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Abstract: Molecular weight (Mw) is an important feature that affects the physicochemical properties 
of polymers and their matrices. This study focused on the impact of increasing the Mw of 
polyethylene glycol (PEG) (4, 8 and 20 K) mixed with polyvinyl alcohol (PVA). Graphene oxide 
(GO) nanosheets were employed to reinforce the polymer matrix by aquatic 
mixing-sonication-casting to prepare the nanocomposites and investigate their optical properties. 
Fourier transform infrared spectroscopy revealed strong interfacial interactions among the 
components and successful fabrication of the nanocomposites. Optical microscopy and scanning 
electron microscopy confirmed the fine homogeneity of the polymers and the excellent dispersion of 
nanosheets in the matrix. The absorption peak was located in the ultraviolet region related to GO. 
PEG Mw and GO additive significantly improved optical properties such as absorbance, real and 
imaginary dielectrics and the absorption coefficient constant up to 75%, 40%, 120% and 77%, 
respectively. An enhancement in the optical properties was also observed after the energy gap values 
for allowed and forbidden transitions were improved up to 90% and 375%, respectively. These 
findings suggest the potential of these materials for several applications, such as in photovoltaic 
devices and heavy metal ion absorption for nuclear waste management. 
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1. Introduction 

Graphene-based polymer nanocomposites have novel properties in addition to those conferred 
by their individual components [1,2]. Their significantly improved properties have opened up many 
promising applications for these materials. Nanotechnology is one of the preferred methods to 
improve a material’s physical, mechanical and thermal properties. [3,4]. Another technique is the 
addition of nanofillers [5]. The carbon family has recently become a research focus, and    
graphene oxide (GO) has been used as an effective nanofiller to remove heavy metal ions from 
wastewater [6,7]. This compound also has critical applications in nuclear waste management because 
of its remarkable stability under complex conditions [8,9]. GO, a derivative of graphene, is a unique 
and impressive material containing functional groups with large surface areas and extended 
functional groups with their own features in addition to graphene’s unique properties [10,11]. These 
properties make GO the most suitable to combine with a wide range of materials for improvement in 
their physical characteristics, such as optical, thermal, electrical and mechanical properties [12–14]. 
In the last decade, graphene polymer nanocomposites have become one of the best nanofillers 
because they exhibit excellent and unique properties for many applications [15,16].  

Nanocomposite preparation is influenced by several factors, such as the component’s properties, 
morphology, interfacial interaction, dispersion, homogeneity and loading transfer [17,18]. The 
polymer’s molecular weight (Mw) significantly affects the polymer matrix’s properties. Polymers 
have different Mws, and each Mw corresponds to a different application. This important factor has 
not been fully understood because of the lack of information and investigations. 

Polyethylene glycol (PEG) is an essential polymer with significant applications and can exhibit 
various Mws; PEG with a high Mw is called poly (ethylene oxide) (PEO) [5,19]. PEG and poly(vinyl 
alcohol) (PVA) have substantial properties, such as high solubility, low toxicity, biocompatibility and 
rapid biodegradability in water [20]; and they contain important functional groups, such as one 
hydroxyl and carbonyl per unit of the chemical chain [21]. These functional groups improve the 
material’s compatibility with many other polymers, fillers and nanofillers to manipulate or   
enhance the characteristics of materials and make them attractive to scientists, engineers and 
researchers [22]. The above polymers have been experimentally and theoretically investigated for 
numerous applications, such as in photovoltaic cells and devices, optics, optoelectronics and 
electronics [23–26]. However, their distinctive properties are related to their internal components, 
which differ from the polymer net [27]. Despite all the characteristics of pure and mixed polymers, 
they suffer from weakness in most of their optical properties due to structural defects [7,28]. 

Previous studies have focused on the electrical, mechanical, thermal and structural properties  
of only PVA or PEG alone or with graphene derivatives, GO or reduced GO. In addition to 
conduction, frequency, dielectric constants, thermal stability, strain, stress and other characteristics, 
Basha et al. [29] studied the effect of GO addition (from 0.1 to 0.3 g) on the optical characteristics of 
the polymeric mixture of poly(vinylpyrrolidone) (PVP) mixed with PVA as PVP/PVA-GO 
nanocomposites. The results showed that the highest concentration reduced the absorption edge and 
energy gap to 4.45 and 4.28 eV, respectively. Falqi et al. [30] described the thermal and mechanical 
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properties of PVA blends with PEG polymers prepared with various loading ratios of graphene 
(0.1–1 wt%) and found that the thermal properties exhibited good stability. Li et al. [31] considered 
the influence of added GO content on enhancing the thermal expansion and mechanical properties of 
PEGs with various Mws prepared using the solution method. The best effect was observed for the 
high-Mw PEG-20000, which exhibited strong interactions between the molecules of 20 K Mw PEGs 
and the functional groups of the GO nanosheets. Xiong et al. [32] described the influence of several 
low-Mw PEGs (200–6000 gꞏmol−1) with GO as a biosensor that detects profenofos in food, such as 
water and milk, in a single optical constant. GO/PEG nanocomposites with various Mws of PEG 
polymer showed the highest absorption for GO in the far ultraviolet (UV) region, which was less 
than 250 nm. The nanocomposite was also used for aptasensing assay to determine profenofos in tap 
water, milk and cabbage. 

Despite all the previous studies [26,29–32], limited information is available on the relationship 
between the Mws and the interfacial interactions of low GO loading ratio and its effect on       
the morphology and optical properties of hybrid nanocomposites with PVA and PEGs of various 
Mws (4, 8 and 20 K). Therefore, this investigation addressed these essential factors. A 
mixing-sonication-casting method was developed and used to prepare PVA-PEG/GO 
nanocomposites. The structures and optical properties of the nanocomposites were investigated for 
the first time using different characterization techniques such as Fourier transform infrared (FTIR) 
spectroscopy, optical microscopy (OM), UV spectrophotometry and scanning electron microscopy 
(SEM). 

2. Materials and methods 

2.1. Materials 

PVA with a −43.15 ℃ melting point and 99.8% purity was supplied by Panreac Company, Spain, 
and PEGs of 4000, 8000 and 20000 gꞏmol−1 were provided by Central Drug House, India. Graphite 
powder with a particle size of ≤40 µm for GO preparation, hydrogen peroxide, sodium nitrate, 
sulfuric acid with 99.8% purity, potassium permanganate and hydrochloric acid were purchased from 
Sigma-Aldrich Company, UK. 

2.2. Preparation of GO  

GO nanosheets were synthesized from graphite using the methods proposed by Hummer [5]. The 
characteristics of GO nanosheets are presented in Figure S1 of the supporting information. 

2.3. Preparation of polymer matrix 

Six different samples were prepared separately. First, 75 wt% PVA was mixed with distilled 
water (DW) using a magnetic stirrer at 70 ℃ for 60 min until complete dissolution. The temperature 
was then reduced to 40 ℃. Meanwhile, 24 wt% PEGs of three Mws were dissolved in distilled water. 
Three PVA/PEG samples were prepared by mixing PVA-DW with PEG-DW and stirring for 30 min. 
GO was first suspended in distilled water and then sonicated for 30 min for full dispersion before being 
loaded into polymer mixtures. Another three samples of PVA/PEG polymers were fabricated using the 
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above procedure and then loaded with 1 wt% GO to prepare the nanocomposites. After GO addition, 
the matrixes became fully homogeneous. The GO was fully dispersed in the matrix of the blended 
polymers after mixing for 96 h and sonication for 1 h. These processing methods are summarized in 
Table 1. All the matrixes were cast in a plastic petri dish at room temperature (RT) for 96 h under air 
to obtain dried films. 

Table 1. Preparation of blended polymers and nanocomposites. 

Sample code Concentration (wt%) Drying at room 

temperature PVA PEG 4k PEG 8k PEG 20k GO 

P1 75 24 - - - Under air in a fume 

cupboard for 4 d N1  24 - - 1 

P2  - 24 - - 

N2  - 24 - 1 

P3  - - 24 - 

N3  - - 24 1 

Equation 1, which represents transmittance (T), and Eq 2 were used to calculate the absorption 
coefficient (α) (cm−1) [33]. 

ܶ ൌ log  (1)                                    ܣ

α ൌ 2.303	Å/t                                    (2) 

where (A), and (t) represent the absorbance and the thickness of the sample, respectively. The 
extrapolated linear intercept of the curve with the energy of the photon (hυ) at (αhݒ)n = (0) was used to 
calculate the allowed and forbidden indirect transitions of optical energy gap with Eq 3 [7].  

ܽℎݒ ൌ ݒ൫ℎ	ܤ െ 	௚ܧ ൯
௡

                             (3) 

where (B) is constant, (h) is Planck’s constant, (ݒ) is frequency, and the energy of phonon,(ܧ௚	 ) refers to 
the energy of the photon. The signs (-) and (+) represent the photon’s activities of absorption and 
emission, respectively. (r) represents the exponential constant whose value is determined by the 
transition type. Here, r = 2 or 3 for the allowed direct and indirect transitions, respectively. 

Equation 4 was used to calculate the refractive index value (n), which depends on the reflectance 
(R). 

݊ ൌ 	 ଵାோ
ଵିோ

൅ ሾ ସோ

ሺଵିோሻమ
െ	ܭଶ	ሿ                               (4) 

ܭ ൌ	ఈఒ
ସగ

                                           (5) 

where (λ) is the wavelength of the Cu Kα line (1.5406 Å), which was used to calculate the extinction 
coefficient (K). Equations 6 and 7 were used to estimate the real (Ɛr) and imaginary dielectric constant 
(Ɛi) for nanocomposites [33].  

୰ߝ 	ൌ 	 ሺnଶ െ kఖଶሻ                                    (6) 
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ε୧	 ൌ 	 ሺ2nk୭ሻ                                       (7) 

Depending on the refractive index, polarizability (P) can be determined using Eq 8 [34]. 

ܲ ൌ 	 ଷ
ସగ
	ሺ	௡

మିଵ

௡మାଵ
	ሻ                              (8) 

Equation 9 was applied to estimate the optical conductivity (σop) [35]. 

௢௣ߪ ൌ 	
ఈ	௡	௖

ସగ
                                      (9) 

where (c) is the light velocity, and (α) is the absorption coefficient. The dielectric loss angle was 
calculated using Eqs 10 and 11 [36]. 

ߜ	݊ܽݐ ൌ 	 ௜ߝ ௥ൗߝ                                (10) 

Loss angle was computed as  

௜ߝ൫	ଵି݊ܽݐ ௥ൗߝ ൯ ൌ  (11)                             ߜ	

2.4. Characterization 

The infrared spectra of the polymer blends/graphene nanocomposites were obtained using FTIR 
spectroscopy (Bruker, Germany) at 400–4000 cm−1. An ultrasonic cleaner, model VGT-1613QTD 
with 60 W power and 40 kHz frequency, was used to exfoliate the GO nanosheets and achieve good 
dispersion in the polymer matrix. The surfaces of the films were characterized using a Nikon-73346 
Optical Microscope (OM) from Olympus. The absorption spectra between the wavelengths of 300 
and 1100 nm were obtained using a UV-1650 PC type Shimadzu by Phillips Company, Japan. The 
structures of the nanocomposites were characterized using an X-ray diffraction (XRD) instrument, 
Vertex 701, Shimadzu 600, from Japan. High-resolution images were captured at 10 kV using an 
Inspect S 50 SEM supplied by FEI Company. 

3. Results and discussion 

The blended polymers and nanocomposites were characterized using FTIR spectra between 400 
and 4000 cm−1, as shown in Figure 1. The characteristics of the absorption peaks of PVA and      
of PEGs4k, 8k, 20k as poly-blends with hybrid nanocomposites were found at 3283.45, 3219, 2917.99, 
2882, 1732.87, 1720, 1620, 1466.01, 1360, 1341.57, 1240–1106.41, 1096.82, 1040, 961.86      
and 841.42 cm−1, which corresponded to the wide band of the –OH hydroxyl groups of the 
nanocomposite, stretching vibrations of the hydroxyl groups –OH of GO, symmetric stretching 
vibration band of –CH2 methylene of PVA, asymmetric stretching vibration of –CH3 methyl of PEGs, 
C=O stretching band of the carbonyl groups of the composite, C=O carbonyl groups at the GO 
nanosheet edges, C=C skeletal ring stretching vibration of GO, methylene –CH blending vibration of 
PEGs, primary or secondary, OH in-plan bending, methyl –CH asymmetric bending vibration of 
PVA, –OH group bending vibration of the nanocomposite, C–O stretching of poly(vinyl alcohols), 
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C–O–C epoxy group stretching vibration, C–O–C symmetric vibration and C–C group stretching 
vibration of PEGs, respectively [31].  

 

Figure 1. FTIR spectra of blended polymers and nanocomposites. 

FTIR analysis of the nanocomposites revealed strong interfacial interaction bonds, particularly 
the –H bond, among the molecular chains of blended polymers and GO. When a small percentage of 
GO was added, a significant increase in intensity and a slight shift in peak positions at 1732     
and 3283 cm−1 were observed. These findings were associated with the high solubility and good 
dispersion of the PVA/PEG polymer blend and the functional groups of GO. All these factors have 
led to the successful production of nanocomposites. 

Figure 2 shows the XRD patterns of GO and P3 and N3 nanocomposites. The interlayer spacing 
pattern of GO was 0.79 nm, calculated at 2θ = 11.1º (002), which was in agreement with another 
finding [37]. PEG spectra revealed peaks at 2θ = 19º, 23.3º [38]. The PEG peaks revealed a slight 
shift in the 2θ peak of the N3 nanocomposites from 19º to 18.9º, which could be associated with the 
increment of interplanar crystal spacing. The lack of a GO peak could be attributed to the orientation 
of GO or its overlap with high-intensity PEG and the low loading ratio [5,39]. Nevertheless, these 
results indicated that GO reinforcing does not affect the PEG crystal structure [7,40]. 
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Figure 2. XRD patterns of GO and P3 and N3 nanocomposites. 

Figure 3 shows the UV-visible absorption spectra of the PVA/PEG4k, 8k, 20k blends and their hybrid 
nanocomposites with GO recorded at RT in the wavelength region of 200–1100 nm. At 230 nm, the 
absorption peak corresponded to the transition of plasmonic π-π* (C=C) of as-prepared GO. At 
around 300 nm, a shoulder related to the transition of n-π* (C=O) was observed [41]. In addition, the 
strong absorption band at 200–300 nm could be caused by the covalent bonding interactions or π–π 
stacking between the GO and blended polymers. Therefore, in the visible light band, the absorption 
of GO was greater than that of blended polymers. The slow re-shift of the plasmonic peak was 
observed from 230 to 270 nm, and this process was accelerated by the increasing reaction time [42]. 
This shift could be due to an increase in the percentage of sp2-hybridized carbon atoms [41]. 

The optical transmittance spectra of the PVA/PEG4k, 8k, 20k blends and their hybrid 
nanocomposites with GO are revealed in Figure 4. PVA/PEG1 displayed an average optical 
transmittance of 87%–90% in the UV-vis-NIR radiation region. This behavior was reduced to  
about 77–80% after the increase in the Mw of PEGs and GO. This reduction behavior could be 
related to the sample’s surface nature, which absorbed most of the incident light. At 200 nm, the peak 
transition of plasmonic π-π* (C=C) was responsible for the peak absorption of synthesis GO. 
Meanwhile, the presented shoulder was corresponded to n-π* (C=O) transition at around 270 nm [41]. 
The slow re-shift of the plasmonic peak was observed from 200 to 270 nm, and this process was 
accelerated by the increasing reaction time [42]. This shift could be attributed to an increase in the 
percentage of sp2-hybridized carbon atoms [41]. Therefore, in the visible light band, the absorption 
of GO was greater than that of blended polymers.  
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Figure 3. Absorbance spectra of blended polymers and nanocomposites. 

 

Figure 4. Transmittance spectra of blended polymers and nanocomposites. 

The absorption coefficient (α) and the energy of the photon (hݒ) of PVA/PEG4k, 8k, 20k blends and 
their nanocomposites with GO are shown in Figure 5. α had the lowest values at low energy points, and 
this phenomenon could be related to the slight possibility of electron transition. At high energies, the 
electron absorption was excellent, with α ≤ 104 cm−1. This finding could be related to the high 
probability of indirect electronic transition. This result agreed with a previous study on GO 
nanosheets [7]. 
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Figure 5. Absorption coefficients of blended polymers and nanocomposites. 

The optical energy gap (Eg
opt) of nanocomposites for direct and indirect transitions was 

calculated using Eq 3, and the results are shown in Figures 6 and 7 and Table 2. Eg
opt was significantly 

reduced in both transitions with the change of PEG Mw and GO additive. This finding can be 
attributed to the increase in the disorder degree caused by the increase in Mw. GO is an essential 
factor in tuning the bandgap and contributed by significantly reducing the energy gap. The disorder 
degree in the polymer causing a reduction in the optical gap agreed with a previous study [7].  

 

Figure 6. Optical energy gaps of the allowed transition and the photon energy (hݒ) of 
blended polymers and nanocomposites. 
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Figure 7. Optical energy gaps of the allowed transition and the photon energy (hݒ) of 
blended polymers and nanocomposites. 

Table 2. Optical energy gaps of the indirect transitions of polymers and nanocomposites. 

Sample Allowed (eV) Forbidden (eV) 

P1 4.22 3.8 

N1 3.81 3.1 

P2 3.62 2.7 

N2 3.19 2.15 

P3 2.9 1.9 

N3 2.21 0.8 

Figure 8 illustrates the calculated refractive index values using Eq 4. The refractive index 
increased with the upward change of PEG Mws and GO additive in all regions, resulting in the 
condensation polymer chains and hydrogen intermolecular interactions among the C–O groups of GO 
through the O–H group of PEG. The UV region showed the highest refractive index value, with a 
maximum of 2.54. Linear relationships were found between the refractive index and Mw [33].  

Figure 9 shows the variation of the polarizability of PVA/PEG4k, 8k, 20k blends and their 
nanocomposites with GO with photon energy calculated from Eq 8. The polarizability exhibited a 
similar behavior to the refractive index. Therefore, increasing the polarization produced a great 
refractive index, and materials without polarization do not exhibit any variation in the light speed. 
Consequently, the refractive index was equivalent to 1 [7]. 
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Figure 8. Refractive index of blended polymers and nanocomposites. 

 

Figure 9. Polarizability of blended polymers and nanocomposites. 
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Figure 10. Extinction coefficients of blended polymers and nanocomposites. 
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polymers. As exhibited in Figure 12, the imaginary dielectric constant showed similar behavior but 
lower values than the real dielectric constant. 

 

Figure 11. Real dielectric constants of blended polymers and nanocomposites. 
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Figure 12. Imaginary dielectric constants of blended polymers and nanocomposites. 
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This finding indicated transmittance inside the visible and near-infrared regions of the 
nanocomposite’s optical conductivity spectra. This behavior could be attributed to the charge transfer 
complex that originated from the impact of nano additives on the optical conductivity. 

 

Figure 13. Optical conductivity of blended polymers and nanocomposites. 
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Figure 14. Dielectric loss angle of blended polymers and nanocomposites. 
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desorb and adsorb radionuclides without requiring another external compound. Therefore, this 
compound can be used to remove heavy metal ions from wastewater and for waste management 
applications, such as landfilling chemicals, nuclear waste and radioactive waste [6,7,9,12,44]. 
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Figure 15. Optical microscopic images of (a) P1 blends and (b) N1, (c) N2 and (d) N3 
nanocomposites at 100× magnification. 

 

Figure 16. SEM images of (a) P1 polymer blend and (b) N1, (c) N2 and (d) N3 nanocomposites. 
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Figure 17. Relation between radiation attenuation (N) and the number of radiation 
particles (No) with the attenuation coefficient of radiation vs. the PEG Mws of 
nanocomposites. 

4. Conclusions 

Nanocomposites were successfully fabricated using a developed method of aquatic 
mixing-sonication-casting. The effects of PEG Mw on the structures and optical properties of these 
nanocomposites were investigated. FTIR spectroscopy revealed strong interfacial interaction peaks 
in the polymers with the increasing Mws of PEG. XRD supported these results. SEM and OM 
images showed better and smoother surfaces of the samples after the increase in the Mws of PEG. In 
addition, the fine dispersion of nanoscale GO was observed, and some aggregation of micron-sized 
GO was found in several samples. Increasing the Mw and GO nanosheets significantly enhanced the 
absorption of UV waves and helped maintain good optical transmittance values (90%–77%). In 
addition, PEG Mw and GO loading significantly improved optical properties such as absorbance, 
dielectric constants (real and imaginary) and absorption coefficient constants up to 75%, 40%, 120% 
and 77%, respectively. The indirect transition optical energy gap (allowed and forbidden) was 
improved up to 90% and 375%, respectively, by reducing the values of the above indexes with the 
upward change of Mw and GO additive in all regions. The same behavior was observed for the optical 
absorption edge. In addition to the contribution of GO in the polymer matrix, the results also revealed 
the substantial absorption of radiation with the increasing Mws of the PEGs in the matrix. This study 
showed the importance of the Mw of polymers and its effect on the results. Based on all the findings, 
these nanomaterials are suitable for various applications, such as UV protection, solar cells, radiation 
shields and drug storage. 
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