaluation of thyroid nodules. The superficial nature of the thyroid gland makes it highly amenable 

to US imaging, thus providing us with detailed and clear images with very good spatial resolution. US 

imaging assumes a critical role in evaluating the malignity risk of nodules in the thyroid gland, 

monitoring their progression, and serving as a control imaging modality for nodule biopsies. 

Thyroid nodules are abnormal growths in the thyroid gland. Most thyroid nodules are benign, 

though some of thyroid nodules may be cancerous, thus necessitating further evaluation and treatment. 

Thyroid cancer has seen a significant increase in diagnosis rates worldwide, ranking seventh among 

the most common cancers in women and fifteenth in men [1,2]. Due to this growing incidence, there 

is a need for effective diagnostic tools, and B-mode ultrasound imaging has emerged as the first choice. 

Thyroid nodules can be categorized as solid, cystic, or a combination of both solid and cystic 

components. Epidemiological studies indicate that palpable thyroid nodules are present in 

approximately 5% in women and 1% in men [3]. However, when ultrasound examinations are 

conducted, the incidental detection rate of thyroid nodules significantly increases to a range of 19% to 

67% [4,5]. 

There has been significant research focused on evaluating and ranking the ultrasound risk features 

used by endocrinologists to predict the malignant potential of thyroid nodules. Several studies have 

investigated these risk features, and two meta-analyses were conducted by Remonti et al. [6] and Brito 

et al. [7] synthesized the findings from a large number of studies. Remonti et al. included over 12,500 

nodules from 54 studies in their meta-analysis, while Brito et al. analyzed a total of 18,288 nodules. The 

results from these meta-analyses indicate that certain US features are associated with an increased risk 

of malignancy. These features include calcifications, a taller-than-wide shape, irregular margins, absence 

of elasticity, hypoechogenicity (reduced echogenicity), increased blood flow, absence of a halo, and/or 

larger nodule size. The research conducted on thyroid nodules and their sonographic features have 

contributed to the development of the Thyroid Imaging, Reporting, and Data System (TI-RADS) by the 

American College of Radiology [8]. 

In addition to research focused on the visual inspection of ultrasound images by endocrinologists, 

computer-aided diagnosis (CAD) systems have emerged to assist in diagnosing thyroid lesions and 

reducing unnecessary biopsies. These CAD systems [9–14] utilize US images to facilitate the accurate 

and efficient classification of benign and malignant thyroid nodules. Typically, CAD systems for 

thyroid nodules consist of two main components: segmentation and classification. The segmentation 

part of the system is responsible for accurately identifying and delineating the boundaries of the nodule 

within the ultrasound image of the thyroid gland. Once the nodule is successfully segmented, the 

classification component analyzes the extracted features and provides an estimation of the nodule’s 

malignant potential. The segmentation process plays a crucial role in CAD systems as it enables the 

system to specifically focus on the nodule region of interest. This step helps in excluding irrelevant 

structures and background noise from the analysis, thus allowing for more accurate classifications. By 

accurately delineating the nodule boundaries, the CAD system can concentrate on the specific 

characteristics and features of the nodule that are indicative of its malignancy. 

Although conventional ultrasound provides valuable insights into thyroid nodules, it remains a 

two-dimensional (2D) imaging modality, which presents limitations in tracking nodule changes over 

time. Three-dimensional (3D) US imaging has the potential to improve the diagnostic accuracy by 
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offering volumetric information, thus allowing clinicians to more effectively assess nodule growth, 

changes in structure, and spatial relationships. Tracking nodule volumes over time is essential in 

clinical decision-making, as volume changes may indicate malignant transformations or nodule 

regression. Future advancements in segmentation models should explore their applicability in 3D US 

imaging to enhance the longitudinal assessment and ensure a robust diagnostic performance. 

1.1. Segmentation 

Before the emergence of deep learning, US image segmentation for thyroid nodules primarily 

relied on conventional image processing techniques. These techniques can be broadly categorized into 

three groups: contour and shape-based methods, region-based methods, and traditional machine 

learning methods. While these conventional techniques made valuable contributions to thyroid nodule 

segmentation, deep learning-based approaches has revolutionized thyroid nodule segmentation in US 

images, thus offering improved accuracy on larger datasets by automatically learning features directly 

from the data. In the review paper authored by Chen et al. [15], these conventional image processing 

techniques were extensively examined. However, in our current discussion, we will solely focus on 

deep learning, as the method proposed in our paper specifically pertains to this approach. 

1.2. Deep learning methods in segmentation of thyroid nodules 

Deep neural networks, particularly convolutional neural networks (CNNs), have demonstrated 

remarkable performances in various computer vision tasks including segmentation. Several studies 

reported using them on the segmentation of thyroid nodules with very promising results. The following 

overview reports results of image segmentation methods, whether employed individually or as a part 

of the entire CAD system. Unfortunately, direct comparisons are challenging since, in the majority of 

cases, the authors employed private datasets. An exception to this trend is the study conducted by Gong 

et al. [16] and few others [17–19]. We explicitly mention when the authors utilized a public dataset, 

such as the Thyroid Digital Image Database (TDID) [20]. 

Ma et al. [21] developed a CNN model with 15 convolutional layers and 2 max pooling layers. 

The input image size of CNN model was 353 × 353 and the output image size was 44 × 44. Using a 

dataset of 22,123 US images, the model achieved a mean overlap value of 86.83% on a test set. 

Another approach, proposed by Ying et al. [22], employed a cascaded convolutional neural network 

(CCNN). The CCNN consisted of three phases: using a U-Net-based [23] and VGG- based [24] 

model to extract regions of interest (ROIs) containing thyroid nodules, followed by artificial marks 

and a fully CNN for segmentation. With 1,000 ultrasound images (800 in training set and 200 the 

testing), the CCNN achieved a mean overlap value of 87.00% on a test set. Kumar et al . [25] 

proposed an approach based on dilated convolutional layers that accurately segmented thyroid 

nodules, cystic components, and normal thyroid gland from ultrasound scans. The algorithm 

achieved a mean Dice coefficient of 0.76 and demonstrated high detection rates for thyroid nodules 

and cystic components. Pan et al. [17] proposed a thyroid nodule segmentation approach called 

SGUNet, that utilized a pixel-wise semantic map to guide low-level features, thus resulting in 

improved nodule representation. The evaluation on the Thyroid Digital Image Database (TDID) 

demonstrated SGUNet’s superiority over traditional UNet and UNet++ with a 72.9% Dice coefficient. 

Sun et al. [26] proposed a dual-path CNN with soft shape supervision for the accurate segmentation 
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of thyroid nodules on US images. The network achieved a high accuracy of 95.81% and a Dice 

coefficient of 85.33%. Song et al. [27] proposed FDnet, a feature-enhanced dual-branch network. 

By incorporating a semantic segmentation branch and a feature enhancement mechanism, FDnet 

improved the proposal scores and reduced the false positives segmentation. The Boundary Attention 

Transformer Network (BTNet), introduced by Li et al. [18], integrated a segmentation network with 

a boundary attention mechanism, thus combining the advantages of a convolutional neural network 

and transformer. The results were an IoU of 0.81 and a Dice score of 0.89 on a private dataset and 

an IoU 65.4 and a Dice score 75.7 on a TDID dataset. Ataide et al. [28] compared UNet, SUMNET, 

Attention UNet, and a combination of ResNet and UNet. They found that the combination of ResNet 

and UNet had the highest Dice score on the private dataset. Gong et al. [16] published TRFE+, a 

network that utilized the thyroid region prior guided attention for accurate thyroid nodule 

segmentation in US images with an IoU of 0.71 and a Dice score of 0.83. 

1.3. Motivation 

The last-mentioned noteworthy paper presented a comprehensive comparison of various 

architectures, although it overlooked a particularly robust one—the combination of ResNet and UNet. 

This combined architecture (ResUNet) has established itself as one of the leading state-of-the-art 

approaches for US image segmentation. Additionally, the authors introduced TN3K, an open-access 

dataset consisting of high-quality nodule masks, which was strictly divided into the train and test sets. 

Therefore, it can be used for the direct comparison of segmentation models. Our research aims to 

implement ResUNet and evaluate its performance in comparison to the results reported by Gong et al. 

This combination of ResNet and UNet shows the promising results in different segmentation tasks in 

biomedical area [29–34]. It is important to note the inherent distinctions between US images and 

images from other biomedical imaging modalities, such as computed tomography (CT) or magnetic 

resonance (MR) scans. Unlike the latter methods, US image formation relies on different physical 

quantities, specifically the acoustic impedance of tissues and its differences on tissue boundaries. The 

process of image formation introduces challenges, as certain boundaries may not be visible (those 

parallel to the ultrasound waves), or that US creates so called shadows, which are artefacts that can be 

caused by a strong reflection from a boundary. Additionally, there may be a diffraction of ultrasound 

waves on boundaries which introduce a significant noise in the US images. Moreover, there are 

limitations in terms of brightness and contrast in comparison to CT, which uses Hounsfield units to 

code the overall brightness scale that can be viewed by separate windowed images. Therefore, we 

assert that optimizing the segmentation of US images needs a more generalized methodology to 

effectively address the aforementioned challenges. In the context of US image segmentation, the 

utilization of the ResNet and UNet combination is an area that has yet to be extensively explored. 

Nevertheless, existing literature suggests that it holds promise as one of the top-performing options. 

In several studies [28,35,36], it has been found that the combination of ResNet and UNet is the most 

effective for segmentation in US images. The initial study that compared architectures on US images 

was conducted by Cai et al. [35]. In this study, the authors assessed the combination of ResNet and 

UNet, thereby incorporating an attention layer after the ResNet encoder. They conclude that this 

architecture is more precise than TransUnet [37], which utilizes transformers to encode tokenized 

image patches from a feature map as the input sequence to extract the global contexts in the neural 

network. The second paper, authored by Song et al. [36], compared architectures for the segmentation 
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of US images of the kidney. The study concluded that the combination of ResNet and UNet achieved 

the second-best dice score, following DeepLabV3+ (which also incorporates the ResNet backbone). 

The third paper [28] corresponds to the previously mentioned study, where various architectures were 

used on a private dataset of the thyroid gland. The authors’ results indicated that ResUNet achieved 

the highest Dice score. 

2. Materials and methods 

2.1. Architecture 

The architecture of our model combines UNet with a ResNet34 used as an encoder. This 

integrated design, referred to as ResUNet, represents a synthesis of ResNet and UNet, strategically 

devised to leverage the advantages of both architectures. In this design, the traditional UNet’s encoder, 

composed of convolutional layers and max-pooling, is replaced by ResNet34, which uses a series of 

residual blocks. Each residual block contains two 3×3 convolutions with batch normalization and 

ReLU, and also adds the block’s input to its output via a shortcut connection. This mechanism not only 

facilitates the training of deeper networks by improving the gradient flow, but also constrains the 

learned modifications to be minor, thus preserving critical information. Following the encoding phase, 

the decoder mirrors the UNet structure. It upsamples the feature maps using 2 × 2 convolutions and 

employs skip connections to concatenate the corresponding encoder features. This blend of high-level 

contextual information with fine-grained spatial details allows for precise localization, culminating in 

a segmentation head that applies a final convolution and sigmoid activation to produce the output map. 

The use of residual connections in the encoder mitigates vanishing gradients and allows for deeper, 

more robust network designs. Skip connections from the encoder to the decoder facilitate the 

combination of contextual and detailed spatial features, which can potentially enhance the 

segmentation accuracy. By combining ResNet’s powerful feature extraction with UNet’s efficient 

localization strategy, ResUNet offers a compelling balance that is well-suited for complex 

segmentation tasks. 

However, ResUNet has some limitations, particularly in terms of data sensitivity and 

hyperparameter sensitivity. The deeper architecture and increased parameter count can lead to 

overfitting if the model is not trained on sufficiently large and diverse datasets, thus making effective 

data augmentation and hyperparameter optimization crucial to ensure that ResUNet reaches its full 

potential in image segmentation tasks. The architecture of our ResUNet is show in the Figure 1. 



129 

AIMS Medical Science  Volume 12, Issue 2, 124–144. 

 

Figure 1. The figure illustrates the architecture of our ResUNet. The ResUNet is a deep 

learning model that combines the concepts of both ResNet and UNet. 
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2.2. Dataset 

As far as we know, all publicly available datasets of images of thyroid nodules are used in this 

study. They are three in total: the TN3K dataset, the Thyroid Digital image Database (TDID) dataset, 

and the Thyroid Ultrasound Cine-clip dataset. 

2.2.1. TN3K dataset 

This dataset1 was published by Gong et al. [16] and is divided into a training set and a test set 

based on the criterion that images from the same patient only appear in one specific subset. The training 

set consists of 2,879 images, while the test set contains 614 images. We adhered to this data partitioning 

and utilized the TN3K test set to evaluate the performance of our models. This enabled us to make 

direct comparisons between our results and those published by Gong et al. 

2.2.2. Thyroid Digital Image Database (TDID) dataset 

This dataset 2  was published by Pedraza et al. [20] and it was used in several studies for 

segmentation [17–19] and classification [38,39]. This dataset is comprised of images along with 

corresponding XML files containing coordinates. However, during the conversion process from 

coordinates to binary masks, we encountered several issues. Specifically, not all the coordinates were 

present in the XML files, and some problems arose with the masks themselves (e.g., some of them are 

outside of ultrasound image area). As a result, it was necessary to either adjust the coordinates of 

certain masks or remove certain images entirely. A comprehensive list of deleted or modified images 

is provided in Appendix A. 

2.2.3. Thyroid Ultrasound Cine-clip dataset 

This dataset3  is comprised of 167 patients who have been biopsy-confirmed to have thyroid 

nodules (n = 192) at Stanford. The dataset includes US cine-clip images, segmentations annotated by 

radiologists, patient demographics, lesion size and location, TI-RADS descriptors, and 

histopathological diagnoses. The total number of cine-clip frames is 17,412. The dataset is comprised 

of thyroid nodule cine-clip sequences with frame counts ranging from a minimum of 11 frames to a 

maximum of 442 frames per nodule. The dataset distribution is shown in Figure 2. Given that the 

dataset is comprised of multiple images (frames) per thyroid nodule, our objective is to investigate 

how the evaluation metrics are influenced by the number of frames (images) assigned to each thyroid 

nodule. Since the number of frames is not constant for each nodule, we employed the following 

sampling strategy. When extracting n frames from the dataset, we address nodules with frame numbers 

below n by incorporating all available frames. Conversely, for nodules with occurrences in the dataset 

where the frame counts exceed n, we opt for a random selection of n frames corresponding to the 

specific nodule. 

 
1 Available here: https://github.com/haifangong/TRFE-Net-for-thyroid-nodule-segmentation. 

2 Available here: http://cimalab.unal.edu.co/applications/thyroid/. 

3 Available here: https://stanfordaimi.azurewebsites.net/datasets/a72f2b02-7b53-4c5d-963c-d7253220bfd5. 

https://github.com/haifangong/TRFE-Net-for-thyroid-nodule-segmentation
http://cimalab.unal.edu.co/applications/thyroid/
https://stanfordaimi.azurewebsites.net/datasets/a72f2b02-7b53-4c5d-963c-d7253220bfd5
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Image examples from the 3 datasets and the corresponding ground truth masks are shown in 

Figure 3. 

 

Figure 2. A histogram showing the distribution of the cine-clip frames in the Thyroid 

Ultrasound Cine-clip dataset. 

 

Figure 3. This figure illustrates examples of training images. The first image is from the 

TN3K dataset, the second image is from the TDID dataset, and the third image is sourced 

from the Thyroid Ultrasound Cine-clip dataset (Table 1). These images vary in size and 

represent different views of the thyroid gland. The first image captures the thyroid gland 

in the longitudinal view, while the third image depicts an axial view. The second image is 

a combination of both views in split-screen mode, with the left image showing the axial 

view and the right image showing the longitudinal view. Additionally, the third image was 

acquired using a sector probe. 
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Table 1. Thyroid image datasets used in this study. 

Dataset Train Test Ultrasound imaging device 

TDID 464 - TOSHIBA Nemio 30, TOSHIBA 

Nemio MX 

TN3K 2879 614 GE Logiq E9, ARIETTA 850, 

RESONA 70B 

Thyroid US Cine-clip 192–17,412 - GE Logiq E9 

2.3. Data augmentation 

Data augmentation is employed in image segmentation to increase the diversity and quantity of 

the training data. By applying transformations such as resizing, flipping, rotation, and contrast 

adjustments to the original images, the augmented dataset provides the model with more varied 

samples to learn from. This process helps improve the segmentation model’s robustness, generalization 

ability, and performance on unseen data. We implement augmentations using Albumentations library 

[40] on each image and its mask in the training data (after division to training and validation set), 

including random adjustments of brightness and contrast (up to 35%, with probability of 50%), shifts, 

scales, and rotations (limited by 35%, 35%, and 35 degrees, respectively) with a probability of 50% 

and a horizontal flip with a probability of 50%. Each image and its mask undergo augmentations, 

giving it a 50% chance of being modified by one of the augmentation functions. Consequently, there 

is a 12.5% probability that an image will remain unaltered. If shifts, scales, and rotations affect the 

integrity of the original reference region, then the same adjustments are applied to the corresponding 

masks. This might result in the nodule being positioned at the edge of the image, which is a scenario 

that is not uncommon in original datasets where nodules can naturally appear at the image edge. It’s 

important to note that we do not generate new images through augmentations: we solely modify the 

existing ones. We avoid applying these modifications to the validation and test data. 

2.4. Evaluations metrics 

To quantitatively assess the segmentation performance of our proposed method, we have chosen 

several metrics as follows (where TP, FP, TN, FN indicate true positive, false positive, true negative, 

and false negative, respectively): 

 Intersection Over Union (IoU): This measures the ratio of the overlapping area between the 

predicted and ground truth segmentation masks to the total area encompassed by both masks. It is 

calculated as follows: TP/(FP + FN). 

 Dice Coefficient: The Dice score quantifies the similarity between the predicted and ground 

truth segmentation masks. It is defined as follows: 2 * TP/(FP + FN + 2 * TP). 

 Accuracy: Accuracy evaluates the overall correctness of the segmentation by considering both 

true positive and true negative predictions, given as: (TN + TP)/(TN + TP + FN + FP). 

 Precision: Precision measures the accuracy of positive predictions made by the model. It is 

calculated as follows: TP/(TP + FP). 

 Recall (also known as Sensitivity): Recall measures the ability of the model to correctly 

identify positive instances from the ground truth. It is defined as follows: TP/(TP + FN). 
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While human interpretation remains the gold standard, intraobserver and interobserver variability 

among radiologists is a well-known issue. Automated systems with a high Dice coefficient can help 

reduce observer-dependent inconsistencies and standardize diagnoses, particularly in large-scale 

screening applications. To compare the studies that assess interobserver variability—typically using 

the percentage difference and Bland-Altman limits of agreement (LOA), which measure the percentage 

agreement between two observers regarding two dimensions of a nodule—we introduce a novel 

approximation between the percentage difference and the Dice score for elliptic shapes. Let’s consider 

a reference ellipse with axes 𝑎 and 𝑏. Its area is as follows: 

 𝑆1 = π ∙
𝑎 ∙ 𝑏

4
 (1) 

If a second observer measures an ellipse with axes that are scaled versions of the reference, as 

defined by the scaling factors 𝛼𝑎 and 𝛽𝑏 (where α and β represent the percentage of the reference 

measurements), then 

 𝑆2 = π ∙
(α𝑎) ∙ (β𝑏)

4
= αβ𝑆1 (2) 

Assuming that both ellipses are concentric (i.e., the second ellipse is entirely contained within the 

reference ellipse), the area of their intersection is simply 𝑆2. 

Then, the Dice coefficient (DSC) is calculated as follows: 

 𝐷𝑆𝐶 =
2𝑆𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑆1 + 𝑆2
=

2𝑆2

𝑆1 + 𝑆2
=

2αβ𝑆1

𝑆1 + αβ𝑆1
 (3) 

By canceling out 𝑆1 from the numerator and denominator, we obtain the following general formula: 

 𝐷𝑆𝐶 =
2αβ

1 + αβ
 (4) 

This should be considered as an approximation because thyroid nodules do not necessarily have 

an elliptic shape, and in some cases, the two shapes delineated by observers may not be in the same 

location, meaning these nodules cannot be considered concentric. 

2.5. Setup 

We used the Google Colab platform for training and testing, thereby utilizing the NVIDIA Tesla 

V100 GPUs with a memory capacity of 16 GB. The implementation framework chosen was PyTorch 

2.0.1, integrated with CUDA 12.0. Pre-trained encoders from the ImageNet dataset were employed to 

initialize the model weights. Optimization of the models was accomplished using the Adam algorithm, 

and a total of 100 epochs were executed during the training phase. We used the Cosine Annealing 

Learning Rate strategy with a maximal learning rate 0.0005. The Cosine Annealing Learning Rate 

strategy is defined as follows [41]: 

 𝑙𝑟 = 𝑙𝑟𝑚𝑖𝑛 +
1

2
(𝑙𝑟𝑚𝑎𝑥 − 𝑙𝑟𝑚𝑖𝑛) (1 + cos (

𝑇𝑐𝑢𝑟

𝑇𝑚𝑎𝑥
π)) (5) 
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where 𝑙𝑟 is learning rate to be used in the current epoch, 𝑙𝑟𝑚𝑖𝑛 is the minimum learning rate, 𝑙𝑟𝑚𝑎𝑥 

is the maximum learning rate, 𝑇𝑐𝑢𝑟 is the current epoch, and 𝑇𝑚𝑎𝑥 is the total number of epochs in 

the training process. For each epoch, a batch size of 64 was used, and all input images were resized to 

dimensions of 224 × 224 pixels. For model prediction, all images were simply resized to 224 × 224 

without any additional augmentation. The data was divided into training and validation sets in an 80:20 

ratio when the training set was only the TN3K dataset; alternatively, the data was in a 70:30 ratio when 

we utilized other datasets for training. This adjustment aimed to ensure that the validation set 

encompassed a more diverse range of images, thereby preventing the risk of overfitting. 

3. Results 

We trained ResUNet solely on the TN3K train set and evaluated its performance on the TN3K 

test set. Our findings demonstrated superior scores compared to the results published by Gong et al. 

Specifically, our mean Dice score, mean IoU, and mean accuracy reached 83.77%, 75.09%, and 

97.18%, respectively. Moreover, the proposed method involves the direct segmentation of thyroid 

nodules from thyroid images. In contrast, the TEFE+ method relies on the processing of both thyroid 

gland and thyroid nodule images. Both types of images pass through a shared encoder; then, they 

diverge into separate decoders for thyroid nodule segmentation and thyroid gland segmentation. This 

implies that thyroid gland images are required for training the TEFE+ architecture. In the proposed 

method, we only use thyroid nodule images. The results are shown in Table 2. 

Table 2. Performance of our model on TN3K test set with a comparison to results of other 

models published by Gong et al. [16]. Results represent percentage score ± standard deviation. 
 

Train set Accuracy IoU Dice 

UNet [23] TN3K train 96.46 ± 0.11 65.99 ± 0.66 79.51 ± 1.31 

SGUNet [17] TN3K train 96.54 ± 0.09 66.05 ± 0.43 79.55 ± 0.86 

TRFE [42] TN3K train 96.71 ± 0.07 68.33 ± 0.68 81.19 ± 1.35 

FCN [43] TN3K train 96.92 ± 0.04 68.18 ± 0.25 81.08 ± 0.50 

SegNet [44] TN3K train 96.72 ± 0.12 66.54 ± 0.85 79.91 ± 1.69 

Deeplabv3+ [45] TN3K train 97.19 ± 0.05 70.60 ± 0.49 82.77 ± 0.98 

CPFNet [46] TN3K train 97.17 ± 0.06 70.50 ± 0.39 82.70 ± 0.78 

TransUNet [37] TN3K train 96.86 ± 0.05 69.26 ± 0.55 81.84 ± 1.09 

TRFE+ [16] TN3K train 97.04 ± 0.10 71.38 ± 0.43 83.30 ± 0.26 

ResUNet (our) TN3K train 97.18 ± 0.03 75.09 ± 0.22 83.77 ± 0.20 

Moreover, we explored different augmentation techniques and hyperparameter settings. When no 

data augmentation was applied, the mean IoU score was 69.71% ± 23.73% and the mean Dice score 

was 79.46% ± 22.60%. When only horizontal flip was used, the mean IoU score was 70.53% ± 23.21% 

and the mean Dice score was 80.51% ± 21.23%. When the Cosine Annealing Learning Rate was not 

applied, the mean IoU score was 73.09% ± 22.51% and the mean Dice score was 82.31% ± 21.77%. 

These results are reported on the TN3K test set. Our findings indicate that appropriate augmentation 

and hyperparameter tuning can improve the segmentation scores by up to 3% on the Dice score and 

up to 4.5% IoU in our case. 
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Additionally, we trained ResUNet solely on the TDID dataset, where we evaluated it using 5-fold 

cross validation (same technique as was reported in Pan et al. publication [17]), and achieved an IoU 

of 0.7281 and a Dice score of 0.8329. The comparison of the existing results on the TDID dataset is 

shown in Table 3. It is essential to emphasize that performing a direct comparison on the TDID dataset 

presents challenges due to variations in the data cleaning process. Throughout the conversion from 

coordinates to binary masks, we encountered several issues, as detailed in the Datasets section. The 

issues in the conversion process, as also reported by Pan et al. [17], resulted in a decreased number of 

images. A comprehensive list of deleted or modified images is provided in Appendix A. 

Table 3. Performance of our model on the TDID dataset. Results represent percentage 

score ± standard deviation (if reported). 
 

Train set IoU Dice 

SGUNet [17] TDID 60.0 72.9 

BTNet [18] TDID 65.4 75.7 

MSAC-Unet [19] TDID 67.3 ± 1.3 79.2 ± 0.8 

ResUNet (our) TDID 72.8 ± 3.0 83.3 ± 1.8 

Table 4. The table presents results obtained by varying the size of the training set. The first 

row corresponds to the outcomes achieved when training solely on the TN3K dataset, 

which coincides with the last row of Table 2. In the second row, we combined two datasets, 

TN3K and TDID, and report the corresponding results. Rows three and onward showcase 

the results obtained by combining all three datasets, i.e., TN3K, TDID, and the Thyroid 

Ultrasound Cine-clip dataset. 

Train set Total train 

images 

Dice score IoU Accuracy Precision Recall 

TN3K 2879 0.8378 ± 0.20 0.7509 ± 0.22 0.9718 ± 0.03 0.8230 ± 0.21 0.8914 ± 0.19 

TN3K + TDID 3343 0.8324 ± 0.20 0.7410 ± 0.20 0.9705 ± 0.04 0.8087 ± 0.21 0.8894 ± 0.21 

TN3K + TDID + 

Cine-clip (n=1) 

3535 0.8424 ± 0.19 0.7548 ± 0.21 0.9724 ± 0.03 0.8275 ± 0.20 0.8898 ± 0.19 

TN3K + TDID + 

Cine-clip (n=2) 

3727 0.8401 ± 0.19 0.7509 ± 0.21 0.9714 ± 0.04 0.8285 ± 0.20 0.8875 ± 0.19 

TN3K + TDID + 

Cine-clip (n=4) 

4111 0.8367 ± 0.19 0.7466 ± 0.21 0.9703 ± 0.04 0.8144 ± 0.20 0.8968 ± 0.19 

TN3K + TDID + 

Cine-clip (n=8) 

4879 0.8377 ± 0.20 0.7496 ± 0.22 0.9708 ± 0.04 0.8257 ± 0.20 0.8811 ± 0.21 

TN3K + TDID + 

Cine-clip (n=16) 

6407 0.8339 ± 0.20 0.7456 ± 0.22 0.9708 ± 0.04 0.8238 ± 0.20 0.8808 ± 0.21 

TN3K + TDID + 

Cine-clip (n=32) 

10955 0.8378 ± 0.20 0.7517 ± 0.22 0.9710 ± 0.04 0.8308 ± 0.20 0.8837 ± 0.21 

TN3K + TDID + 

Cine-clip (n=64) 

14106 0.8321 ± 0.21 0.7454 ± 0.22 0.9707 ± 0.03 0.8266 ± 0.20 0.8761 ± 0.22 

TN3K + TDID + 

Cine-clip all 

20755 0.8321 ± 0.20 0.7447 ± 0.22 0.9694 ± 0.04 0.8303 ± 0.20 0.8766 ± 0.20 
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After conducting the initial tests on the TDID and TN3K datasets, we proceeded with further 

training on other datasets. First, we added the TDID dataset to the training set, and then progressively 

added the clip frames from the Thyroid Ultrasound Cine-clip dataset. Our objective was to evaluate 

the model’s performance on all known publicly available datasets and assess its performance on the 

TN3K test dataset to enable a comparison with previously published results. The results are shown in 

Table 4. For these combined datasets, considering that the Cine-clip dataset contains numerous images 

(frames) of 192 thyroid nodules, we opted to randomly select a variable number of frames (denoted as 

“n”) from the Cine-clip dataset for each thyroid nodule. In the clarification, we conducted a random 

sampling process to select one image for each thyroid nodule for the specific case where n = 1. The 

employed sampling methodology is detailed in the Datasets section. 

At the end of training, our model achieved a Dice score of 87.95% on the training set and 86.95% 

on the validation set, with corresponding IoU scores of 78.59% and 76.98%, respectively. On the test 

set, it maintained a robust performance with a Dice score of 84.24% and an IoU score of 75.48%. The 

slight drop of approximately 2.7% in the Dice score and 1.5% in the IoU score from the validation set 

to the test set indicates a minimal generalization gap, thus suggesting that the model learns robust 

features that generalize well to unseen data without a significant overfitting. 

4. Discussion 

The comparison of our implementation of ResUNet on TN3K dataset with previously 

published works is presented in Table 2. With a different augmentation approach, ResUNet 

outperforms the other methods. The comparison of ResUNet on the TDID datasets is presented in 

Table 3. Both results demonstrate that ResNet serves as a powerful encoder for UNet, thereby 

achieving state-of-the-art results in US image segmentation. Additionally, we explored the 

possibility of training ResUNet on all publicly available datasets known to us, thus resulting in even 

better metrics than those achieved solely on the TN3K and TDID datasets. The results are presented 

in Table 4. From the findings, it is evident that the highest Dice score or IoU were attained by the 

combined dataset of TN3K and TDID, along with one randomly selected image (n = 1) for each 

thyroid nodule in the Thyroid Ultrasound Cine-clip dataset. 

Despite the application of brightness and contrast augmentation, the final model has incorrectly 

segmented images with varying the overall intensity. However, it is important to note that some of the 

images are excessively bright, thus leading to a loss of detail in the bright regions. Another incorrectly 

segmented images were related to the number of nodules present in the images. When the images 

contained multiple nodules, the model very often exhibited inaccuracies in its predictions. The model’s 

capability is limited to detecting one or two nodules. The ability to detect up to two nodules can be 

attributed to the fact that the training data lacked a sufficient number of thyroid glands with 3 or more 

nodules, thus leading to the limited exposure of the model to such cases. Examples of correctly 

segmented images are displayed in Figure 4. On the other hand, Figure 5 showcases examples of 

incorrectly segmented images. In our experiments, we encountered several challenging cases where 

our segmentation algorithm failed to perform as expected. Specifically, the model struggled with 

images that exhibited high brightness, multiple nodules, and interference from measurement tools, 

which resulted in inaccurate segmentation outcomes. We plan to implement optimal augmentation 

strategies in the future, including controlled variations in the brightness and contrast as well as the 

simulation of synthetic artifacts, to expand the diversity and representativeness of our training dataset. 
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We plan to develop methods to detect interfering objects, such as measurement tools and noise, and 

include similar examples in our training set through data augmentation. 

 

Figure 4. Correctly segmented nodules. The first row (A) displays an image that is being 

traversed by US measuring tools, posing a common challenge when endocrinologists 

measure certain features within the image. These measuring tools may identify a nodule 

itself in some cases, while in other instances, they may indicate different structures, such 

as the thyroid gland (as illustrated in this case) or the thickness of the isthmus. The 

segmentation algorithm must distinguish when the measuring tools should be ignored. In 

the second row (B), a well-segmented cystic nodule is observed, showcasing the excellent 

performance of our segmentation model on such nodules. In the third row (C), two nodules 

are accurately segmented, with one being marked by the measuring tools and the other not. 

In the fourth row (D), an image with significant brightness level is depicted, yet the 

segmentation model still correctly identified it. 
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Figure 5. Incorrectly segmented nodules. In the first row (A), there is an image with high 

brightness, leading to a loss of detail in the bright regions. Despite employing data 

augmentation during the training of the segmentation model, this particular image remains 

challenging for the model to accurately segment. In the second row (B), there is an image 

that contains three nodules, though our segmentation model identified only one. In the third 

row (C), there is another image that was inaccurately segmented. The measurement tools 

(the white square) intersect with the nodule, and the nodule appears directly at the edge of 

the square, which is challenging to segment. In the last row (D), we present an image of a 

large nodule with local inhomogeneities. The segmentation model successfully identified 

one of these inhomogeneities, but not the whole nodule. 

Moreover, the results demonstrated that using a significant number of almost identical images 

does not lead to better results when working with a large dataset containing repeated images (Thyroid 

Ultrasound Cine-clip dataset). We initially hypothesized that augmenting the training set with a larger 

number of similar but not identical images would result in better performance. Contrary to our 

expectations, we observed that the trend was opposite. With an increasing number of frames, the Dice 

score and other metrics were more likely to decrease. 
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Although CAD systems do not directly challenge human experts, they can ensure a high 

segmentation performance, thus minimizing the variability and enhancing the reproducibility. In 

clinical practice, CAD systems are designed to support rather than replace human experts, and higher 

Dice coefficients indicate a closer alignment between the segmentation outputs and expert annotations. 

Several studies have assessed the performance of human experts in delineating thyroid nodules. Brauer 

et al. [47] reported interobserver differences in the mediolateral (21.21%), anteroposterior (20.99%), 

and craniocaudal (19.89%) diameters. The corresponding interobserver Dice scores, as calculated 

using the proposed method described in Section 2.4, were approximately 0.77 and 0.78 for the axial 

and longitudinal planes, respectively. Lee et al. [48] used a Bland-Altman analysis to evaluate the 

intraobserver and interobserver variability in US measurements of thyroid nodules, thereby reporting 

percentage differences and the 95% limits of agreement (LOA). When converted to Dice scores using 

the proposed calculation, the intraobserver Dice scores were identical in both planes: 0.93 for the axial 

plane and 0.94 for the longitudinal plane. The interobserver Dice scores were 0.92 for the axial plane 

and 0.91 for the longitudinal plane. Another study [49] focused on the thyroid gland in children. The 

authors reported that, when taking the mean value of the left and right thyroid lobes, the interobserver 

differences in lobe measurements (not the nodules) were as follows: a mediolateral difference of 9.7%, 

an anteroposterior difference of 11.0%, and a craniocaudal difference of 13.7%. The corresponding 

Dice scores were 0.89 for the axial plane and 0.87 for the longitudinal plane. Our segmentation 

algorithm achieved a Dice score of 0.84 on a mix of axial and longitudinal images (when compared 

with expert-annotated ground truth masks in the test set of Gong et al. study [16]). While this result 

does not fully reach the intraobserver agreement levels, it is within the range of reported interobserver 

variability among human experts. 

5. Conclusions 

In this study, we implemented and evaluated a deep learning-based segmentation model, ResUNet, 

for thyroid nodule segmentation in US images. By leveraging the advantages of both ResNet and UNet 

architectures, our model achieved state-of-the-art performance, thus surpassing previously published 

methods. We demonstrated the effectiveness of our approach through extensive experiments using all 

publicly available thyroid ultrasound datasets, with our model achieving the highest Dice score and 

IoU metrics on the TN3K test set. 

Our findings highlight that training on a diverse dataset significantly improves the segmentation 

performance on the TN3K test set, particularly when utilizing a combination of TN3K, TDID, and the 

Thyroid Ultrasound Cine-clip datasets. However, we observed diminishing results when incorporating 

a large number of near-identical images from cine-clip sequences, thus suggesting that an optimal 

balance between dataset diversity and redundancy is essential. The diverse and complex nature of 

thyroid nodules and US image quality highlight the importance of collecting and publishing further 

datasets. Having access to diverse datasets amplifies a researchers’ ability to evaluate and improve 

their future models, thus enhancing the generalization and robustness to real-world clinical challenges. 

In light of this, we acknowledge the novel dataset published by Gong et al. This dataset is 

originally divided into train and test subsets which is excellent for a direct comparison of studies. We 

conducted experiments using this dataset, along with other publicly available datasets, and obtained 

the following mean evaluation metrics (± standard deviations) on the published test set: Dice score, 

IoU score, accuracy, precision, and recall of 84.24% ± 0.19, 75.48% ± 0.21, 97.24% ± 0.32, 82.75% ± 
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0.20, and 88.98% ± 0.19, respectively. These results represent the most advanced state-of-the-art scores 

compared to previously published studies and demonstrate that UNet with the ResNet encoder has the 

capability to accurately segment thyroid nodules in ultrasound images. 

Our results achieved scores comparable to interobserver studies, suggesting that automated 

thyroid nodule segmentation using deep learning can reach expert-level performance. While CAD 

systems are not intended to replace human expertise, they can serve as valuable tools for supporting 

clinical decision-making and improving diagnostic consistency. Our results show that data 

augmentation has a significant impact, and raises the question of whether it has a greater influence 

than the architecture used. Considering that the dataset remains small even with all publicly available 

data on thyroid nodules (and that data augmentation considerably affects the outcomes), we plan to 

focus our future work on optimizing data augmentation. 
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